Homework 5

Prof. Xiliang Luo

EE 140: Introduction to Communication Systems
Due Time: Jun. 7, 2018
Problem 1 (20 points)
Consider the linear block code with the codeword defined by

$$
\begin{aligned}
U= & m_{1}+m_{2}+m_{4}+m_{5}, m_{1}+m_{3}+m_{4}+m_{5}, m_{1}+m_{2}+m_{3}+m_{5} \\
& m_{1}+m_{2}+m_{3}+m_{4}, m_{1}, m_{2}, m_{3}, m_{4}, m_{5}
\end{aligned}
$$

(a) Find the generator matrix.
(b) Find the parity check matrix.
(c) Find n, k, and $d_{\text {min }}$.

Problem 2 (40 points)
Consider a $(7,4)$ Hamming code with the following matrix as the parity check matrix:

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(a) Provide the systematic form of generator matrix $G_{\text {sys }}$.
(b) Provide a table for the systematic (7, 4) Hamming code which contains all syndromes and the corresponding coset leaders (error pattern).
(c) The sequence $r=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array} 01\right]$ is found at the receiver. Determine which sequence u was sent with the greatest probability.

Problem 3 (40 points)
Given a convolutional code with $g_{0}(D)=1+D+D^{2}$ and $g_{1}(D)=1+D^{2}$, where a terminated sequence ($\left[\begin{array}{lll}0 & 0\end{array}\right]$) shall be used.
(a) Sketch the realization of this rate $1 / 2$ convolutional code and find the recursive systematic (RSC) G(D).
(b) Generate the corresponding convolutional code given the information sequence $u=$ [0 $\left.10 \begin{array}{llll}0 & 1\end{array}\right]$.
(c) Conduct the Viterbi-decoding for the received sequence $r=\left[\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1\end{array}\right]$.

