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ABSTRACT
In this paper, we present PuMoC, a CTL model checker for Push-
down systems (PDSs) and sequential C/C++ and Java programs.
PuMoC allows to do CTL model-checking w.r.t simple valuations,
where the atomic propositions depend on the control locations of
the PDSs, and w.r.t. regular valuations, where atomic propositions
are regular predicates over the stack content. Our tool allowed
to (1) check 500 randomly generated PDSs against several CTL
formulas; (2) check around 1461 versions of 30 Windows drivers
taken from SLAM benchmarks; (3) check several C and Java pro-
grams; and (4) perform data flow analysis of real-world Java pro-
grams. Our results show the efficiency and the applicability of our
tool.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms
Verification

Keywords
Model-Checking, Pushdown Systems, Branching-time Temporal
Logic, Software Model-Checking

1. INTRODUCTION
In this paper, we present PuMoC, a CTL model checker for Push-

down systems (PDSs) and sequential programs. PuMoC allows to
check CTL properties for PDSs w.r.t. simple valuations, where the
atomic propositions depend on the control locations of the PDSs,
and w.r.t. regular valuations, where atomic propositions are regu-
lar predicates over the stack content. Indeed, since a configuration
of a PDS has a control state and a stack content, it is natural that
the validity of an atomic proposition in a configuration depends on
both the control state and the stack. PuMoC is based on the model
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checking algorithms of [8], where CTL model checking for PDSs
is reduced to emptiness checking for Alternating Büchi Pushdown
Systems (ABPDSs).

PuMoC allows also to perform CTL model checking for sequen-
tial boolean, C/C++ and Java programs. Indeed, sequential boolean
programs can naturally be modeled by PDSs. To translate C/C++
sequential programs into boolean programs, we use Satabs [3],
whereas to extract a PDS from a Java program, we use Jimple-
ToPDSolver [6]. The PDSs generated by JimpleToPDSolver con-
tain def/use informations. We use these informations to perform
data flow analysis for Java sequential programs (such as reaching
definitions, live variables, very busy expressions and available ex-
pressions). We express such properties using CTL formulas. To
our knowledge, PuMoC is the first tool to do CTL model checking
for PDSs. The only other tool that can check branching time prop-
erties for PDSs is PDSolver [6]. Our experimental results show that
our tool is much more efficient. Furthermore, PuMoC is integrated
with Moped [5]. This offers a toolkit that can do both LTL and CTL
model-checking for PDSs and sequential programs.

Our tool allowed to (1) check 500 randomly generated PDSs
against several CTL formulas; (2) check around 1461 versions of
30 Windows drivers taken from SLAM benchmarks, (3) check sev-
eral C and Java programs; and (4) perform data flow analysis of
real-world Java programs. Our results show the efficiency and the
applicability of our tool. PuMoC is downloadable at http://www.
liafa.jussieu.fr/~song/PuMoC. Instructions on how to use
our tool can be found in this webpage.

Related Work. Bebop and SLAM [1] are model-checkers for se-
quential boolean programs. They deal only with reachability prop-
erties. Moped [5] can check reachability and LTL formulas for
PDSs and boolean programs. These tools cannot deal with CTL
model-checking. PDSolver [6] is a µ-calculus model checker for
pushdown systems. Given a CTL formula, we can translate it into
a µ-calculus formula and then run PDSolver. However, this is not
efficient. Indeed, our experiments show that our tool PuMoC out-
performs PDSolver for CTL formulas. [4] can only check the uni-
versal fragment of CTL for non-recursive programs, whereas our
tool can deal with all CTL and with recursive programs.

2. BACKGROUND

2.1 Pushdown Systems
A pushdown system (PDS) P is a tuple (P, Γ,∆), where P is a

finite set of control locations, Γ is the stack alphabet, ∆ ⊆ (P ×
Γ) × (P × Γ∗) is a finite set of transition rules. A configuration of
P is a pair ⟨p, ω⟩ where p ∈ P and ω ∈ Γ∗. The successor relation
{P⊆ (P × Γ∗) × (P × Γ∗) is defined as follows: if (p, γ, q, ω) ∈ ∆,
then ⟨p, γω′⟩{P ⟨q, ωω′⟩ for every ω′ ∈ Γ∗.



An Alternating Büchi Pushdown System (ABPDS)BP = (P, Γ,∆, F)
is a kind of PDS with alternating transition rules (i.e., ∆ ⊆ (P×Γ)×
2P×Γ∗ ) and a finite set of Büchi accepting control locations F. A run
of BP is a tree rooted by the initial configuration such that for each
node ⟨p, γω′⟩ whose children are ⟨p1, ω1ω

′⟩, ..., ⟨pn, ωnω
′⟩, then,

necessarily, ((pγ), {(p1ω1), ..., (pnωn)}) ∈ ∆. A run is accepting iff
all its paths infinitely often visit some accepting locations in F.

Multi-Automata [2] are used to represent (infinite) sets of config-
urations of PDSs. Given a PDS P = (P, Γ,∆), a Multi-Automaton
A is a finite automaton having P as set of initial states and Γ as al-
phabet. Then a configuration ⟨p, ω⟩ is accepted (or recognized) by
A iffA has an accepting run that starts at the initial state p, ends at
a final state, and is labeled by ω. A set of configurations is regular
if it can be recognized by a multi-automaton. Regular expressions
over Γ∗ can also be used to represent regular configurations. E.g.,
p ·(γ1+γ2)∗γ∗3 represents the regular set of configurations that are in
the control location p, and whose stack contains an arbitrary num-
ber of γ1’s and γ2’s, followed by an arbitrary number of γ3’s.

2.2 The Temporal Logic CTL
We consider the standard branching-time temporal logic CTL.

For technical reasons, we suppose w.l.o.g. that formulas are given
in positive normal form, i.e., negations are applied only to atomic
propositions. Indeed, each CTL formula can be written in positive
normal form by pushing the negations inside. Moreover, we use the
operator R as a dual of the until operator for which the stop con-
dition is not required to occur. Then, standard CTL operators can
be expressed as follows: EFψ = E[trueUψ], AFψ = A[trueUψ],
EGψ = E[ f alseRψ] and AGψ = A[ f alseRψ].

More precisely, let AP = {a, b, c, ...} be a finite set of atomic
propositions. The set of CTL formulas is given by (where a ∈ AP):

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | AXφ | EXφ |
A[φUφ] | E[φUφ] | A[φRφ] | E[φRφ].

The semantics of CTL formulas are given w.r.t. simple val-
uations or regular valuations. A simple valuation is a function
λs : AP −→ 2P. A configuration ⟨p, ω⟩ satisfies an atomic propo-
sition a ∈ AP w.r.t. this simple valuation λs iff p ∈ λs(a). A
regular valuation is a function λr : AP −→ 2P×Γ∗ s.t. for every
a ∈ AP, λr(a) is a regular set of configurations represented by a
regular expression corresponding to a multi automaton. These reg-
ular expressions are called regular predicates. In this case, a con-
figuration ⟨p, ω⟩ satisfies an atomic proposition a w.r.t. this regular
valuation λr iff the multi-automaton corresponding to λr(a) recog-
nizes ⟨p, ω⟩. Note that CTL with simple valuations corresponds to
standard CTL, as considered in the literature for PDSs.

2.3 The Model-Checking Algorithms
PuMoC is based on the model-checking algorithms of [8], where

model checking CTL formulas for PDSs w.r.t. both simple and
regular valuations can be reduced to the emptiness checking prob-
lem for ABPDSs. Given a CTL formula φ and a PDS P, to check
whether P satisfies φ, we first compute an ABPDS BP that can be
seen as the product of the CTL formula φ and the PDS P. The
computation of BP depends on whether we consider simple or reg-
ular valuations. Then the formula is satisfied by P iff BP has an
accepted run. PuMoC computes a multi-automaton A recognizing
the set of configurations from which BP has an accepted run. A
represents the whole set of configurations from which P satisfies φ.
We refer to [8] for more details on the different algorithms.
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Figure 1: The architecture of PuMoC

3. ARCHITECTURE AND IMPLEMENTA-
TION

PuMoC is implemented in C. As shown in Figure 1, it consists of
four components: BP2PDS, Regular Predicates Extractor, MA
Constructor and PDS·CTL2ABPDS.
BP2PDS takes as input a boolean program written in the syntax of
Satabs and translates it into a PDS. This translation is made in two
steps. First, a set of control flow graphs (CFGs) is extracted from
the program, then these CFGs are translated into a PDS. BP2PDS
extends the translation done by MOPED [5] in order to deal with
more statements of the boolean programs. Regular Predicates Ex-
tractor extracts the regular expressions (regular valuations) present
in the CTL formulas and computes a multi automaton correspond-
ing to each regular expression. This component is used when reg-
ular valuations are considered. Given a CTL formula φ, a set of
multi-automata corresponding to the regular predicates of the CTL
formula and a PDS P written in the syntax of Moped or PDSolver,
PDS·CTL2ABPDS constructs an ABPDS BP as described in [8].
BP is such that P satisfies φ iff BP has an accepting run. MA
Constructor takes as input an ABPDS BP and applies the algo-
rithm of [8] to compute a multi-automaton recognizing the set of
configurations from which BP has an accepting run, i.e., the set
of configurations from which the PDS satisfies the CTL formula.
Furthermore, PuMoC is integrated with Moped [5]. This offers a
toolkit that can do both LTL and CTL model-checking for PDSs
and sequential programs.

4. EXPERIMENTS
All the tests were run on a Fedora 13 with a 2.4GHz CPU and

2GB of memory.

4.1 Verifying Random Pushdown Systems
We randomly generated 500 PDSs each of them equipped with a

random CTL formula. The number n of control locations and stack
alphabet ranges from 10 to 510. The number of transition rules
ranges from n2 to 2n2. The size of the CTL formulas ranges from
2 to 15. Figure 2 depicts the time consumption w.r.t. the size n.
Only 5.2% (i.e. 26) of the cases run out of time (30 minutes) while
the majority of cases terminated in a few seconds. Figure 3 depicts
the memory consumption w.r.t. the size n. Only 6.6% (i.e. 33) of
tests run out of memory with 2GB limitation. The majority of tests
finished in a few MB.
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Figure 2: Time consumption

4.2 Verifying Windows Drivers
We tested 1461 versions of 30 real-world drivers. All these ver-

sions are taken from SLAM benchmarks [1]. SLAM provides the
boolean programs corresponding to these drivers. We checked 2
CTL formulas that are relevant for these drivers. The first formula
r1 ensures that the programmer uses the API functions in the good
order. This formula uses regular valuations to ensure that whenever
a function named DeviceAdd is called, the function DeviceCreate
will be called eventually before DeviceAdd returns. The second
CTL formula r2 describes a locking property. Our results are de-
scribed in Table 1. Column No. Versions gives the number of
versions we considered of the corresponding driver. Columns Avg.
#LOC denotes the average size of the programs’ versions. Col-
umn Avg. Time(s) and Avg. Mem(MB) give the average time and
memory in seconds and MB.

4.3 Model-Checking C and Java Programs
We also were able to check several CTL properties of several C

and Java programs. We checked the C source code of two bounded
model checkers (verbs and verds) [10]. We also checked 4 real-
world Java programs taken from JimpleToPDSolver [6], 4 real-
world Java programs taken from a Java benchmark SciMark2 [7],
and 7 real-world Java programs taken from JBDD [9]. The experi-
mental results are summarized in Table 2.

4.4 Data Flow Analysis of Java Programs
PuMoC can also perform Data Flow Analysis of Java programs.

Given a Java program, JimpletoPDSolver translates it into a PDS
with def/use informations, where the atomic proposition def(x) (resp.
use(x)) of a variable x holds at a control point if its corresponding
statement is an assignment (resp. a use) of the variable x1. Using
these informations, we can write CTL formulas that can solve some
data flow analysis problems like reaching definitions, live variables,
very busy expressions, and available expressions. For example the
formula ψ1 = E[¬de f (x)U use(x)] checks whether the variable x is
used without being defined. This allows to do live variables analy-
sis. Similarly, the formula ψ2 = AG(de f (x) =⇒ EF use(x)) states

1For example, variable x (resp. y and z) is assigned (resp. used) at
statement x := y + z.
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Figure 3: Memory consumption

that whenever the variable x is defined, it should be used in some
path. Checking such property allows to optimize programs. Indeed,
the variable x does not need to be defined (assigned) if x will not
be used. Table 3 summarizes the results of our experiments. We
made a comparison with PDSolver [6], a µ-calculus model-checker
for PDSs and Java programs (CTL formulas can be translated to
µ-calculus). Our tool is more efficient.
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Table 1: Model-Checking Drivers with PuMoC
Program No. Versions Avg. #LOC r1 r2

Avg. Time(s) Avg. Mem(MB) Avg. Time(s) Avg. Mem(MB)
1394 10 7.9k 48.80 30.45 27.82 9.80

bluetooth 37 10.32k 67.83 34.38 28.11 10.43
SD 14 6.9k 27.42 19.57 7.10 5.93

PLX9x5x 16 13.2k 119.14 45.72 40.53 14.01
amcc5933 14 10.0k 54.50 32.26 16.84 9.40

cancel 69 3.4k 20.95 12.43 4.01 4.34
Echo 68 5.4k 28.34 19.10 7.46 5.66
event 20 4.8k 32.04 18.24 7.22 5.35
pcidrv 72 29.1k 422.58 115.56 181.52 36.58

perfcounters 16 2.2k 11.84 8.58 2.57 2.82
portio 26 4.9k 23.17 15.17 6.00 4.96

registry 35 11.4k 150.85 46.36 56.83 14.91
toaster_wdm_bus 43 9.6k 91.19 37.93 31.91 12.15
toaster_wdm_func 183 10.1k 90.05 40.44 32.97 12.99

toaster_wdm_toastmon 41 4.5k 32.15 17.58 8.24 5.70
toaster_wdm_filter 231 4.0k 26.36 15.58 6.65 5.11

toaster_kmdf 165 5.0k 19.45 15.13 5.19 4.89
tracing 62 2.8k 15.90 10.54 3.64 3.54
firefly 17 4.2k 12.96 10.21 3.14 3.45

hidmapper 29 2.5k 13.65 9.33 2.71 3.14
hidusbfx2 17 4.4k 24.83 16.62 4.48 3.95
HBtnKey 34 5.5k 48.06 21.76 13.29 6.98
hiddigi 65 9.2k 84.00 35.46 28.90 11.25
kbfiltr 15 6.5k 25.28 19.30 6.86 6.20

moufiltr 14 5.0k 13.04 11.79 3.15 3.88
vserial 9 4.2k 17.33 14.77 4.65 4.81
smscir 10 14.8k 293.78 57.25 117.33 18.50

network 59 43.8k 1283.84 171.42 594.93 52.95
serial 46 16.1k 174.61 63.55 69.19 20.56

storage 84 57.3k 923.24 224.42 401.03 69.38

Table 2: Model-Checking C and Java programs with PuMoC
Program #LOC Time(s) Mem(MB) Program #LOC Time(s) Mem(MB)

Java
Prog.

Namer 60 0.03 0.62

Java
Prog.

EntryPoint 11k 20.14 66.39
cmdline 3k 5.72 32.14 ProcessDestroyer 11k 128.22 87.06
readCmdLine 78k 525.32 149.62 TestProcess 1k 0.19 5.89
usage 95k 3009.50 581.28 IvyAuthenticator 3k 40.81 27.91
FFT 1k 11.33 8.74 JunitTestRunnerTest 28k 1427.90 179.40
Bench 3k 13.69 21.76 Diagnostics 59k 1353.17 238.09
HTTPPost 26k 17.95 100.28 DirectoryScanner 17k 626.41 113.68
Applet 159k 4148.21 535.35 IntrospectionHelper 5k 3.92 36.03
Equivalence 335 0.04 1.82 Launcher 18k 1341.98 185.55
Queens 665 2.87 5.03 KeySubst 3k 7.40 15.60
Queens2 885 2.33 9.01 IPlanetEjbc 22k 703.68 175.50
Knight 1k 0.38 9.40

C
Prog.

progreconstruct 4k 0.01 0.07
DimacsSlover 1k 0.33 7.87 cs2bool 4k 0.01 0.07
interface 1k 23.86 26.17 specs 4k 0.01 0.08
IQueens 109k 2440.32 411.67 cnfsat 4k 0.01 0.07
jlink 37k 2092.60 281.77 qmdwritecnf 8k 0.01 0.11
JUnitTestRunner 26k 32.24 141.46 treedopost 8k 128.22 87.06
DefanltDepDes 28k 1390.64 198.45 CNFspec2model 8k 0.19 5.89
IBiblioHelper 89k 4648.64 348.58 qmd2model 8k 40.81 27.91

Table 3: Data flow analysis of Java Programs with PuMoC

Program #LOC
ψ1 ψ2

PDSolver Our tool: PuMoC PDSolver Our tool: PuMoC
Time(s) Time(s) Mem(MB) Time(s) Time(s) Mem(MB)

RegAction 3k 5.14 0.71 5.23 19.89 15.95 11.88
ELFDump 6k 7.63 1.43 9.19 50.62 37.27 20.64
FOP2PDF 17k 108.4 10.33 26.73 311.66 262.51 81.76
DOM2PDF 18k 54.53 11.92 29.21 167.15 254.68 88.52
DisAction 54k 458.77 134.18 87.09 >2000 1616.09 386.82
CFGAction 90k 1129.99 544.45 143.39 >2000 1734.81 514.56


