Homework 7 Solutions

Pr. 5.5 (a) The Laplace transforms are

$$
\begin{aligned}
& x_{1}(t)=e^{-2 t} u(t) \quad \Leftrightarrow \quad X_{1}(s)=\frac{1}{s+2} \quad \sigma>-2 \\
& x_{2}(t)=r(t) \quad \Leftrightarrow \quad X_{1}(s)=\frac{1}{s^{2}} \quad \sigma>0 \\
& x_{3}(t)=t e^{-2 t} u(t) \quad \Leftrightarrow \quad X_{1}(s)=\frac{1}{(s+2)^{2}} \quad \sigma>-2
\end{aligned}
$$

(b) The Laplace transforms of $x_{1}(t)$ and of $x_{3}(t)$ have regions of convergence containing the $j \Omega$-axis, and so we can find their Fourier transforms from their Laplace transforms by letting $s=j \Omega$
(c) The Fourier transforms of $x_{1}(t)$ and $x_{3}(t)$ are

$$
\begin{aligned}
& X_{1}(\Omega)=\frac{1}{2+j \Omega} \\
& X_{3}(\Omega)=\frac{1}{(2+j \Omega)^{2}}
\end{aligned}
$$

Pr. 5.6 (a) In this case we are using the duality of the Fourier transforms so that the Fourier transform of the sinc is a pulse of magnitude A and cut-off frequency Ω_{0} which we will need to determine.

The inverse Fourier transform is

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} A\left[u\left(\Omega+\Omega_{0}\right)-u\left(\Omega-\Omega_{0}\right)\right] e^{j \Omega t} d \Omega \\
& =\frac{A}{2 \pi} \int_{-\Omega_{0}}^{\Omega_{0}} e^{j \Omega t} d \Omega \\
& =\frac{A}{\pi t} \sin \Omega_{0} t
\end{aligned}
$$

so that $A=\pi$ and $\Omega_{0}=1$, i.e.,

$$
\frac{\sin (t)}{t} \Leftrightarrow \pi[u(\Omega+1)-u(\Omega-1)]
$$

(b) The Fourier transform of $x_{1}(t)=u(t+0.5)-u(t-0.5)$ is

$$
X_{1}(\Omega)=\left[\frac{1}{s}\left[e^{0.5 s}-e^{-0.5 s}\right]\right]_{s=j \Omega}=\frac{\sin (0.5 \Omega)}{0.5 \Omega}
$$

Using the duality property we have:

$$
\begin{array}{rll}
x_{1}(t)=u(t+0.5)-u(t-0.5) & \Leftrightarrow & X_{1}(\Omega)=\frac{\sin (\Omega / 2)}{\Omega / 2} \\
X_{1}(t)=\frac{\sin (t / 2)}{t / 2} & \Leftrightarrow & 2 \pi[u(\Omega+0.5)-u(\Omega-0.5)]
\end{array}
$$

using the fact that $x_{1}(t)$ is even. Then using the scaling property

$$
\begin{aligned}
X_{1}(2 t)=\frac{\sin (t)}{t} & \Leftrightarrow \quad \frac{2 \pi}{2}[u((\Omega / 2)+0.5)-u((\Omega / 2)-0.5)] \\
& \Leftrightarrow \quad \pi[u(\Omega+1)-u(\Omega-1)]
\end{aligned}
$$

Pr. 5.7(a) The signal $x(t)$ is even while $y(t)$ is odd.
(b) The Fourier transform of $x(t)$ is

$$
\begin{aligned}
X(\Omega) & =\int_{-\infty}^{\infty} e^{-|t|} e^{-j \Omega t} d t \\
& =\int_{-\infty}^{\infty} e^{-|t|} \cos (\Omega t) d t-j \int_{-\infty}^{\infty} e^{-|t|} \sin (\Omega t) d t \\
& =2 \int_{0}^{\infty} e^{-|t|} \cos (\Omega t) d t
\end{aligned}
$$

this is because the imaginary part is the integral of an odd function which is zero. Since $\cos ($.$) is an even$ function

$$
X(-\Omega)=X(\Omega)
$$

(c) The Fourier transform $X(\Omega)$ is

$$
\begin{aligned}
X(\Omega) & =2 \int_{0}^{\infty} e^{-t} \frac{e^{j \Omega t}+e^{-j \Omega t}}{2} d t \\
& =\int_{0}^{\infty} e^{-(1-j \Omega) t} d t+\int_{0}^{\infty} e^{-(1+j \Omega) t} d t \\
& =\frac{1}{1-j \Omega}+\frac{1}{1+j \Omega}=\frac{2}{1+\Omega^{2}}
\end{aligned}
$$

which is real-valued.
(d) For $y(t)$, odd function, its Fourier transform is

$$
\begin{aligned}
Y(\Omega) & =\int_{-\infty}^{\infty} y(t) e^{-j \Omega t} d t \\
& =-j \int_{-\infty}^{\infty} y(t) \sin (\Omega t) d t
\end{aligned}
$$

because $y(t) \cos (\Omega t)$ is an odd function and its integral is zero. The $Y(\Omega)$ is odd since

$$
\begin{aligned}
Y(-\Omega) & =-j \int_{-\infty}^{\infty} y(t) \sin (-\Omega t) d t \\
& =-Y(\Omega)
\end{aligned}
$$

since the sine is odd.
(e) Let's use the Laplace transform to find the Fourier transform of $y(t)$:

$$
Y(s)=\frac{1}{s+1}-\frac{1}{-s+1}
$$

with a region of convergence $-1<\sigma<1$, which contains the $j \Omega$-axis. So

$$
Y(\Omega)=\left.Y(s)\right|_{s=j \Omega}=\frac{1}{j \Omega+1}-\frac{1}{-j \Omega+1}=\frac{-2 j \Omega}{1+\Omega^{2}}
$$

which as expected is purely imaginary.
Check: Let $z(t)=x(t)+y(t)=2 e^{-t} u(t)$ which has a Fourier transform

$$
Z(\Omega)=\frac{2}{1+j \Omega}=\frac{2(1-j \Omega)}{1+\Omega^{2}}=X(\Omega)+Y(\Omega)
$$

(f) If a signal is represented as $x(t)=x_{e}(t)+x_{o}(t)$ then

$$
X(\Omega)=X_{e}(\Omega)+X_{o}(\Omega)
$$

where the first is a cosine transform and the second a sine transform.

Pr. 5.14 (a) (b) The Fourier series coefficients of $\delta_{T_{s}}(t)$ are

$$
\Delta_{k}=\left.\frac{1}{T_{s}} \mathcal{L}[\delta(t)]\right|_{s=j k \Omega_{s}}=\frac{1}{T_{s}}
$$

so that

$$
\delta_{T_{s}}(t)=\sum_{k=-\infty}^{\infty} \frac{1}{T_{s}} e^{j k \Omega_{s} t} \quad \Omega_{s}=\frac{2 \pi}{T_{s}}
$$

The FT of $\delta_{T_{s}}(t)$ is then

$$
\begin{aligned}
\Delta(\Omega)=\mathcal{F}\left[\delta_{T_{s}}(t)\right] & =\frac{1}{T_{s}} \sum_{k} \mathcal{F}\left[1 e^{j k \Omega_{s} t}\right] \\
& =\frac{2 \pi}{T_{s}} \sum_{k} \delta\left(\Omega-k \Omega_{s}\right)
\end{aligned}
$$

(c) Both $\delta_{T_{s}}(t)$ and $\Delta_{T_{s}}(\Omega)$ are periodic, the first of period T_{s} and the second of period $2 \pi / T_{s}$.

Pr. 5.17 (a) The raised cosine is an even smooth signal with a value of 2 at the origin.
(b) The FT of the pulse $p(t)=u(t+1)-u(t-1)$ is

$$
\begin{aligned}
P(\Omega) & =\left.\frac{1}{s}\left[e^{s}-e^{-s}\right]\right|_{s=j \Omega} \\
& =2 \frac{\sin (\Omega)}{\Omega}
\end{aligned}
$$

(c) The FT of

$$
x(t)=(1+\cos (2 \pi t)) p(t)=p(t)+p(t) \cos (2 \pi t)
$$

is

$$
X(\Omega)=P(\Omega)+\frac{1}{2}[P(\Omega-2 \pi)+P(\Omega+2 \pi)]
$$

Figure 5.7: Raised cosine $x(t)$

