
Pr 8.14 (a) The sampler is linear: if xi(t), i = 1, 2, are the inputs then xi(nTs), i = 1, 2 are the outputs. When
the input is ax1(t) + bx2(t), a combination of the previous two inputs, then the output will be ax1(nTs) +

bx2(nTs) or the combination of the previous outputs.
(b) For Ts = 1, the sampling of x(t) = cos(0.5πt)u(t) gives the signal

y(nTs) = cos(0.5πn)u[n]

while for Ts = 1 the sampling of x(t− 0.5) = cos(0.5π(t− 0.5))u(t− 0.5) gives

z(nTs) = cos(0.5π(n− 0.5))u(n− 0.5)

Let us compare the first five values

y(0) = 1 z(0) = 0

y(1) = 0 z(1) = cos(0.25π) = 0.707

y(2) = −1 z(2) = cos(0.75π) = −0.707

y(3) = 0 z(3) = cos(1.25π) = −0.707

y(4) = 1 z(4) = cos(1.75π) = 0.707

...

showing clearly that z(nTs) is not y(nTs) shifted. Thus the sampler is time-varying. Notice that if we sample
the analog signal shifted by exactly one or more sampling periods, the output signal is a shifted version of
the originally sampled signal. But if the shift is not a multiple of the sampling period, it is not. To verify that
the sampler is not TI we use the following script to plot y[n] and z[n] for 0 ≤ n ≤ 49.

%%% Pr 8.14

clear all;clf

n=0:49;

y=cos(0.5*pi*n);

n1=1:49;

z=[0 cos(0.5*pi*(n1-0.5))];

figure(1)

subplot(211)

stem(n,y); ylabel(’y[n]’)

subplot(212)

stem(n,z); ylabel(’z[n]’); xlabel(’n’)

HW10_ Solution

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

y[
n]

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

z[
n]

n

Pr 8.15 (a) Yes, the quantizer is time-invariant. Indeed, x(nTs) and x(nTs−MTs) will give the same values
just shifted in time. In this case the M must be an integer as the sampled signal is discrete in time.
(b) The samples are given by x(nTs) = nTs = 0.1n. For ∆ = 0.25 the sample x[1] = 0.1 when quantized
gives x̂[1] = 0 since 0 < 0.1 < ∆. If we multiply the signal by 3 so that the value 3x[1] = 0.3 would give
x̂[1] = 1 since ∆ < 0.3 < 2∆. Since the second output is not the first output multiplied by 3, the quantizer
is not linear.
We saw before that the sampler is linear but time-varying, while the quantizer is time-invariant but non-linear,
so the A/D converter which is composed of these systems is not LTI.

Pr 8.16 (a) If w[n] = u[n] − u[n − N] is the rectangular window, windowing the signal x[n] gives y[n] =

x[n]w[n]. If we have the following input/output pairs

x1[n] ⇒ y1[n] = w[n]x1[n]

x2[n] ⇒ y2[n] = w[n]x2[n]

then
ax1[n] + bx2[n] ⇒ w[n][ax1[n] + bx2[n]] = ay1[n] + by2[n]

thus the windowing process is linear.

(b)-(c) However, windowing it is not time invariant. If we window x[n] = nu[n] using a rectangular window
w[n] = u[n]−u[n−6] results in y[n] = n(u[n]−u[n−6]). If we shift x[n] by 6 to get x[n−6] = [n−6]u[n−6]

(which is zero for 0 ≤ n ≤ 5) then x[n− 6]w[n] is zero for all n and not equal to y[n− 6] which is what we
should get if windowing was time-invariant. The following script displays this.

%%% Pr 8.16

clear all; clf

w=[ones(1,6) zeros(1,20-6)];

n=0:19;

x=n;

x1=[zeros(1,6) x(1:20-6)];

figure(1)

subplot(211)

stem(n,w.*x);axis([0 19 0 5]);grid

subplot(212)

stem(w.*x1);axis([0 19 0 5]);grid

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

x[
n]

w
[n

]

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

x 1[n
]w

[n
]

n

Figure 8.5: .

Pr 8.17 (a) The impulse response can be found solving the difference equation recursively, i.e., letting the
output be y[n] = h[n] and the input be x[n] = δ[n] and assuming zero initial conditions, i.e., h[n] = 0 for
n < 0. We have then

h[n] = 0.15h[n− 2] + δ[n]

which for n ≥ 0 gives

h[0] = 0.15h[−2] + 1 = 1

h[1] = 0.15h[−1] + 0 = 0

h[2] = 0.15h[0] + 0 = 0.15

h[3] = 0.15h[1] + 0 = 0

h[4] = 0.15h[2] + 0 = 0.152

h[5] = 0.15h[3] + 0 = 0

...

or

h[n] =

{
0.15n/2 for n ≥ 0 and even
0 otherwise

(b) Letting the initial conditions be zero, the input x[n] = δ[n] and y[n] = h[n] we have

h[n] = 0.15h[n− 2] + δ[n]

replacing h[n− 2] = 0.15h[n− 4] + δ[n− 2] according to the equation for the difference equation, we get

h[n] = 0.15(0.15h[n− 4] + δ[n− 2]) + δ[n] = 0.152h[n− 4] + 0.15δ[n− 2] + δ[n]

and again replacing h[n− 4] = 0.15h[n− 6] + δ[n− 4] we have

h[n] = 0.152(0.15h[n− 6] + δ[n− 4]) + 0.15δ[n− 2] + δ[n]

= 0.153h[n− 6] + 0.152δ[n− 4] + 0.15δ[n− 2] + δ[n]

Repeating this process we realize that after more iterations we get that,

h[n] = δ[n] + 0.15δ[n− 2] + 0.152δ[n− 4] + 0.153δ[n− 6] + · · ·

which is the same result as in the previous part.

(c) The following script using filter computes and plots h[n]

%%% Pr 8.17

clear all;clf

a=[1 0 -0.15];

b=1;

x=[1 zeros(1,29)];

h=filter(b,a,x);

n=0:29;

figure(1)

stem(n,h); axis([0 29 0 1]); grid;ylabel(’h[n]’); xlabel(’n’)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h[
n]

n

Figure 8.6: .

Pr 8.22 (a) The impulse response of the IIR filter is found by solving the difference equation

h1[n] = δ[n]− 0.5h1[n− 1] n ≥ 0

obtained by letting y1[n] = h1[n], x[n] = δ[n] and initial conditions equal to zero. Recursively we obtain

h1[0] = 1

h1[1] = −0.5h1[0] = −0.5

h1[2] = −0.5h1[1] = (−0.5)2

· · ·

which gives in general h1[n] = (−0.5)nu[n].
The impulse response of the FIR system is obtained by letting x[n] = δ[n] and y2[n] = h2[n] so that

h2[n] = δ[n] + 0.5δ[n− 1] + 3δ[n− 2] + δ[n− 5]

(b)(c) The condition for BIBO stability of a LTI system is that its impulse response be absolutely summable.
The given IIR and FIR systems are LTI. The stability condition for the IIR system is that the following sum
converges

∞∑
n=0

|h1[n]| <∞

It can be shown that this sum converges, i.e.,

∞∑
n=0

|(−0.5)n| =
∞∑

n=0

0.5n =
1

1− 0.5
= 2

therefore the IIR system is BIBO stable.
For the FIR, the stability condition is satisfied since we are adding a finite number of values. Indeed,

∞∑
n=0

|h2[n]| = 1 + 0.5 + 3 + 1 <∞

thus the FIR is BIBO stable.
(d) Because of the finite support of the impulse response of an FIR filter it is always absolutely summable
and therefore FIR filters are always BIBO stable.

