Solutions of Mid-term

April 18, 2016

1 Solution 1

From the frequency convolution property, we obtain

$$
\begin{equation*}
f^{2}(t) \Longleftrightarrow \frac{1}{2 \pi} F(\omega) * F(\omega) \tag{1}
\end{equation*}
$$

Because of the width property of the convolution, the width of $F(\omega) * F(\omega)$ is twice the width of $F(\omega)$. Repeated application of this argument shows that the bandwidth of $f^{n}(t)$ is $n B \mathrm{~Hz}(n$ times the bandwidth of $f(t)$).

2 Solution 2

Figure 1: $x_{1} * x_{2}$

3 Solution 3

$$
x(t)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}\left(u(t-n)-u\left(t-n-\frac{1}{2}\right)\right)
$$

Apply Laplace transform, we have,

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}\left(u(t-n)-u\left(t-n-\frac{1}{2}\right)\right) e^{-s t} d t \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} \int_{-\infty}^{\infty}\left(u(t-n)-u\left(t-n-\frac{1}{2}\right)\right) e^{-s t} d t \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} \frac{1}{s} e^{-s n}\left(1-e^{-s / 2}\right) \\
& =\frac{1}{s}\left(1-e^{-s / 2}\right) \sum_{n=0}^{\infty}\left(\frac{1}{2} e^{-s}\right)^{n} \\
& =\frac{1}{s}\left(1-e^{-s / 2}\right) \frac{1-\left(\frac{e^{-s}}{2}\right)^{n+1}}{1-\frac{1}{2} e^{-s}} \\
& =\frac{1}{s}\left(\frac{1-e^{-s / 2}}{1-\frac{1}{2} e^{-s}}\right)
\end{aligned}
$$

This transform converges if

$$
\left|\frac{1}{2} e^{-s}\right|<1
$$

which gives,

$$
\begin{array}{r}
\left|e^{-\operatorname{Re}(s)}\right|<2 \\
\operatorname{Re}(s)>-\ln 2
\end{array}
$$

4 Solution 4

Figure 2: Pro. 4
At first, we have

$$
\begin{cases}f(t) & =i_{1}(t)+v_{1}(t) \\ v_{1}(t) & =v_{0}(t)+v_{0}^{\prime}(t) \\ v_{0}(t) & =i_{1}(t)-v_{1}^{\prime}(t)\end{cases}
$$

Apply the Laplace transform, we have

$$
\left\{\begin{array}{l}
F(s)=I_{1}(s)+V_{1}(s) \\
V_{1}(s)=V_{0}(s)+s . V_{0}(s) \\
V_{0}(s)=I_{1}(s)-s V_{1}(s)
\end{array}\right.
$$

which gives,

$$
\begin{aligned}
& {\left[1+(1+s)^{2}\right] V_{0}(s)=F(s)} \\
& \frac{V_{0}(s)}{F(s)}=\frac{1}{(s+1)^{2}+1}
\end{aligned}
$$

then we have the transfer function of system,

$$
\begin{aligned}
H(s) & =\frac{1}{(s+1)^{2}+1} \\
h(t) & =\sin (t) e^{-t} u(t)
\end{aligned}
$$

and if $f(t)=t e^{-t} u(t)$,then

$$
\begin{aligned}
F(s) & =\frac{1}{(s+1)^{2}} \\
V_{0}(s) & =F(s) H(s)=\frac{1}{(s+1)^{2}\left(s^{2}+2 s+2\right)}
\end{aligned}
$$

then the output is

$$
v_{0}(t)=\left(t e^{-t}-e^{-t} \sin (t)\right) u(t)
$$

5 Solution 5

Take the Fourier transform of $h(t)$ to obtain the frequency response,

$$
\begin{aligned}
H(j \omega) & =e^{-j \omega T_{1}}+\epsilon e^{-j \omega T_{2}} \\
& =e^{-j \omega T_{1}}\left(1+\epsilon e^{-j \omega\left(T_{2}-T_{1}\right)}\right)
\end{aligned}
$$

The magnitude function

$$
\begin{aligned}
|H(j \omega)| & =\left|e^{-j \omega T_{1}}\right|\left|1+\epsilon e^{-j \omega\left(T_{2}-T_{2}\right)}\right| \\
& =1 \sqrt{\left(1+\epsilon \cos \omega\left(T_{2}-T_{1}\right)\right)^{2}+\epsilon^{2} \sin ^{2} \omega\left(T_{2}-T_{1}\right)} \\
& =\sqrt{1+2 \epsilon \cos \omega\left(T_{2}-T_{1}\right)+\epsilon^{2}}
\end{aligned}
$$

oscillates between $1+\epsilon$ and $1-\epsilon$ with a period (in ω) of $2 \pi /\left(T_{2}-T_{2}\right)$.From the magnitude plot, we can see that $\epsilon \approx 0.2$ and $2 \pi /\left(T_{2}-T_{1}\right) \approx 1500 / 2$,so that $T_{2}-T_{1} \approx \frac{4 \pi}{1500}$.
The angle function is

$$
\angle H(j \omega)=-\omega T_{1}+\angle\left(1+\epsilon e^{-j \omega\left(T_{2}-T_{1}\right)}\right)
$$

Since ϵ is small compared to 1 , the first term dominates the second, which oscillates about an average value near 0 . Thus we can estimate T_{1} from the average slope of the angle plot,

$$
T_{1}=\frac{\pi}{1500}=0.0021
$$

Then $T_{2} \approx \frac{4 \pi}{1500}+\frac{\pi}{1500}=\frac{\pi}{300} . \quad=0.0105$

