Signals and Systems Homework 4

March 15, 2017

Problem 1

Determine the Laplace transform of each of the following signals and specify the corresponding regions of convergence.
(1) $f(t)=e^{-a|t|}$
(2) $f(t)=|t| e^{-a|t|}$
(3) $f(t)=\sin (w|t|)$
(4) $f(t)=\cos (w|t|)$
(5) $f(t)=e^{-a|t|} \cos (w|t|)$
(6) $f(t)=e^{-a|t|+j w|t|}$
(7) $f(t)=|t| \sin (w|t|)$
(8) $f(t)=|t|^{n} e^{-a|t|}, \mathrm{n}$ is positive integer.

Solution

(1) $\mathcal{L}(s)=\frac{1}{a-s}+\frac{1}{a+s} \quad$ ROC: $-a<\mathcal{R} e[s]<a$
(2) $\mathcal{L}(s)=\frac{1}{(a+s)^{2}}+\frac{1}{(a-s)^{2}} \quad$ ROC: $-a<\mathcal{R} e[s]<a$
(3) it doesn't converges
(4) it doesn't converges
(5) $\mathcal{L}(s)=\frac{s+a}{(a+s)^{2}+w^{2}}+\frac{a-s}{(a-s)^{2}+w^{2}} \quad$ ROC: $-a<\mathcal{R} e[s]<a$
(6) $\mathcal{L}(s)=j\left[\frac{w}{(a+s)^{2}+w^{2}}+\frac{w}{(a-s)^{2}+w^{2}}\right]+\frac{s+a}{(a+s)^{2}+w^{2}}+\frac{a-s}{(a-s)^{2}+w^{2}} \quad$ ROC: $-a<\mathcal{R} e[s]<a$
(7) it doesn't converges
(8) $\mathcal{L}(s)=\frac{n!}{(a+s)^{n+1}}+\frac{n!}{(a-s)^{n+1}} \quad$ ROC: $-a<\mathcal{R} e[s]<a$

Problem 2

Determine the Laplace transform of each of the following signals and specify the corresponding regions of convergence, then plot the poles and zeros.
(1) $x(t)=e^{-4|t|}+e^{-5 t} \sin (5 t) u(t)$
(2) $x(t)=\int_{-\infty}^{t}\left(e^{-2 \tau}-1\right) u(\tau) d \tau+e^{-3 t} u(t)$

$$
x(t)= \begin{cases}t & 0 \leq t \leq 1 \tag{3}\\ 2-t & 1 \leq t \leq 3\end{cases}
$$

Solution

(1) Using an approach similar to Problem 1, we have

$$
e^{-4|t|} \xrightarrow{\mathcal{L}} \frac{1}{4-s}+\frac{1}{4+s} \mathrm{ROC}:-4<\mathcal{R} e[s]<4
$$

and

$$
e^{-5 t} \sin (5 t) u(t) \xrightarrow{\mathcal{L}} \frac{5}{(s+5)^{2}+25} \mathrm{ROC}: \mathcal{R} e[s]>-5
$$

Thus

$$
X(s)=\frac{1}{4-s}+\frac{1}{4+s}+\frac{5}{(s+5)^{2}+25} \operatorname{ROC}:-4<\mathcal{R} e[s]<4 .
$$

(2) We can obtain the following expressions easily:

$$
\begin{gathered}
\left(e^{-2 t}-1\right) u(t) \xrightarrow{\mathcal{L}} \frac{1}{s+2}-\frac{1}{s} \mathrm{ROC}: \mathcal{R} e[s]>0 \\
\int_{-\infty}^{t}\left(e^{-2 \tau}-1\right) u(\tau) d \tau \xrightarrow{\mathcal{L}} \frac{\frac{1}{s+2}-\frac{1}{s}}{s} \mathrm{ROC}: \mathcal{R} e[s]>0
\end{gathered}
$$

and

$$
e^{-3 t} u(t) \xrightarrow{\mathcal{L}} \frac{1}{s+3} \mathrm{ROC}: \mathcal{R} e[s]>-3
$$

Therefore,

$$
X(s)=\frac{-2}{(s+2) s^{2}}+\frac{1}{s+3} \mathrm{ROC}: \mathcal{R} e[s]>0
$$

(3) It is not easy to obtain the Laplace transform of $x(t)$ easily, so we use the property of Laplace transform: $\frac{d}{d t} x(t)=s X(s)$. Then the second derivative of $x(t)$ is

$$
\frac{d^{2}[x(t)-u(t-3)]}{d t^{2}}=\delta(t)+\delta(t-3)-2 \delta(t-1)
$$

and the corresponding Laplace transform is

$$
s^{2}\left[X(s)-\frac{e^{-3 s}}{s}\right]=1+e^{-3 s}-2 e^{-s}
$$

Therefore,

$$
X(s)=\frac{1+e^{-3 s}-2 e^{-s}}{s^{2}}+\frac{e^{-3 s}}{s}
$$

One zeros, $x \approx-0.422$.

Problem 3

A system is described by the following differential equation (see below). Find the expression for the transfer function of the system, $\mathrm{Y}(\mathrm{s}) / \mathrm{X}(\mathrm{s})$, assuming zero initial conditions.

$$
\frac{d^{3} y}{d t^{3}}+3 \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=\frac{d^{3} x}{d t^{3}}+4 \frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+8 x
$$

Consider what if the initial conditions are not zero.

Solution

(a) If the initial condition is zero, then

$$
\mathcal{L}\left(\frac{d^{n} y(t)}{d t^{n}}\right)=s^{n} Y(s)
$$

We have

$$
\begin{aligned}
s^{3} Y(s)+3 s^{2} Y(s)+s Y(s)+Y(s) & =s^{3} X(s)+4 s^{2} X(s)+6 x X(s)+8 X(s) \\
Y(s)\left[s^{3}+3 s^{2}+s+1\right] & =X(s)\left(s^{3}+4 s^{2}+6 s+8\right) \\
\frac{Y(s)}{X(s)} & =\frac{s^{3}+4 s^{2}+6 s+8}{s^{3}+3 s^{2}+s+1}
\end{aligned}
$$

(b) If the initial condition is non zeros, we assume the initial conditions are $y(0), y(0)^{(1)}, y(0)^{(2)}$, then

$$
\mathcal{L}\left(\frac{d^{n} y(t)}{d t^{n}}\right)=s^{n} Y(s)-\sum_{r=0}^{n-1} s^{n-r-1} y(0)^{r}
$$

We have

$$
\begin{aligned}
& s^{3} Y(s)-\left(s^{2} y(0)+s y(0)^{(1)}+y(0)^{(2)}\right)+3 s^{2} Y(s)-3\left(s y(0)+y(0)^{(1)}\right)+s Y(s)-y(0)+Y(s) \\
& =s^{3} X(s)+4 s^{2} X(s)+6 x X(s)+8 X(s)
\end{aligned}
$$

Thus

$$
\begin{aligned}
Y(s)= & \underbrace{\frac{s^{3}+4 s^{2}+6 s+8}{s^{3}+3 s^{2}+s+1} X(s)}_{Z S R} \\
& +\underbrace{\frac{\left(s^{2}+3 s+1\right) y(0)+(s+3) y(0)^{(1)}+y(0)^{(2)}}{s^{3}+3 s^{2}+s+1}}_{Z I R}
\end{aligned}
$$

Problem 4

Let $x(t)$ be the sampled signal specified as

$$
x(t)=\sum_{n=0}^{\infty} e^{-n T} \delta(t-n T)
$$

where $T>0$
(a) Determine $X(s)$, including its region of convergence.
(b) Sketeh the pole-zero plot for $X(s)$
(c) Use geometric interpretation of the pole-zero to argue that $X(j \Omega)$ is periodic.

Solution

(a) Note that

$$
\delta(t-n T) \stackrel{c}{\longleftrightarrow} e^{-s n T} \quad, \quad \text { All } s .
$$

Therefore,

$$
\mathrm{X}(s)=\sum_{n=0}^{\infty} e^{-n T} e^{-s n T}=\frac{1}{1-e^{-T(1+s)}}
$$

Figure S9.44

In order to determine the ROC, let us first find the poles of $\mathrm{X}(\mathrm{s})$. Clearly, the poles occur when This implies that the poles satisfy the following equation :

$$
e^{-T\left(1+s_{k}\right)}=e^{j k 2 \pi}, k=0, \pm 1, \pm 2, \cdots
$$

Taking the logarithm of both side of the above equation and simplifying, we get

$$
s_{k}=-1+\frac{j k 2 \pi}{T}, \quad k=0, \pm 1, \pm 2, \cdots .
$$

Therefore, the poles all lie on a vertical line (parallel to the jw-axis) passing though $s=-1$. Since the signal is right-sided, the ROC is $\operatorname{Re}\{s\}>-1$.
(b)The pole-zero poles is as the figure.
(c)The magnitude of the Fourier transform $X(j \Omega)$ is given by the product of the reciprocal of the lengths of the vectors from the poles to the point jw. The phase of $X(j \Omega)$ is given by the negative of the sum of the angles of these vectors. Clearly from the pole-zero plot above it is clear that both the magnitude and phase have to vary periodically with a period of $\frac{2 \pi}{T}$.
(d)

$$
\begin{aligned}
Y(s) & =\sum_{n=0}^{\infty} \cos (n T) \exp (-s n T) \\
& =\frac{e^{T(j-s)}-e^{T(-j-s)}}{1-e^{T(j-s)}-e^{T(-j-s)}+e^{-2 T s}} \quad \text { ROC }: \mathcal{R} e[s]>0
\end{aligned}
$$

No zeros, poles: $s= \pm j+j \frac{2 k \pi}{T}$.

