$\underline{\operatorname{Pr} 9.7}$ (a) If $T_{s}=0.1$ the discrete-time signal is

$$
x(0.1 n)=\left.[u(t)-u(t-1)]\right|_{t=0.1 n}=\left\{\begin{array}{cc}
1 & 0 \leq 0.1 n \leq 1 \text { or } 0 \leq n \leq 10 \\
0 & \text { otherwise }
\end{array}\right.
$$

(b) Expressing $x[n]$ as indicated, then $N=11$.
(c) The Laplace transform of the sampled signal is

$$
\begin{aligned}
X_{s}(s) & =\sum_{n=0}^{10} \mathcal{L}\left[\delta\left(t-n T_{s}\right)\right. \\
& =\sum_{n=0}^{10} e^{-0.1 n s} \\
& =\frac{1-e^{-1.1 s}}{1-e^{-0.1 s}}
\end{aligned}
$$

(d) The z-transform of the discrete-time signal is

$$
X(z)=\sum_{n=0}^{10} z^{-n}=\frac{1-z^{-11}}{1-z^{-1}}
$$

(e) To transform $X_{s}(s)$ into $X(z)$ we let $z=e^{0.1 s}$.

Pr 9.10 (a) The given signal can also be written

$$
x[n]=\left\{\begin{array}{cc}
1 & n \geq 0 \text { and even } \\
0 & \text { otherwise }
\end{array}\right.
$$

(b) Using the above expression for $x[n]$, we have

$$
\begin{aligned}
X(z) & =\sum_{n=0, \text { even }}^{\infty} 1 z^{-n} \\
& =\sum_{m=0}^{\infty} 1 z^{-2 m}=\frac{1}{1-z^{-2}} \quad|z|>1
\end{aligned}
$$

where we let $n=2 m$ to find the final expression.
(c) The z-transform of $x[n]$ is also obtained by using its linearity

$$
\begin{aligned}
X(z) & =0.5 \mathcal{Z}[u[n]]+0.5 \mathcal{Z}\left[(-1)^{n} u[n]\right] \\
& =\frac{1}{2\left(1-z^{-1}\right)}+0.5 \sum_{n=0}^{\infty}\left(-z^{-1}\right)^{n} \\
& =\frac{1}{2\left(1-z^{-1}\right)}+\frac{1}{2\left(1+z^{-1}\right)} \\
& =\frac{1}{1-z^{-2}} \quad\left|z^{-1}\right|<1 \text { or }|z|>1
\end{aligned}
$$

(c) To find the poles and zeros let

$$
X(z)=\frac{z^{2}}{z^{2}-1}
$$

with poles $z= \pm 1$, and zeros $z=0$, double.
$\underline{\operatorname{Pr} 9.11}$ (a) The Z-transform of the difference equation

$$
y[n]=x[n]-0.5 y[n-1] \quad n \geq 0
$$

with initial condition $y[-1]$ is

$$
Y(z)=X(z)-0.5\left(z^{-1} Y(z)+y[-1]\right)
$$

so that

$$
Y(z)=\frac{X(z)}{1+0.5 z^{-1}}-\frac{0.5 y[-1]}{1+0.5 z^{-1}}
$$

(b) If $X(z)=1, y[-1]=2$ then $Y(z)=0$ and therefore $y[n]=0$ for $n \geq 0$ but $y[-1]=2$. If $X(z)=1$ or $x[n]=\delta[n]$ and $y[-1]=2$ the difference equation is

$$
y[n]=\delta[n]-0.5 y[n-1] \quad n \geq 0
$$

and can be solved recursively

$$
\begin{aligned}
& y[0]=1-0.5 \times 2=0 \\
& y[1]=0-0.5 \times 0=0 \\
& y[2]=0-0.5 \times 0=0
\end{aligned}
$$

(c) If $y[-1]=0$ and $x[n]=\delta[n]$ then we can compute $y[n]=h[n]$, i.e., the impulse response. The corresponding transfer function is then from the equation for $Y(z)$:

$$
H(z)=\mathcal{Z}[h[n]]=\frac{Y(z)}{X(z)}=\frac{1}{1+0.5 z^{-1}}
$$

If we want $y[n]=\delta[n]+0.5 \delta[n-1]$ or $Y(z)=1+0.5 z^{-1}$ then

$$
X(z)=\frac{Y(z)}{H(z)}=\left(1+0.5 z^{-1}\right)^{2}=1+z^{-1}+0.25 z^{-2}
$$

which gives $x[n]=\delta[n]+\delta[n-1]+0.25 \delta(n-2)$
$\underline{\operatorname{Pr} 9.17}$ (a) The signal $x[n]=\delta[n]+\delta[n-1]+\delta[n-2]$ has a Z-transform

$$
X(z)=1+z^{-1}+z^{-2}
$$

(b) Then

$$
Y(z)=X^{2}(z)=\left(1+z^{-1}+z^{-2}\right)^{2}=1+2 z^{-1}+3 z^{-2}+2 z^{-3}+z^{-4}
$$

The convolution of the coefficients of $X(z)$, or $x[n]$, with themselves gives the sequence

$$
y[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+2 \delta[n-3]+\delta[n-4]
$$

The length of $y[n]$ is twice that of $x[n]$ minus one, or $2 \times 3-1=5$ so that $Y(z)$ is a fourth -degree polynomial. The above result is verified using MATLAB

```
%% Pr 9.17
x=[[11 1 1 1];
y=conv(x,x); N=length(y);
x1=[x zeros(1,N-3)]
n=0:N-1;
figure(1)
subplot(211)
stem(n,x1),ylabel('x[n]');grid
subplot(212)
stem(n,y);ylabel('y[n]'); grid
```


Figure 9.4: .

Pr 9.18 Writing $X(z)$ using terms found in tables, its partial fraction expansion is

$$
\begin{aligned}
X(z) & =\frac{2-z^{-1}}{2\left(1+0.25 z^{-1}\right)\left(1+0.5 z^{-1}\right)} \\
& =\frac{A}{1+0.25 z^{-1}}+\frac{B}{1+0.5 z^{-1}}
\end{aligned}
$$

corresponding to the poles at -0.25 and -0.5 . The coefficients of the expansion are

$$
\begin{aligned}
A & =\left.\frac{2-z^{-1}}{2\left(1+0.5 z^{-1}\right)}\right|_{z^{-1}=-4}=-3 \\
B & =\left.\frac{2-z^{-1}}{2\left(1+0.25 z^{-1}\right)}\right|_{z^{-1}=-2}=4
\end{aligned}
$$

so that

$$
X(z)=\frac{-3}{1+0.25 z^{-1}}+\frac{4}{1+0.5 z^{-1}}
$$

and the inverse is

$$
x[n]=\left[-3(-0.25)^{n}+4(-0.5)^{n}\right] u[n]
$$

and in the steady-state it is zero.

Pr 9.19 (a) $F(z)$ is a proper rational function in positive powers of z as its numerator is of lower order than the denominator. If we convert it into negative powers, z^{-1}, we have

$$
F(z)=\frac{z^{-2}\left(1+z^{-1}\right)}{1-z^{-1}}
$$

which is not proper rational in z^{-1} as its numerator is of higher order than its denominator.
(b) Using the above expression we have that

$$
F(z)=\frac{z^{-2}}{1-z^{-1}}+\frac{z^{-3}}{1-z^{-1}}
$$

which gives

$$
f[n]=u[n-2]+u[n-3]
$$

given that $1 /\left(1-z^{-1}\right)$ is the Z-transform of $u[n]$ and z^{-2} and z^{-3} delay $u[n]$ by 2 and 3 samples.

