Prob. 1 :

(a) Given Fourier series $X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jk\frac{2\pi}{T_0}} dt$, let $T_1 = MT_0$ and $\tilde{k} = Mk + r$, whre $r \in [0, M - 1]$, we have another Fourier series: $Y_{\tilde{k}} = \frac{1}{T_1} \int_0^{T_1} x(t) e^{-j\tilde{k}\frac{2\pi}{T_1}} dt$.

Please determine the relationship between the two set of Fourier series coefficients.

(b) Consider a periodic signal x(t) of period $T \ge 1$, one period of which is shown below. Find the Fourier series and comment on your observations.

Prob. 2 : Steady state of an LTI system

The transfer function of an LTI system is

$$H(s) = \frac{Y(s)}{X(s)} = \frac{s-1}{s^2 + 3s + 2}$$

When the input to this system is $x(t) = 1 + \sin(t + \pi/4), -\infty < t < \infty$, find the output y(t) in the steady state.

Prob. 3 :

Fourier series of sampling delta

The periodic signal

$$\delta_{T_s}(t) = \sum_{m=-\infty}^{\infty} \delta(t - mT_s - \Delta)$$

will be very useful in the sampling of continuous-time signal.

(a) Determine the Fourier series of the impulse train, i.e.

$$\delta_{T_s}(t) = \sum_{k=-\infty}^{\infty} \Delta_k e^{jk\Omega_s t}$$

(b) Plot the magnitude line spectrum of this signal.

(c) Plot $\delta_{T_s}(t)$ and its corresponding line spectrum Δ_k as functions of time and frequency. Are they both periodic? How are their periods related? Please explain.

Prob. 4 :

Manipulation of periodic signals

Let the following be the Fourier series of a periodic signal x(t) of period T_0 (fundamental frequency $\Omega_0 = 2\pi / T_0$):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j\Omega_0 kt}$$

For the following signals, determine if they are periodic and what are their periods if so:

(1)
$$y(t) = 2x(t) - 3$$

(2) z(t) = x(t-2) + x(t)

(3) w(t) = x(2t-1)

If periodic, express the Fourier series coefficients Y_k , Z_k and W_k in terms of X_k .