Homework 2 Solution

EE 140: Introduction to Communication Systems

Problem 1 (12 points)

For a lowpass signal with a bandwidth of 6000 Hz
(a) What is the minimum sampling frequency for perfect reconstruction of the signal?
(b) What is the minimum required sampling frequency if a guard band of 2000 Hz is required?
(c) What is the minimum required sampling frequency and the value of K for perfect reconstruction if the reconstruction filter has the following frequency response

$$
H(f)=\left\{\begin{aligned}
K & |f|<7000 \\
K-K \frac{|f|-7000}{3000} & 7000<|f|<10000 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Solution 1

(a) For no aliasing to occur we must sample at the Nyquist rate

$$
f_{s}=2 \cdot 6000 \text { samples } / \mathrm{sec}=12000 \text { samples } / \mathrm{sec}
$$

(b) With a guard band of 2000 Hz

$$
f_{s}-2 W=2000 \Longrightarrow f_{s}=14000
$$

(c) The reconstruction filter should not pick-up frequencies of the images of the spectrum $X(f)$. The nearest image spectrum is centered at f_{s} and occupies the frequency band $\left[f_{s}-W, f_{s}+W\right]$. Thus the highest frequency of the reconstruction filter $(=10000)$ should satisfy

$$
10000 \leq f_{s}-W \Longrightarrow f_{s} \geq 16000
$$

For the value $f_{s}=16000, K$ should be such that

$$
K \cdot f_{s}=1 \Longrightarrow K=(16000)^{-1}
$$

Problem 2 (13 points)

The lowpass signal $x(t)$ with a bandwidth of W is sampled at the Nyquist rate and the signal

$$
x_{1}(t)=\sum_{n=-\infty}^{\infty}(-1)^{n} x\left(n T_{s}\right) \delta\left(t-n T_{s}\right)
$$

is generated. Find the Fourier transform of $x_{1}(t)$.

Solution 2

$$
\begin{aligned}
x_{1}(t) & =\sum_{n=-\infty}^{\infty}(-1)^{n} x\left(n T_{s}\right) \delta\left(t-n T_{s}\right)=x(t) \sum_{n=-\infty}^{\infty}(-1)^{n} \delta\left(t-n T_{s}\right) \\
& =x(t)\left[\sum_{l=-\infty}^{\infty} \delta\left(t-2 l T_{s}\right)-\sum_{l=-\infty}^{\infty} \delta\left(t-T_{s}-2 l T_{s}\right)\right] \\
X_{1}(f) & =X(f) *\left[\frac{1}{2 T_{s}} \sum_{l=-\infty}^{\infty} \delta\left(f-\frac{l}{2 T_{s}}\right)-\frac{1}{2 T_{s}} \sum_{l=-\infty}^{\infty} \delta\left(f-\frac{l}{2 T_{s}}\right) e^{-j 2 \pi f T_{s}}\right] \\
& =\frac{1}{2 T_{s}} \sum_{l=-\infty}^{\infty} X\left(f-\frac{l}{2 T_{s}}\right)-\frac{1}{2 T_{s}} \sum_{l=-\infty}^{\infty} X\left(f-\frac{l}{2 T_{s}}\right) e^{-j 2 \pi \frac{l}{2 T_{s}} T_{s}} \\
& =\frac{1}{2 T_{s}} \sum_{l=-\infty}^{\infty} X\left(f-\frac{l}{2 T_{s}}\right)-\frac{1}{2 T_{s}} \sum_{l=-\infty}^{\infty} X\left(f-\frac{l}{2 T_{s}}\right)(-1)^{l} \\
& =\frac{1}{T_{s}} \sum_{l=-\infty}^{\infty} X\left(f-\frac{1}{2 T_{s}}-\frac{l}{T_{s}}\right)
\end{aligned}
$$

Problem 3 (10 points)

Two binary random variables X and Y are distributed according to the joint distribution $p(X=Y=0)=p(X=0, Y=1)=p(X=Y=1)=\frac{1}{3}$. Compute $H(X), H(Y), H(X \mid Y), H(X, Y)$ and $I(X ; Y)$.

Solution 3

The marginal probabilities are given by

$$
\begin{gathered}
P(X=0)=\sum_{k} p(X=0, Y=k)=p(X=0, Y=0)+p(X=0, Y=1)=\frac{2}{3} \\
p(X=1)=\sum_{k} p(X=1, Y=k)=p(X=1, Y=1)=\frac{1}{3} \\
p(Y=0)=\sum_{k}(X=k, Y=0)=p(X=0, Y=0)=\frac{1}{3} \\
p(Y=1)=\sum_{k}(X=k, Y=1)=p(X=0, Y=1)+p(X=1, Y=1)=\frac{2}{3}
\end{gathered}
$$

Hence,

$$
\begin{gathered}
H(X)=-\sum p_{i} \log _{2} p_{i}=-\left(\frac{1}{3} \log _{2} \frac{1}{3}+\frac{2}{3} \log _{2} \frac{2}{3}\right)=.9183 \\
H(Y)=-\sum p_{i} \log _{2} p_{i}=-\left(\frac{1}{3} \log _{2} \frac{1}{3}+\frac{2}{3} \log _{2} \frac{2}{3}\right)=.9183 \\
H(X, Y)=-\sum p_{i} \log _{2} p_{i}=-\left(\frac{1}{3} \log _{2} \frac{1}{3}+\frac{1}{3} \log _{2} \frac{1}{3}+\frac{1}{3} \log _{2} \frac{1}{3}\right)=1.5850 \\
H(X \mid Y)=H(X, Y)-H(Y)=1.5850-0.9183=0.6667 \\
I(X ; Y)=H(X)-H(X \mid Y)=0.9183-0.6667=0.2516
\end{gathered}
$$

Problem 4 (10 points)

A signal can be modeled as a lowpass stationary process $X(t)$ whose PDF at any time t_{0}
is given in Figure 1.

Figure 1

The bandwidth of this process is 5 KHz , and it is desired to transmit it using a PCM system.
(a) If sampling is done at the Nyquist rate and a uniform quantizer with 32 levels is employed, what is the resulting SQNR? What is the resulting bit rate?
(b) If the available bandwidth of the channel is 40 KHz , what is the highest achievable SQNR?

Solution 4

(a)

$$
\begin{aligned}
E\left[X^{2}(t)\right] & =\int_{-2}^{0} x^{2}\left(\frac{x+2}{4}\right) d x+\int_{0}^{2} x^{2}\left(\frac{-x+2}{4}\right) d x \\
& =\left.\frac{1}{4}\left(\frac{1}{4} x^{4}+\frac{2}{3} x^{3}\right)\right|_{-2} ^{0}+\left.\frac{1}{4}\left(-\frac{1}{4} x^{4}+\frac{2}{3} x^{3}\right)\right|_{0} ^{2} \\
& =\frac{2}{3}
\end{aligned}
$$

Hence,

$$
\mathrm{SQNR}=\frac{3 \times 4^{\nu} \times \frac{2}{3}}{x_{\max }^{2}}=\frac{3 \times 4^{5} \times \frac{2}{3}}{2^{2}}=512=27.093(d b)
$$

(b)

If the available bandwidth of the channel is 40 KHz , then the maximum rate of trans-
mission is $\nu=40 / 5=8$. In this case the highest achievable SQNR is

$$
\mathrm{SQNR}=\frac{3 \times 4^{8} \times \frac{2}{3}}{2^{2}}=32768=45.154(d b)
$$

Problem 5 (15 points)

Show that a pulse having the raised cosine spectrum given by Equation (1) satisfies the Nyquist criterion given by Equation (2) for any value of the roll-off factor α.

$$
\begin{align*}
X_{r c}(f)= & \begin{array}{lr}
T, & 0 \leq|f| \leq(1-\alpha) / 2 T \\
\frac{T}{2}\left[1+\cos \left(\frac{\pi T}{\alpha}\left(|f|-\frac{1-\alpha}{2 T}\right)\right)\right], & \begin{aligned}
& \frac{1-\alpha}{2 T} \leq|f| \leq \frac{1+\alpha}{2 T} \\
& 0, \\
&|f| \geq \frac{1+\alpha}{2 T}
\end{aligned} \\
& \sum_{m=-\infty}^{\infty} X\left(f+\frac{m}{T}\right)=T
\end{array} \tag{1}
\end{align*}
$$

Solution 5

The pulse $x(t)$ having the raised cosine spectrum is

$$
x(t)=\operatorname{sinc}(t / T) \frac{\cos (\pi \alpha t / T)}{1-4 \alpha^{2} t^{2} / T^{2}}
$$

The function $\operatorname{sinc}(t / T)$ is 1 when $t=0$ and 0 when $t=n T$. On the other hand

$$
g(t)=\frac{\cos (\pi \alpha t / T)}{1-4 \alpha^{2} t^{2} / T^{2}}=\left\{\begin{array}{cc}
1 & t=0 \\
\text { bounded } & t \neq 0
\end{array}\right.
$$

The function $g(t)$ needs to be checked only for those values of t such that $4 \alpha^{2} t^{2} / T^{2}=1$ or $\alpha t=\frac{T}{2}$.

However,

$$
\lim _{\alpha t \rightarrow \frac{T}{2}} \frac{\cos (\pi \alpha t / T)}{1-4 \alpha^{2} t^{2} / T^{2}}=\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi}{2} x\right)}{1-x}
$$

and by using L'Hospital's rule

$$
\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi}{2} x\right)}{1-x}=\lim _{x \rightarrow 1} \frac{\pi}{2} \sin \left(\frac{\pi}{2} x\right)=\frac{\pi}{2}<\infty
$$

Hence,

$$
x(n T)= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

meaning that the pulse $x(t)$ satisfies the Nyquist criterion.

Problem 6 (15 points)

Binary PAM is used to transmit information over an unequalized linear filter channel. When $a=1$ is transmitted the noise-free output of the demodulator is

$$
x_{m}=\left\{\begin{array}{lll}
0.3 & , & m=1 \tag{3}\\
0.9, & m=0 \\
0.3 & , & m=-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Design a three-tap zero-forcing linear equalizer so that the output is

$$
q_{m}= \begin{cases}1, & m=0 \tag{4}\\ 0, & m= \pm 1\end{cases}
$$

(b) Determine q_{m} for $m= \pm 2, \pm 3$, by convolving the impulse response of the equalizer with the channel response

Solution 6

(a)

The equivalent discrete-time impulse response of the channel is

$$
h(t)=\sum_{n=-1}^{1} h_{n} \delta(t-n T)=0.3 \delta(t+T)+0.9 \delta(t)+0.3 \delta(t-T)
$$

If by c_{n} we denote the coefficients of the FIR equalizer, then the equalized signal is

$$
q_{m}=\sum_{n=-1}^{1} c_{n} h_{m-n}
$$

which in matrix notation is written as

$$
\left(\begin{array}{ccc}
0.9 & 0.3 & 0 \\
0.3 & 0.9 & 0.3 \\
0 & 0.3 & 0.9
\end{array}\right)\left(\begin{array}{c}
c_{-1} \\
c_{0} \\
c_{1}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

The coefficients of the zero-force equalizer can be found by solving the previous matrix equation.

Thus,

$$
\left(\begin{array}{c}
c_{-1} \\
c_{0} \\
c_{1}
\end{array}\right)=\left(\begin{array}{c}
-0.4762 \\
1.4286 \\
-0.4762
\end{array}\right)
$$

(b)

The values of q_{m} for $m= \pm 2, \pm 3$ are given by

$$
\begin{gathered}
q_{2}=\sum_{n=-1}^{1} c_{n} h_{2-n}=c_{1} h_{1}=-0.1429 \\
q_{-2}=\sum_{n=-1}^{1} c_{n} h_{-2-n}=c_{-1} h_{-1}=-0.1429 \\
q_{3}=\sum_{n=-1}^{1} c_{n} h_{3-n}=0
\end{gathered}
$$

$$
q_{-3}=\sum_{n=-1}^{1} c_{n} h_{-3-n}=0
$$

Problem 7 (10 points)

Find the capacity of an additive white Gaussian noise channel with a bandwidth of 1 MHz , power of 10 W , and noise power-spectral density of $\frac{N_{0}}{2}=10^{-9} \mathrm{~W} / \mathrm{Hz}$.

Solution 7

The SNR is

$$
S N R=\frac{2 P}{N_{0} 2 W}=\frac{P}{2 W}=\frac{10}{10^{-9} \times 10^{6}}=10^{4}
$$

Thus the capacity of the channel is

$$
C=W \log _{2}\left(1+\frac{P}{N_{0} W}\right)=10^{6} \log _{2}(1+10000) \approx 13.2879 \times 10^{6} \mathrm{bits} / \mathrm{sec}
$$

Problem 8 (15 points)

For the channel shown in Figure 2, find the channel capacity and the input distribution that achieves capacity.

Figure 2

Solution 8

The capacity of the channel of the channel is given by

$$
C=\max _{p(x)} I(X ; Y)=\max _{p(x)}[H(Y)-H(Y \mid X)]
$$

Let the probability of the inputs C, B and A be p, q and $1-p-q$ respectively. From the symmetry of the nodes B, C, we expect that the optimum distribution $p(x)$ will satisfy $p(B)=p(C)=p$. The entropy $H(Y \mid X)$ is given by

$$
\begin{aligned}
H(Y \mid X) & =\sum p(x) H(Y \mid X=x)=(1-2 p) H(Y \mid X=A)+2 p H(Y \mid X=B) \\
& =0+2 p h(0.5)=2 p
\end{aligned}
$$

The probability mass function of the output is

$$
\begin{gathered}
p(Y=1)=\sum p(x) p(Y=1 \mid X=x)=(1-2 p)+p=1-p \\
p(Y=2)=\sum p(x) p(Y=2 \mid X=x)=0.5 p+0.5 p=p
\end{gathered}
$$

Therefore,

$$
C=\max _{p}[H(Y)-H(Y \mid X)]=\max _{p}(h(p)-2 p)
$$

To find the optimum value of p that maximizes $I(X ; Y)$, we set the derivative of C with respect to p equal to zero. Thus,

$$
\begin{aligned}
\frac{\partial C}{\partial p}=0 & =-\log _{2}(p)-p \frac{1}{p \ln (2)}+\log _{2}(1-p)-(1-p) \frac{-1}{(1-p) \ln (2)}-2 \\
& =\log _{2}(1-p)-\log _{2}(p)-2
\end{aligned}
$$

and therefore

$$
\log _{2} \frac{1-p}{p}=2 \Rightarrow \frac{1-p}{p}=4 \Rightarrow p=\frac{1}{5}
$$

The capacity of the channel is

$$
C=h\left(\frac{1}{5}\right)-\frac{2}{5}=0.7219-0.4=0.3219 \mathrm{bits} / \text { transmission }
$$

