
Pr 9.7 (a) If Ts = 0.1 the discrete-time signal is

x(0.1n) = [u(t)− u(t− 1)] |t=0.1n=

{
1 0 ≤ 0.1n ≤ 1 or 0 ≤ n ≤ 10

0 otherwise

(b) Expressing x[n] as indicated, then N = 11.
(c) The Laplace transform of the sampled signal is

Xs(s) =

10∑
n=0

L[δ(t− nTs)

=

10∑
n=0

e−0.1ns

=
1− e−1.1s

1− e−0.1s

(d) The z-transform of the discrete-time signal is

X(z) =

10∑
n=0

z−n =
1− z−11

1− z−1

(e) To transform Xs(s) into X(z) we let z = e0.1s .



Pr 9.10 (a) The given signal can also be written

x[n] =

{
1 n ≥ 0 and even
0 otherwise

(b) Using the above expression for x[n], we have

X(z) =

∞∑
n=0, even

1 z−n

=

∞∑
m=0

1 z−2m =
1

1− z−2
|z| > 1

where we let n = 2m to find the final expression.
(c) The z-transform of x[n] is also obtained by using its linearity

X(z) = 0.5Z[u[n]] + 0.5Z[(−1)nu[n]]

=
1

2(1− z−1)
+ 0.5

∞∑
n=0

(−z−1)n

=
1

2(1− z−1)
+

1

2(1 + z−1)

=
1

1− z−2
|z−1| < 1 or |z| > 1

(c) To find the poles and zeros let

X(z) =
z2

z2 − 1

with poles z = ±1, and zeros z = 0, double.



Pr 9.11 (a) The Z-transform of the difference equation

y[n] = x[n]− 0.5y[n− 1] n ≥ 0

with initial condition y[−1] is

Y (z) = X(z)− 0.5(z−1Y (z) + y[−1])

so that
Y (z) =

X(z)

1 + 0.5z−1
− 0.5y[−1]

1 + 0.5z−1

(b) If X(z) = 1, y[−1] = 2 then Y (z) = 0 and therefore y[n] = 0 for n ≥ 0 but y[−1] = 2.
If X(z) = 1 or x[n] = δ[n] and y[−1] = 2 the difference equation is

y[n] = δ[n]− 0.5y[n− 1] n ≥ 0

and can be solved recursively

y[0] = 1− 0.5× 2 = 0

y[1] = 0− 0.5× 0 = 0

y[2] = 0− 0.5× 0 = 0

...

(c) If y[−1] = 0 and x[n] = δ[n] then we can compute y[n] = h[n], i.e., the impulse response. The
corresponding transfer function is then from the equation for Y (z):

H(z) = Z[h[n]] =
Y (z)

X(z)
=

1

1 + 0.5z−1

If we want y[n] = δ[n] + 0.5δ[n− 1] or Y (z) = 1 + 0.5z−1 then

X(z) =
Y (z)

H(z)
= (1 + 0.5z−1)2 = 1 + z−1 + 0.25z−2

which gives x[n] = δ[n] + δ[n− 1] + 0.25δ(n− 2)



Pr 9.17 (a) The signal x[n] = δ[n] + δ[n− 1] + δ[n− 2] has a Z-transform

X(z) = 1 + z−1 + z−2

(b) Then
Y (z) = X2(z) = (1 + z−1 + z−2)2 = 1 + 2z−1 + 3z−2 + 2z−3 + z−4

The convolution of the coefficients of X(z), or x[n], with themselves gives the sequence

y[n] = δ[n] + 2δ[n− 1] + 3δ[n− 2] + 2δ[n− 3] + δ[n− 4]

The length of y[n] is twice that of x[n] minus one, or 2×3−1 = 5 so that Y (z) is a fourth -degree polynomial.
The above result is verified using MATLAB

%% Pr 9.17

x=[1 1 1];

y=conv(x,x); N=length(y);

x1=[x zeros(1,N-3)]

n=0:N-1;

figure(1)

subplot(211)

stem(n,x1),ylabel(’x[n]’);grid

subplot(212)

stem(n,y);ylabel(’y[n]’); grid
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Figure 9.4: .



Pr 9.18 Writing X(z) using terms found in tables, its partial fraction expansion is

X(z) =
2− z−1

2(1 + 0.25z−1)(1 + 0.5z−1)

=
A

1 + 0.25z−1
+

B

1 + 0.5z−1

corresponding to the poles at −0.25 and −0.5. The coefficients of the expansion are

A =
2− z−1

2(1 + 0.5z−1)
|z−1=−4 = −3

B =
2− z−1

2(1 + 0.25z−1)
|z−1=−2 = 4

so that
X(z) =

−3

1 + 0.25z−1
+

4

1 + 0.5z−1

and the inverse is
x[n] = [−3(−0.25)n + 4(−0.5)n]u[n]

and in the steady–state it is zero.



Pr 9.19 (a) F (z) is a proper rational function in positive powers of z as its numerator is of lower order than
the denominator. If we convert it into negative powers, z−1, we have

F (z) =
z−2(1 + z−1)

1− z−1

which is not proper rational in z−1 as its numerator is of higher order than its denominator.
(b) Using the above expression we have that

F (z) =
z−2

1− z−1
+

z−3

1− z−1

which gives
f [n] = u[n− 2] + u[n− 3]

given that 1/(1− z−1) is the Z-transform of u[n] and z−2 and z−3 delay u[n] by 2 and 3 samples.


