A Hybrid Approach to Formal Verification of Higher-Order Masked Arithmetic Programs

PENGFEI GAO∗†, ShanghaiTech University, China
HONGYI XIE, ShanghaiTech University, China
FU SONG‡, ShanghaiTech University, China
TAOLUE CHEN, University of Surrey, UK

Side-channel attacks, which are capable of breaking secrecy via side-channel information, pose a growing threat to the implementation of cryptographic algorithms. Masking is an effective countermeasure against side-channel attacks by removing the statistical dependence between secrecy and power consumption via randomization. However, designing efficient and effective masked implementations turns out to be an error-prone task. Current techniques for verifying whether masked programs are secure are limited in their applicability and accuracy, especially when they are applied. To bridge this gap, in this article, we first propose a sound type system, equipped with an efficient type inference algorithm, for verifying masked arithmetic programs against higher-order attacks. We then give novel model-counting based and pattern-matching based methods which are able to precisely determine whether the potential leaky observable sets detected by the type system are genuine or simply spurious. We evaluate our approach on various implementations of arithmetic cryptographic programs. The experiments confirm that our approach outperforms the state-of-the-art baselines in terms of applicability, accuracy and efficiency.

CCS Concepts: • Software and its engineering → Software verification; • Security and privacy → Logic and verification; Side-channel analysis and countermeasures.

Additional Key Words and Phrases: Formal verification, higher-order masking, cryptographic programs, side-channel attacks

ACM Reference Format:

1 INTRODUCTION

Cryptography as the backbone of security mechanisms plays a crucial role in many aspects of our daily lives including smart card, cyber-physical systems, Internet of things and edge computing, to name a few [2, 6, 85, 95, 99, 127, 128]. Side-channel attacks are capable of breaking secrecy via

∗Also with University of Chinese Academy of Sciences.
†Also with Shanghai Institute of Microsystem and Information Technology.
‡Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2020/1-ART1 $15.00
https://doi.org/10.1145/3428015

side-channel information such as power consumption [82, 89], execution time [125], faults [78, 118], acoustic [62] and cache [71], posing a growing threat to implementations of cryptographic algorithms. In this work, we focus on power side-channel attacks, where power consumption data are used as the side-channel information. Power side-channel attacks are arguably the most effective physical side-channel attack. Implementations of almost all major cryptographic algorithms, such as DES [39, 82], AES [108, 123, 128], RSA [65], Elliptic curve cryptography [41, 76, 86, 98] and post-quantum cryptography [77, 109, 112], have been successfully broken, leading to serious security implications such as cloning of GSM/3G/4G (U)SIM cards [85].

To thwart power side-channel attacks, masking is one of the most widely-used and effective countermeasures [33, 75]. Essentially, masking is designed to remove the statistical dependence between secrecy and power consumption via randomization. Fix a sound security parameter \(d \), an order-\(d \) masking typically makes use of a secret-sharing scheme to logically split the secret data into \((d + 1)\) shares such that any \(d' \leq d \) shares are statistically independent on the secret data. Masked implementations of some specific cryptographic algorithms such as PRESENT, AES and its non-linear component (Sbox) (e.g., [75, 93, 107, 111, 114]), as well as secure conversion algorithms between Boolean and arithmetic maskings (e.g., [21, 42, 46, 64, 74]), have been published over years. It is crucial to realize that an implementation that is based on a secure scheme does not provide the secure guarantee in practice automatically. For instance, the order-\(d \) masking of AES proposed in [111] and its extensions [32, 79] were later shown to be vulnerable to an attack of order-\(\left\lceil \frac{d^2}{2} \right\rceil + 1 \) [48]. Indeed, designing efficient and effective masked implementations is an error-prone process. Therefore, it is vital to verify masked programs in addition to the underlying security scheme, which should ideally be done automatically.

The predominant approach addressing this problem is the empirical leakage assessment by statistical significance tests or launching state-of-the-art side-channel attacks, e.g., [5, 63, 115] to cite a few. Although these approaches are able to identify some flaws, they can neither prove their absence nor identify all possible flaws exhaustively. In other words, even if no flaw is detected, it is still inconclusive, as it is entirely possible that the implementation could be broken with a better measurement setup or more leakage traces. Recently, approaches based on formal verification are emerging for automatically verifying masked programs [8–10, 24, 25, 27, 43, 54, 55, 59, 60, 101, 129]. As the state of the art, most of these methods can only tackle Boolean programs [10, 20, 24, 25, 27, 54, 55, 129] or first-order security [59, 60, 101, 102], thus are limited in applicability and usability. Some work [8, 9, 43] is able to verify arithmetic programs against higher-order attacks, but is limited in accuracy in the sense that secure programs may fail to pass the verification whereas potential leaky observable sets are hard to be resolved automatically so tedious manual examination is usually necessary to differentiate genuine and spurious ones. Therefore, formal verification of masked arithmetic programs against higher-order attacks (with full tool support to automatically resolve potential leaky observable sets) is still an unsolved question and requires further research.

Main contributions. Our work focuses on formal verification of higher-order masked arithmetic programs based on the standard probing model (ISW model) proposed by Ishai, Sahai and Wagner [75]. Arithmetic programs admit considerably richer operations such as finite-field multiplication, and are much more challenging than their Boolean counterparts whose variables are over the Boolean domain only. Transforming arithmetic programs to equivalent Boolean ones and then applying existing tools is theoretically possible, but suffers from several disadvantages: (1) complicated arithmetic operations (e.g., finite-field multiplication) have to be encoded as bitwise operations; (2) verifying order-\(d \) security of a 8-bit arithmetic program must be done by verifying order-\((8^d) \) security over its Boolean translation which has considerably more observable variables (at least 8x). Because of this, we hypothesize that this approach is practically unfavourable, if not
Formal Verification of Higher-Order Masked Arithmetic Programs

infeasible. Indeed, the state-of-the-art tool maskVerif [10] has already required over 18 minutes to accomplish verification of the fifth-order masked Boolean implementation of DOM Keccak Sbox [70] which has only 618 observable variables.

In light of this, we pursue a direct verification approach for higher-order masked arithmetic programs. To guarantee that a masked program is order-\(d\) secure, one has to ensure that the joint distributions of all size-\(d\) sets of observable variables (observable sets) that are potentially exposed to an attacker are independent of secret data. There are two key challenges: (1) the combinatorial explosion problem of observable sets when the number of observable variables and the security order increasing, and (2) how to efficiently and automatically resolve potential leaky observable sets. The first challenge is addressed by the first step of our hybrid approach, for which we propose a sound type system together with an efficient type inference algorithm, which can prescribe a distribution type for each observable set. One can often—but not always—deduce leakage-freeness of observable sets from their distribution types, whereas observable sets that cannot be solved by the type system are regarded as potential leaky observable sets.

In case that potential leaky observable sets are produced by the type system (i.e., the second challenge), we provide automated resolution methods which are the second step of our hybrid approach. This step is important: for instance, [8] reported 98,176 potential third-order sets on Sbox [114], which are virtually impossible to check individually by human beings. Technically, the second step is based on model-counting and pattern matching based methods. For the model-counting, we consider two baseline algorithms: the first one transforms the problem to the satisfiability problem of a (quantifier-free) first-order logic formula that can be solved by SMT solvers (e.g., Z3 [50]), an extension of our previous one for first-order security [59, 60]; the second one computes the probability distribution of an observable set by naively enumerating all possible valuations of variables. We give, for the first time in the current paper, a third, GPU-accelerated parallel algorithm, to leverage GPU’s computing capability. Instead of creating a general GPU-based solver which is control-flow intensive and would downgrade the GPU performance, we automatically synthesize a GPU program for each potential leaky observable set, which, in a nutshell, enumerates all possible valuations of variables by leveraging GPU parallel computing. It turns out that the GPU-based parallel algorithm significantly outperforms the two baseline algorithms.

The pattern matching based method is devised to further reduce the cost of model-counting. This method infers the distribution type of an observable set from observable sets whose distribution types are known, by searching an “isomorphism” between the computation expressions of the variables in two observable sets. If such an isomorphism exists, one can conclude that the two observable sets have the same distribution type, by which one can save costly model-counting procedures. The pattern matching based method also automatically summarizes patterns of leaky observable sets which can be used for diagnosis and debugging.

Our hybrid approach enjoys several advantages over the existing approaches. Compared to the empirical methods based on the statistical analysis of leakage traces, our approach is able to give conclusive security assertions independent of assessment conditions, testing strategies or the amount of gathered leakage traces. Compared to the existing formal verification approaches, our overall hybrid approach is both sound and complete, and is able to verify more types of masked implementations. Remarkably, our model-counting and pattern matching based methods could also be integrated into existing formal verification approaches, effectively making them complete and more efficient.

We implement our approach in a tool HOME (H\textsc{igher-O}rder masking v\textsc{Erifier}), and evaluate on various benchmarks including masked implementations of full AES and MAC-Keccak programs. The results are very encouraging: HOME can handle benchmarks that have never been verified by existing formal verification approaches, e.g., implementations of Boolean to arithmetic mask
conversion from [113], arithmetic to Boolean mask conversion from [45], the non-linear transformation and round function of Simon from [117]. Our tool is also significantly faster than [8] on almost all secure programs (e.g., 110× and 31× speed-up for Key schedule [111] and 4th-order Sbox [114]; cf. Table 1), which is the only available tool to verify masked higher-order arithmetic programs under an equivalent leakage model to the ISW model. The experimental results are very encouraging in both functionality and performance when comparing our tool with the existing tools.

To sum up, the main contributions of this work are as follows:

- We propose a sound type system and provide an efficient type inference algorithm for proving security of masked arithmetic programs;
- We propose a novel GPU-accelerated parallel algorithm to resolve potential leaky observable sets which significantly outperforms two baselines;
- We propose a novel pattern matching based method to automatically summarize patterns of leakage sets, which can reduce the cost of model-counting;
- We implement our algorithms in a software tool and demonstrate the effectiveness and efficiency of our approach on various benchmarks.

Our work can be readily used by the designers of cryptographic algorithms to verify their implementations of countermeasures against power side-channel attacks. There is however a potentially larger group of users. Applications from, e.g., Blockchain, Internet of Things, edge computing and smart phones, have used cryptographic algorithms extensively, typically provided as open-source software package which developers integrate as part of the developed software. For security-critical applications, it is vital to assure that the entire software system is robust against power side-channel attacks where our work would play an essential role. From that perspective, average software developers—not only security experts—would potentially benefit from the current work.

The remainder of this article is organized as follows. In Section 2, we introduce basic notations and recall the probing leakage model. In Section 3, we present a motivating example and the overview of our approach. In Section 4, we present the sound type system, its inference algorithm and sound transformations to facilitate type inference. In section 5, we describe the model-counting and pattern matching based methods. In Section 6, we evaluate the performance of our approach on representative examples from the literature. We discuss related work in Section 8. Finally, we conclude the article in Section 9.

2 PRELIMINARIES
In this section, we describe masked cryptographic programs, masking schemes, leakage models and security notions.

2.1 Masked Cryptographic Programs
We fix an integer $\kappa > 0$ and the domain $I = \{0, \ldots, 2^\kappa - 1\}$. For a set R of random variables, let $\mathcal{D}(R)$ denote the set of joint distributions over R.

Syntax. We focus on programs written in C-like code that implement cryptographic algorithms such as AES, as opposed to arbitrary software programs. The syntax is given as follows.

Operation:	OP \circ ::= \oplus	\land	\lor	\odot	$+$	$-$	\times
Expression:	$e ::= c \in I$	x	$e \circ e$	$\neg e$	$e \Leftarrow c$	$e \Rightarrow c$	$f(e)$
Statement:	stmt ::= $x \leftarrow e$	stmt; stmt					
Program:	$P ::= \text{stmt; return } x_1, \ldots, x_m$						
A program P is a sequence of assignments $x \leftarrow e$ followed by a `return` statement, where e is an expression building from a set of variables and κ-bit constants using the bitwise operations: negation (\neg), and (\wedge), or (\vee), exclusive-or (\oplus), left shift \ll and right shift \gg; modulo 2^κ arithmetic operations: addition ($+$), subtraction ($-$), multiplication (\times); finite-field multiplication (\odot) over the finite field \mathbb{F}_{2^κ}; (univariate) bijective functions f which are given by look-up tables.

To analyze a cryptographic program P, it is common to assume that it is in straight-line form (i.e., branching- and loop-free) [8, 54]. Remark that our tool supports programs with non-recursive procedure calls and static loops by transforming to straight-line form by procedure inlining and loop unfolding. We currently do not include unbounded loops or recursive procedure calls. This is not a major issue as most implementations of the cryptographic algorithms feature only bounded loops and/or hierarchical procedure calls. Indeed, as one may see from Section 6, extensive and diverse benchmarks can be written in our language.

We further assume that P is in the single static assignment (SSA) form (i.e., there is at most one assignment $x \leftarrow e$ in P for x) and each expression uses at most one operator. (One can easily transform an arbitrary straight-line program to the SSA form.) For an assignment $x \leftarrow e$, we will denote by $\text{Operands}(x)$ the set of operands associated with the operator of e.

We fix a program P annotated by public, private and random input variables, where the public input variables are used to store data that can be accessed by the adversary harmlessly (such as plaintext), the private input variables are used to store data that should not be accessed by the adversary (such as keys), and the random variables are sampled uniformly from the domain I. In general, random variables are used for masking the private input variables. The set X of variables in P is partitioned into four sets: X_p, X_k, X_r and X_i, where X_p denotes the set of public input variables, X_k denotes the set of private input variables, X_r denotes the set of (uniformly distributed) random variables on the domain I, and X_i denotes the set of intermediate variables.

Semantics. For each variable $x \in X$, we define the computation of x, $E(x)$, as an expression over input variables $X_p \cup X_k \cup X_r$. Formally, for each $x \in X$, $E(x) = x$ if $x \in X_p \cup X_k \cup X_r$, otherwise x is an intermediate variable (i.e., $x \in X_i$) which must be uniquely defined by an assignment statement $x \leftarrow e$ (thanks to SSA form of P), and thus $E(x)$ is defined as the expression obtained from e by sequentially replacing all the occurrences of the intermediate variables in e by their defining expressions in P.

A valuation is a function $\eta : X_p \cup X_k \rightarrow I$ that assigns a concrete value to each input variable in $X_p \cup X_k$. Let Θ denote the set of valuations. Two valuations η_1 and η_2 are X_p-equivalent, denoted by $\eta_1 \approx_{X_p} \eta_2$, if $\eta_1(x) = \eta_2(x)$ for $x \in X_p$, i.e., η_1 and η_2 must agree on their values on public input variables. We denote by $\Theta_{X_p}^2 \subseteq \Theta \times \Theta$ the set of pairs of X_p-equivalent valuations. For each variable $x \in X$, let $E_\eta(x)$ denote the expression obtained from $E(x)$ by instantiating variables $y \in X_p \cup X_k$ with concrete values $\eta(y)$.

Given a valuation $\eta \in \Theta$, for each variable $x \in X$, the computation $E(x)$ of x under the valuation η can be interpreted as the probability distribution, denoted by $[x]_\eta$, over the domain I with respect to the uniform distribution of the random variables $E_\eta(x)$ may contain. Intuitively, when the values of input variables are fixed using the valuation η and the values of random variables are sampled from the domain I, the computation $E(x)$ of the variable x can be seen as an random variable with the distribution $[x]_\eta$ defined as follows. For each concrete value $c \in I$, $[x]_\eta(c)$ is the probability that $E_\eta(x)$ evaluates to c under the valuation η, that is,

$$[x]_\eta(c) = \frac{|\{\mu : X_r \rightarrow I \mid [x]_{\eta, \mu} = c\}|}{|I|^{|X_r|}}.$$
where \(|\{ \mu : X_r \mapsto \mathbb{I} \mid [x]_{\mu, \eta} = c\}| \) denotes the number of assignments \(\mu \) of the variables in \(X_r \) under which the computation \(E(x) \) evaluates to \(c \) (denoted by \([x]_{\eta, \mu} = c\)), and \(|\mathbb{I}|^{X_r} \) denotes the number of all the possible assignments of the variables from \(X_r \).

Accordingly, for a given valuation \(\eta \in \Theta \) and a subset of variables \(Y = \{x_1, \cdots, x_m\} \subseteq X \), the computations \((E(x))_{x \in Y}\) under the valuation \(\eta \) can be interpreted as the joint distribution, denoted by \([P]_{\eta}^Y\), over the domain \(\mathbb{I}^m \). For each possible combination of concrete values \(C = (c_1, \cdots, c_m) \) of the variables in \(Y \), the joint distribution \([P]_{\eta}^Y \) leads to the probability \([P]_{\eta}^Y(C)\) that the computations \((E(x))_{x \in Y}\) evaluate to \((c_1, \cdots, c_m)\) under the valuation \(\eta \), that is:

\[
[P]_{\eta}^Y(C) = \frac{|\{ \mu : X_r \mapsto \mathbb{I} \mid [x_1]_{\eta, \mu} = c_1, \cdots, [x_m]_{\eta, \mu} = c_m\}|}{|\mathbb{I}|^{X_r}}.
\]

We denote by \([P]_{\eta}^Y : \Theta \rightarrow \mathcal{D}(Y)\) the function mapping each valuation \(\eta \in \Theta \) to the joint distribution \([P]_{\eta}^Y\). The subscript \(Y \) may be dropped from \([P]_{\eta}^Y\) and \([P]_{\eta} \) when \(Y = X \). It is easy to see that for a given valuation \(\eta \in \Theta \) and a subset of variables \(Y \subseteq X \), \([P]_{\eta}^Y \) is the marginal distribution of \(Y \) under the joint distribution \([P]_{\eta} \) (i.e., \([P]_{\eta}^X\)).

2.2 Masking

Masking is a randomization technique used to break the statistical dependence of the private input variables and observable variables of the adversary [33, 75]. Fix a sound security parameter \(d \), an order-\(d \) masking typically makes use of a secret-sharing scheme to logically split the private data into \((d + 1)\) shares such that any \(d' \leq d \) shares are statistically independent on the value of the private input. The computation of shares for each private input is usually called presharing. A masking transformation aims at transforming an unmasked program \(P \) that directly operates on the private inputs into a masked program \(P' \) that operates on their shares. Finally, the desired data are recovered via de-masking of the outputted shares of the masked program \(P' \).

For example, using the order-\(d \) Boolean masking [75], the \((d + 1)\) shares of a key \(k \) are \((r_1, \cdots, r_{d+1})\), where the shares \(r_1, \ldots, r_d \) are generated uniformly at random and \(r_{d+1} \) is computed such that \(r_{d+1} = k \oplus \bigoplus_{i=1}^d r_i \). The value of \(k \) can be recovered via performing exclusive-or (\(\oplus \)) operations on all the shares, i.e., \(\bigoplus_{i=1}^{d+1} r_i \).

Besides Boolean masking schemes, there are arithmetic masking schemes such as additive (e.g., \((k + r) \mod n\)) and multiplicative masking schemes (e.g., \((k \times r) \mod n\)) for protecting arithmetic operations. Secure conversion algorithms between them (e.g., [21, 42, 46, 64, 74]) have been proposed for masking cryptographic algorithms that embrace both Boolean and arithmetic operations (such as IDEA [84] and RC6 [40]).

When increasing the masking order \(d \), the attack cost usually increases exponentially, but the performance of the masked programs degrades polynomially [68]. Therefore, the masking order is chosen by a trade-off between attack cost and performance.

2.3 Leakage Model and Security Notions

To formally verify the security of masked programs, it is necessary to define the set of observable variables to the adversary and a leakage model that formally captures the leaked information from the set of observable variables.

Observable variables. In the context of side-channel attacks, the adversary is assumed to be able to observe the public \((X_p)\), random \((X_r)\), and intermediate \((X_i)\) variables via side-channel information, but is not able to observe the private input variables \(X_k\) or the intermediate variables of presharing. Indeed, presharing of each private input variable is performed outside of the program.
and is included only for the verification purpose [8, 111]. Therefore, for each program \(P \), it is easy to automatically identify the set of observable variables \(X_o \subseteq X_p \cup X_i \cup X_r \) which is assumed to be observed by the adversary. Each subset \(O \subseteq X_o \) of observable variables is called an observable set.

Leakage model. In this article, we adopt the standard \(d \)-threshold probing model proposed by Ishai, Sahai and Wagner [75], usually referred to as ISW \(d \)-threshold probing model (ISW model for short), where the adversary may have access to the values of at most \(d \) observable variables of his/her choice (e.g., via side-channel information). The more variables an adversary observes, the higher the attack cost is.

Uniform and statistical independence. Given a program \(P \) and an observable set \(O \subseteq X_o \),

- \(P \) is uniform w.r.t. \(O \), denoted by \(O \)-uniform, iff for all valuations \(\eta \in \Theta \): \(\mathbb{E}[P]^O_{\eta} \) is a uniform joint distribution;
- \(P \) is statistically independent of \(X_k \) with respect to \(O \), denoted by \(O \)-SI, iff for every \((\eta_1, \eta_2) \in \Theta^2_{X_k} \) (i.e., \(\eta_1 \) and \(\eta_2 \) agreeing on their values on public input variables): \(\mathbb{E}[P]^O_{\eta_1} = \mathbb{E}[P]^O_{\eta_2} \).

We say \(P \) is \(O \)-leaky if it is not \(O \)-SI.

According to the above definitions, it is straightforward to verify the following proposition.

Proposition 2.1. Given an observable set \(O \) of a program \(P \),

1. if \(P \) is \(O \)-uniform, then \(P \) is \(O \)-SI and \(O' \)-uniform for all \(O' \subseteq O \);
2. if \(P \) is \(O \)-SI, then \(P \) is \(O' \)-SI for all \(O' \subseteq O \).

Definition 2.2 (Security under the ISW \(d \)-threshold probing model [75]). A program \(P \) is order-\(d \) secure if \(P \) is \(O \)-SI or \(O \)-uniform for every observable set \(O \subseteq X_o \) with \(|O| = d \).

Intuitively, if \(P \) is \(O \)-SI or \(O \)-uniform, then the distribution of the variables in \(O \) (hence power consumptions based on the variables in \(O \) in the ISW \(d \)-threshold probing model) does not rely on private data, and thus the adversary cannot deduce any information by observing variables in \(O \).

In literature, the ISW \(d \)-threshold probing model is also called order-\(d \) perfect masking [54] or \(d \)-non-interference (\(d \)-NI) [8]. There are other leakage models such as noise leakage model [107], bounded moment model [11], ISW model with transitions [44] and with glitches [25, 90] and strong \(d \)-non-interference (\(d \)-SNI) [9, 10, 58]. It is known that all these models (except for \(d \)-SNI and \(d \)-NI introduced in [9] and the extensions thereof) can be reduced to the ISW \(d \)-threshold probing model [8, 10, 11, 52] possibly at the cost of introducing higher orders when chosen plaintext attacks are adopted, namely, the adversary can use any plaintext during attack. The \(d \)-SNI and \(d \)-NI models defined in [9] are however stronger than the ISW \(d \)-threshold probing model. Namely, not all secure masked programs under the ISW \(d \)-threshold probing model are safe under \(d \)-SNI/\(d \)-NI, so cannot pass verification under this notion [11]. In this work, we adopt the ISW \(d \)-threshold probing model, which is more common in side-channel analysis [25, 54, 60, 129].

Remark that the \(d \)-NI notion defined in [9, 10] is strictly stronger than the one defined in [8], although they bear the same name. Namely, in [9, 10], the \(d \)-NI notion requires that the number of shares of each private input variable that can be accessed by the adversary is strictly less than \(d + 1 \).

Research objective. Our goal is to develop automated verification methods to determine whether a given masked arithmetic program is order-\(d \) secure under the ISW \(d \)-threshold probing model.

3 Motivating Example and Overview of Approaches

In this section, we present a motivating example and an overview of our approach.
3.1 Motivating Example

Figure 1 presents an example which is an implementation of the Boolean to arithmetic mask conversion algorithm of Goubin [64]. The program assumes that the inputs are the private key \(k\) and two random variables \(r, r'\). Line 2 is presharing which computes two shares \((x', r)\) of the private key \(k\) via Boolean masking. (Remark that Line 2 should be performed outside of the function \texttt{BooleanToArithmetic} and is introduced for verification purpose only. The actual implementation in Goubin [64] takes two shares \((x', r)\) as input and assigns \(r'\) by a uniformly sampled random value.)

The function \texttt{BooleanToArithmetic} returns two shares \((A, r)\) of the arithmetic masking of the private key \(k\) such that \(A + r = k\), but without directly recovering the key \(k\) by \(x' \oplus r\).

As setup for further use, we have: \(X_p = \emptyset, X_k = \{k\}, X_r = \{r, r'\}, X_i = \{x', A, y_1, \ldots, y_5\}\) and \(X_o = \{x', A, y_0, \ldots, y_3, r, r'\}\). The computations of variables in \(X_i\) are:

\[
\begin{align*}
\mathcal{E}(x') & = k \oplus r; \\
\mathcal{E}(y_0) & = (k \oplus r) \oplus r'; \\
\mathcal{E}(y_1) & = ((k \oplus r) \oplus r') - r'; \\
\mathcal{E}(y_2) & = (((k \oplus r) \oplus r') - r') \oplus (k \oplus r); \\
\mathcal{E}(y_3) & = r' \oplus r; \\
\mathcal{E}(y_4) & = (r' \oplus r) \oplus (k \oplus r); \\
\mathcal{E}(y_5) & = ((r' \oplus r) \oplus (k \oplus r)) - (r' \oplus r); \\
\mathcal{E}(A) & = (((r' \oplus r) \oplus (k \oplus r)) - (r' \oplus r)) \oplus (((k \oplus r) \oplus r') - r') \oplus (k \oplus r)).
\end{align*}
\]

For each observable variable \(z \in X_o\), the program is \{\(z\)\}-uniform (note that \(\mathcal{E}(A)\) is equivalent to \(k - r\)), and thus it is first-order secure. However, this program is not second-order secure, e.g., \(y_0 \oplus y_3 \equiv x' \oplus r \equiv k\) allowing to extract private key \(k\) by observing \(\{y_0, y_3\}\).

3.2 Overview of Approach

The overview of our approach HOME is depicted in Figure 2, consisting of four main components: pre-processor, type system, pattern matching based method, and model-counting based method. Given a masked program \(P\) and the security order \(d\), HOME checks whether the masked program \(P\) is order-\(d\) secure or not. If \(P\) is not order-\(d\) secure, then HOME outputs the leaks, i.e., all the size-\(d\) observable sets \(O\) such that \(P\) is \(O\)-leaky.

Given a masked program \(P\) and the order \(d\), the pre-processor unfolds the static loops (i.e., loops with a predetermined bound of iterations) and inlines the procedure calls, and then transforms the program into the SSA form. The type system is used to check whether each size-\(d\) observable set \(O\) is order-\(d\) secure by deriving valid type judgements. If we can deduce that the observable set \(O\) is either order-\(d\) secure or certainly not according to the distribution type, then the result is conclusive.

Fig. 1. Goubin’s Boolean to arithmetic mask conversion algorithm [64].

1. \texttt{BooleanToArithmetic}(\(k, r, r'\))

2. \(x' \leftarrow k \oplus r; \quad \text{// presharing} \)

3. \(y_0 \leftarrow x' \oplus r'; \)

4. \(y_1 \leftarrow y_0 - r'; \)

5. \(y_2 \leftarrow y_1 \oplus x'; \)

6. \(y_3 \leftarrow r' \oplus r; \)

7. \(y_4 \leftarrow y_3 \oplus x'; \)

8. \(y_5 \leftarrow y_4 - y_3; \)

9. \(A \leftarrow y_5 \oplus y_2; \)

10. \(\text{return} \ A; \)

Gao et al.
However, as usual, the type system is incomplete, namely, it is possible that the distribution type cannot be inferred in which case we first apply the pattern matching based method. This method iteratively searches an “isomorphism” between the computation expressions of the variables in O and the variables in O', where O' is another size-d observable set whose distribution type is already known. If such an isomorphism exists, we can conclude that these two observable sets O and O' have the same distribution type, effectively resolving the observable set O. The result of the observable set O will be fed back to the type system which can be used to gradually improve the accuracy of the type inference.

When the pattern matching based method fails to resolve the observable set O, we will apply the (normally expensive) model-counting based method, which is able to completely decide whether the observable set O is order-d secure. Finally, the observable set O is cached for further invocation of pattern matching. As before, the result of the observable set O will be fed back to the type system.

This procedure gives a sound and complete approach for verification of higher-order security. In the next two sections, we will elucidate the details of the type system, type inference algorithm, model-counting and pattern matching based methods.

4 TYPE SYSTEM

In this section, we first present a type system to infer the distribution type of an observable set, then propose three sound transformations to facilitate type inference, and finally present the type inference algorithm based on the type system and the sound transformations.

4.1 Dominant Variables

We first introduce the notion of dominant variables.

Definition 4.1. A random variable r is called a dominant variable of an expression e if the following two conditions hold:

1. r (syntactically) occurs in the expression e exactly once; and
2. for each operator \circ on the path between the leaf r and the root in the abstract syntax tree of the expression e,
 - if $\circ = \odot$, then one of its children is a non-zero constant; or
 - $\circ \in \{\oplus, -, +\}$; or
 - \circ is a (univariate) bijective function.

Intuitively, if the computation $E(x)$ contains a dominant variable r, we can immediately deduce that the distribution $\llbracket x \rrbracket_\eta$ is uniform for any valuation $\eta \in \Theta$. For instance, suppose $E(x) = k \oplus r$ where k is a private input variable and r is a random variable. No matter the value of k is, the probability $\llbracket x \rrbracket_\eta(c)$ is $\frac{1}{|I|}$ for any concrete value $c \in I$. Remark that the condition (1) in Definition 4.1
is crucial: we cannot deduce that \(\|x\|_p \) is uniform for any valuation \(\eta \in \Theta \) if \(E(x) = (r \land k) \oplus r \), although it satisfies the condition (2).

We denote by \(\text{Var}(e) \) the set of variables appearing in an expression \(e \), by \(\text{RVar}(e) \) the set \(\text{Var}(e) \cap X_r \), and by \(\text{Dom}(e) \) the set of all dominant (random) variables of \(e \). All of these sets can be computed in polynomial time in the size of \(e \). Furthermore, note that a particularly useful example of bijective functions is Sbox which is ubiquitous in cryptographic programs.

If \(r_x \) is a dominant variable of the expression \(E(x) \) such that \(r_x \not\in \bigcup_{x' \in O \setminus x} \text{RVar}(E(x')) \), then \(E(x) \) can be seen as a fresh random variable when evaluating \(\|P\|^O \). Therefore, if each expression \(E(x) \) for \(x \in O \) has such dominant variables, we can deduce that \(P \) is \(O \)-uniform.

Proposition 4.2. Given an observable set \(O \subseteq X_o \), if for every \(x \in O \) there exists a dominant variable \(r_x \in \text{Dom}(E(x)) \) such that \(r_x \not\in \bigcup_{x' \in O \setminus x} \text{RVar}(E(x')) \), then \(P \) is \(O \)-uniform.

Proof. To prove this proposition, we first introduce the notion of \(i \)-invertibility. We will denote by \(e(x_1, \cdots, x_n) \) an expression defined over the variables \(x_1, \cdots, x_n \), which can be seen as a function mapping a combination of concrete values \(c_1, \cdots, c_n \) to a concrete value by instantiating all the variables \(x_1, \cdots, x_n \) with their corresponding concrete values \(c_1, \cdots, c_n \). An expression \(e(x_1, \cdots, x_n) \) is \(i \)-invertible if, for any concrete values \(c_1, \cdots, c_{i-1}, c_{i+1}, \cdots, c_n \in I \), the expression

\[
\frac{e(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, x_i, c_{i+1}/x_{i+1}, \cdots, c_n/x_n)}{e(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, c_{i+1}/x_{i+1}, \cdots, c_n/x_n)}
\]

obtained by instantiating all the variables \((x_j)_{j \neq i} \) with concrete values \((c_j)_{j \neq i} \) is bijective. It is easy to see that \(e(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, x_i, c_{i+1}/x_{i+1}, \cdots, c_n/x_n) \) and \(x_i \) have same distribution. Thus, if \(x_i \) is a random variable, then \(e(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, x_i, c_{i+1}/x_{i+1}, \cdots, c_n/x_n) \) must be a uniform distribution.

The following claim reveals the relation between dominated expressions and \(i \)-invertibility.

Claim. Given an expression \(e(x_1, \cdots, x_n) \) over variables \(\{x_1, \cdots, x_n\} \), for every \(1 \leq i \leq n \), if \(x_i \) is a dominant variable of \(e(x_1, \cdots, x_n) \), then \(e(x_1, \cdots, x_n) \) is \(i \)-invertible.

We prove that \(e(x_1, \cdots, x_n) \) is \(i \)-invertible by induction on the length \(\ell \) of the path between the leaf \(x_i \) and the root in the abstract syntax tree of \(e \).

Base case \(\ell = 0 \). The expression \(e(x_1, \cdots, x_n) \) must be \(x_i \) which is a bijective function. The result immediately follows.

Inductive step \(\ell > 0 \). Let \(\circ \) be the operator at the root of the syntax tree of \(e(x_1, \cdots, x_n) \), then \(e(x_1, \cdots, x_n) \) is in the form of

1. \(\neg e_1(x_1, \cdots, x_n) \), or
2. \(\circ(e_1(x_1, \cdots, x_n)) \) where \(\circ \) is a (univariate) bijective function, or
3. \(e_1(x_1, \cdots, x_n) \circ e_2(x_1, \cdots, x_{i-1}, x_i, x_{i+1}, \cdots, x_n) \) such that \(x_i \) is a dominant variable of \(e_1(x_1, \cdots, x_n) \), where \(\circ \in \{\lor, \land, +, -\} \). (Note that \(x_i \) does not appear in \(e_2(x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n) \).

By the induction hypothesis, \(e_1(x_1, \cdots, x_n) \) is \(i \)-invertible. By the definition of \(i \)-invertibility, for any concrete values \(c_1, \cdots, c_{i-1}, c_{i+1}, \cdots, c_n \in I \), \(e_1(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, x_i, c_{i+1}/x_{i+1}, \cdots, c_n/x_n) \) is bijective. Then, the result immediately follows if \(e(x_1, \cdots, x_n) \) is \(\neg e_1(x_1, \cdots, x_n) \) or \(\circ(e_1(x_1, \cdots, x_n)) \), i.e., Item (1) and Item (2). It remains to consider Item (3).

- If \(\circ = \circ \), then \(e_2(x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n) \) is non-zero constant. Note that \(x_i \) is a dominant variable of \(e_1(x_1, \cdots, x_n) \). By applying the induction hypothesis, \(e_1(x_1, \cdots, x_n) \) is \(i \)-invertible, therefore \(e_1(x_1, \cdots, x_n) \) cannot be a constant. Since the multiplicative group of the non-zero elements in \(I \) is cyclic and \(0 \circ e_2(x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n) = 0 \), then \(e_1(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, x_i, c_{i+1}/x_{i+1}, \cdots, c_n/x_n) \circ e_2(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, c_{i+1}/x_{i+1}, \cdots, c_n/x_n) \) is also bijective. Hence, the result follows.
• If $\circ \in \{\oplus, +, \cdot\}$, then $e_2(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, c_{i+1}/x_{i+1}, \cdots, c_n/x_n)$ is a constant. For any constant $c \in \mathbb{I}$, $e_1(c_1/x_1, \cdots, c_{i-1}/x_{i-1}, x_i, c_{i+1}/x_{i+1}, \cdots, c_n/x_n) \circ c$ is still bijective (note that $+$ and \cdot are operators over the ring \mathbb{I}). Hence, the result follows.

Now, we prove the proposition.

Suppose for every $x \in O$, there exists $r_x \in \text{Dom}(E(x))$ such that $r_x \notin \bigcup_{x' \in O, x' \neq x} \text{RVar}(E(x'))$, let $\llbracket P[r_x/x]_{x \in O} \rrbracket^O_O$ denote the distribution of $\llbracket P \rrbracket^O_O$ in which $E(x)$ is replaced by r_x for all $x \in O$, then for all valuations $\eta \in \Theta$, $\llbracket P \rrbracket^O_O = \llbracket P[r_x/x]_{x \in O} \rrbracket^O_O$ holds.

By applying the above claim, we get that $\llbracket P[r_x/x]_{x \in O} \rrbracket^O_O$ is a uniform distribution. Therefore, the result immediately follows.

Remark that the condition $r_x \notin \bigcup_{x' \in O, x' \neq x} \text{RVar}(E(x'))$ is crucial in Proposition 4.2, because otherwise the distributions of some variables may be statistically dependent. For instance, consider the observable set $O = \{x, y\}$ with $E(x) = k \oplus r$ and $E(y) = r$, where k is a private input variable and r is a random variable. The program is both $\{x\}$-uniform and $\{y\}$-uniform, but is not O-uniform.

Example 4.3. Let us consider the motivating example in Section 3.1. $E(x')$ is dominated by the random variable r. $E(y_0)$ and $E(y_3)$ both have two dominant variables r and r'. $E(y_1)$ only has the dominant variable r, as r' occurs twice. Similarly, $E(y_2)$ only has the dominant variable r', as r occurs twice. Thus, for every observable set $O \subseteq \{x', y_0, y_1, y_3, y_4\}$ with $|O| = 1$, we can deduce that the program is O-uniform. $E(y_2), E(y_3)$ and $E(A)$ have no dominant variables, as both r and r' occur more than once.

For the observable set $\{x', y_3\}$, although the dominant variable r' of $E(y_3)$ does not appear in $E(x')$, the dominant variable r of $E(x')$ appears in $E(y_3)$, thus we cannot deduce that the program is $\{x', y_3\}$-uniform. Indeed, for any observable set $O \subseteq \{x', A, y_1, \cdots, y_5, r, r'\}$ with $|O| \geq 2$, we cannot deduce that the program is O-uniform.

4.2 Types and Type Inference Rules

In this subsection, we introduce distribution types and their inference rules for proving higher-order security.

Definition 4.4. Let \mathcal{T} be the set of (distribution) types $\{\tau_{uf}, \tau_{SI}, \tau_{I}\}$,

- τ_{uf} stands for uniform distribution, i.e., $O : \tau_{uf}$ means that the program is O-uniform;
- τ_{SI} stands for secret independent distribution, i.e., $O : \tau_{SI}$ means that the program is O-SI;
- τ_{I} stands for leak, i.e., $O : \tau_{I}$ means that the program is O-leaky, namely, not O-SI.

where O is an observable set.

The distribution type τ_{uf} is a subtype of τ_{SI}, i.e., τ_{uf} implies τ_{SI}, but τ_{SI} does not imply τ_{uf}. Although, both τ_{SI} and τ_{uf} can be used to prove that the program is statistically independent of the secret for an observable set O, i.e., no leak, τ_{uf} is more desired because the observable set O not only is statistically independent of the secret (same as in τ_{SI}), but also can be used like a set of random variables. Therefore, we prefer τ_{uf} over τ_{SI} and want to infer as many τ_{uf} as possible.

Type judgements are in the form of $\vdash O : \tau$ where O is an observable set, $\tau \in \mathcal{T}$ is the type of O. Note that we omitted the context of the type judgement for simplifying presentation. The type judgement $\vdash O : \tau$ is valid iff the distribution of the values of variables from O satisfies the property specified by τ in the program P.

Figure 3 presents type inference rules for the first-order security. We denote by OP' the set $\text{OP} \cup \{\llbracket, \rrbracket\}$. Rule (Com) captures the commutative law of operators $\star \in \text{OP}$. Rules (IdE$_i$) for $i = 1, 2, 3, 4$ are straightforward. Rule (SID$_4$) states that x has type τ_{SI} if $x \leftarrow x_1 \circ x_2$ for $\circ \in \{\land, \lor, \circ, \times\}$,
We could introduce another inference rule for the higher-order security which asserts that an ∈ ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

both x_1 and x_2 have type τ_{uf}, and $E(x_1)$ has a dominant variable r which is not used by $E(x_2)$. Indeed, $E(x)$ can be seen as $r \circ E(x_2)$. Rule (SDD) states that expression x has type τ_{sl} if $x \leftarrow x_1 \bullet x_2$ for $\bullet \in O^p$, both x_1 and x_2 have type τ_{sl} (as well as its subtype τ_{uf}), and the sets of random variables used by $E(x_1)$ and $E(x_2)$ are disjoint. Indeed, for each valuation $\eta \in \Theta$, the distributions $\llbracket x_1 \rrbracket_{\eta}$ and $\llbracket x_2 \rrbracket_{\eta}$ are independent. Rule (SDD) states that the variable x has type τ_{lk} if $x \leftarrow x_1 \circ x_2$ for $\circ \in \{\land, \lor, \Theta, x\}$, x_1 has type τ_{lk}, x_2 has type τ_{uf}, and $E(x_2)$ has a dominant variable r which is not used by $E(x_1)$. Intuitively, $E(x)$ can be safely seen as $E(x_1) \circ r$.

Note that the type inference rules for the first-order security are similar to those from [60], which are reproduced here for completeness. The new rules for the higher-order security are given in Figure 4. We briefly explain these rules below.

Rule (No-Key) states that if O is an observable set whose values are independent of private variables, then O has type τ_{sl}. Rule (Sld1) states that if O_1 has type τ_{sl} and the computations $E(x)$ of variables $x \in O_2$ only involve public variables, then we can deduce that $O_1 \cup O_2$ has type τ_{sl}. Rule (Sld2) states that if O has type τ_{sl} and a variable x is defined using constants, public variables or variables in O, then adding x into O does not change the type. Intuitively, as the value of x is determined by its operands, for every $(\eta_1, \eta_2) \in \Theta^2_{x \in X^p}$, $\llbracket P \rrbracket_{\eta_1, \eta_2} = \llbracket P \rrbracket_{\eta_2}$ if and only if $\llbracket P \rrbracket_{\eta_1, \eta_2} = \llbracket P \rrbracket_{\eta_2}$ for all $x \in O_1 \cup O_2$. Rule (Sld3) deals with a τ_{sl}-typed observable set O_1 and a τ_{uf}-typed observable set O_2 (cf. Proposition 4.2). Assume that each computation $E(x)$ for $x \in O_2$ has a dominant variable r_x which is not used in any computation of variable in $O_1 \cup O_2$ except x, then $O_1 \cup O_2$ has type τ_{sl}. Intuitively, each computation $E(x)$ for $x \in O_2$ can be seen as the random variable r_x, and O_1 has type τ_{sl}, hence, the distributions $\llbracket x \rrbracket_{\eta}$ for all $x \in O_1 \cup O_2$ and all valuations $\eta \in \Theta$ are independent. Similarly, rule (Rud) deals with two τ_{uf}-typed observable sets O_1 and O_2. Although the dominant variables of $E(x)$ for $x \in O_1$ may appear in the computations of variable in O_2, by Proposition 4.2, all the variables $x \in O_2$ can be seen as fresh random variables r_x so that Proposition 4.2 can be applied.

Remark that the type τ_{lk} can only be derived in the inference rules for the first-order security. We could introduce another inference rule for the higher-order security which asserts that an observable set O has the type τ_{lk} if any subset of O has type τ_{lk}. We do not present this inference rule in this work as it will not be used in our type inference algorithm.

Theorem 4.5 (Soundness of the Type System). For every set observable $O \subseteq X_o$,

1. if $\vdash O : \tau_{sl}$ is valid, then P is O-SI;
2. if $\vdash O : \tau_{uf}$ is valid, then P is O-uniform;
3. if $\vdash O : \tau_{lk}$ is valid, then P is O-leaky.
The proof is completed.

Remark that our type inference rules are designed to be redundant for efficiency consideration.

• Rule (No-Key). Suppose \((\bigcup_{x\in O} \text{Var}(E(x))) \cap X_k = \emptyset\), then the expression \(E(x)\) does not use any private variable for all \(x \in O\). This implies that \(P_{\eta_1}^O = P_{\eta_2}^O\) for every \((\eta_1, \eta_2) \in \Theta_{=X_p}\) (note that \(\eta_1\) and \(\eta_2\) must agree on their values on public input variables).

• Rule (Sid_1). Suppose \(\vdash O_1 : \tau_{s_1}\), then \(P_{\eta_1}^{O_1} = P_{\eta_2}^{O_1}\) for every \((\eta_1, \eta_2) \in \Theta_{=X_p}\). Consider \(O_2\) such that \(\bigcup_{x\in O_2} \text{Var}(E(x)) \subseteq X_p\), then for every \(x \in O_2\), \((\eta_1, \eta_2) \in \Theta_{=X_p}\) and assignment of random variables \(f : X \rightarrow \mathbb{I}\), the expression \(E(x)\) evaluates to same value under \((\eta_1, f)\) and \((\eta_2, f)\). This implies that \(P_{\eta_1}^{O_1 \cup O_2} = P_{\eta_2}^{O_1 \cup O_2}\) for every \((\eta_1, \eta_2) \in \Theta_{=X_p}\).

• Rule (Sid_2). Suppose \(\vdash O : \tau_{s_1}\), then \(P_{\eta_1}^O = P_{\eta_2}^O\) for every \((\eta_1, \eta_2) \in \Theta_{=X_p}\). Suppose the observable set \(O = \{x_1, \ldots, x_n\}\), then for each vector of concrete values \((c_1, \ldots, c_n) \in \mathbb{I}^n\), \(P_{\eta_1}^O(c_1, \ldots, c_n) = P_{\eta_2}^O(c_1, \ldots, c_n)\). Consider \(x_{n+1}\) such that \(\text{operands}(x_{n+1}) \subseteq O \cup X_p \cup \mathbb{I}\), let \(c_{n+1}\) denote the value of \(x_{n+1}\) under the valuation \(\eta_1\) and \(x_1 = c_1, \ldots, x_n = c_n\), and \(c'_{n+1}\) denote the value of \(x_{n+1}\) under the valuation \(\eta_2\) and \(x_1 = c_1, \ldots, x_n = c_n\). Since \(\eta_1\) and \(\eta_2\) must agree on their values on public input variables, then \(c_{n+1} = c'_{n+1}\). Therefore, for every concrete value \(c\), \(P_{\eta_1}^{O \cup \{x_{n+1}\}}(c_1, \ldots, c_n, c) = P_{\eta_2}^{O \cup \{x_{n+1}\}}(c_1, \ldots, c_n, c) = 0\) if \(c \neq c_{n+1}\). Suppose \(P_{\eta_1}^{O \cup \{x_{n+1}\}}(c_1, \ldots, c_n, c) = P_{\eta_1}^{O \cup \{x_{n+1}\}}(c_1, \ldots, c_n, c) = P_{\eta_1}^{O \cup \{x_{n+1}\}}(c_1, \ldots, c_n, c) = P_{\eta_2}^{O \cup \{x_{n+1}\}}(c_1, \ldots, c_n, c)\) if \(c = c_{n+1}\). Hence, the result immediately follows.

• Rule (Sid_3). Suppose \(\vdash O_1 : \tau_{s_1}\), then \(P_{\eta_1}^{O_1} = P_{\eta_2}^{O_1}\) for every \((\eta_1, \eta_2) \in \Theta_{=X_p}\). Consider \(O_2\) such that \(\forall x \in O_2. \exists r_x \in \text{Dom}(E(x)) \setminus \bigcup_{y \in O_1 \cup O_2} \text{Var}(E(y))\), i.e., for each \(x \in O_2\), there exists a dominant random variable \(r_x \in \text{Dom}(E(x))\) which is not used in other expressions in \(E(y)\) for \(y \in O_1 \cup O_2\) with \(x \neq y\). Thus, \(P_{\eta_1}^{O_1 \cup O_2} = P_{\eta_2}^{O_1 \cup O_2}\) for every \((\eta_1, \eta_2) \in \Theta_{=X_p}\).

• Rule (Rud). Consider \(O_2\) such that \(\forall x \in O_2. \exists r_x \in \text{Dom}(E(x)) \setminus \bigcup_{y \in O_1 \cup O_2} \text{Var}(E(y))\), i.e., for each \(x \in O_2\), there exists a dominant random variable \(r_x \in \text{Dom}(E(x))\) which is not used in other expressions in \(E(y)\) for \(y \in O_1 \cup O_2\) with \(x \neq y\). Let \(O_1\) denote the set of such random variables \(r_x\). Then, \(P_{\eta_1}^{O_1 \cup O_2} = P_{\eta_2}^{O_1 \cup O_2}\) for every \((\eta_1, \eta_2) \in \Theta_{=X_p}\).

Since the program is \(O_1\)-uniform, then we get that the program is \(O_1 \cup O_2\)-uniform. The result follows from \(P_{\eta_1}^{O_1 \cup O_2} = P_{\eta_2}^{O_1 \cup O_2}\). The proof is completed.

Remark that our type inference rules are designed to be redundant for efficiency consideration. Namely, they have distinct complexities to check the premises. For instance, rule (Rud) is special.
Therefore, we can simplify computations by leveraging the notion of dominant variables. A valid judgement derived by rule (SiD2) in constant-time can also be derived by using other rules, but rule (SiD2) could avoid unfolding the definitions of variables. When applying these rules, we start with those which can infer the type \(\tau_{af} \) and whose premises can be established at a lower cost, namely, in the order of rules (RUD), (SiD2), (SiD1), (No-Key) and (SiD3).

Example 4.6. Let us consider the motivating example in Section 3.1. Recalling that \(\mathcal{E}(y_3) = r' \oplus r \), although we can derive both \(\vdash \{y_3\} : \tau_{af} \) by applying rule (RUD) and \(\vdash \{y_3\} : \tau_{s1} \) by applying rule (No-Key). We will prefer \(\vdash \{y_3\} : \tau_{af} \).

In Example 4.3, we claim that for any observable set \(O \subseteq \{x', A, y_1, \ldots, y_5, r, r'\} \) with \(|O| \geq 2 \), we cannot deduce that the program is \(O \)-uniform by applying Proposition 4.2. As an example, let us consider the observable set \(\{x', y_3\} \). As \(\mathcal{E}(x') \) is dominated by the random variable \(r \), we derive that \(\vdash \{x'\} : \tau_{uf} \). As \(\mathcal{E}(y_3) \) has the dominant variable \(r' \) which does not appear in \(\mathcal{E}(x') \), we can derive that \(\vdash \{x', y_3\} : \tau_{uf} \) by applying rule (RUD). Indeed, since the dominant variable \(r' \) of \(\mathcal{E}(y_3) \) does not appear in \(\mathcal{E}(x') \), we can safely regard \(\mathcal{E}(y_3) \) as the dominant variable \(r' \) so that the dominant variable \(r \) of \(\mathcal{E}(x') \) is eliminated from \(\mathcal{E}(y_3) \). This allows to apply Proposition 4.2 to prove that the program is \(\{x', y_3\} \)-uniform. However, if we do not regard \(\mathcal{E}(y_3) \) as the dominant variable \(r' \), then \(r \) appears in \(\mathcal{E}(y_3) \), so we cannot directly apply Proposition 4.2 to prove that the program is \(\{x', y_3\} \)-uniform. Similarly, we can deduce that \(\vdash \{x', y_0\} : \tau_{af} \) and \(\vdash \{x', y_4\} : \tau_{af} \), but we still cannot deduce the distribution types of the other size-2 observable sets. For instance, we cannot infer the distribution type of the observable set \(\{x', y_1\} \), as \(\text{Dom}(\mathcal{E}(x')) = \text{Dom}(\mathcal{E}(y_1)) = \tau_{uf} \).

4.3 Sound Transformations

In this subsection, we describe three sound, domain-specific transformations for facilitating type inference.

The first transformation is based on the observation that some computations may share common sub-expressions which are dominated by some random variables, and these random variables are only used in these sub-expressions. Such sub-expressions, treated as random variables (i.e., replaced by the dominant variables) when analyzing the computations, are uniform and independent. This may enable type inference rules, as the other random variables in sub-expressions will be eliminated. Therefore, we can simplify computations by leveraging the notion of dominant variables.

For instance, consider the observable set \(\{x', y_1\} \) in the motivating example. Recall that \(\mathcal{E}(x') = k \oplus r \) and \(\mathcal{E}(y_1) = ((k \oplus r) \oplus r') - r' \). We can observe that the sub-expression \(k \oplus r \) is dominated by the random variable \(r \) which occurs exclusively in \(k \oplus r \). Therefore, \(\mathcal{E}(x') \) and \(\mathcal{E}(y_1) \) can be simplified as \(r \) and \((r \oplus r') - r' \) respectively, as the distributions of \(v \oplus r \) and \(r \) are identical for any value \(v \in \text{I} \) of \(k \), and \(r \) does not affect the values of other sub-expressions. Using the simplified computations \(r \) and \((r \oplus r') - r' \) of \(\mathcal{E}(x') \) and \(\mathcal{E}(y_1) \), we can deduce \(\vdash \{x', y_1\} : \tau_{s1} \) by applying rule (No-Key). This simple, but crucial, observation is formalized as the following definition.

Definition 4.7. A sub-expression \(e \) in a set of computations \(E \) is dominated by a random variable \(r \) if \(r \in \text{Dom}(e) \) and \(r \) only occurs in \(e \), namely, does not occur in \(E \) elsewhere.

To facilitate type inference, we may replace the largest \(r \)-dominated sub-expression \(e \) by \(r \), which can be done in polynomial-time by traversing the abstract syntax tree. Let \(\text{Simply}_{\text{Dom}}(E) \) be the set of computations obtained from \(E \) by repeatedly applying this strategy. We remark that \(\text{Simply}_{\text{Dom}}(E) \) is more general than Proposition 4.2. If an observable set \(O \subseteq X_o \) satisfies the conditions in Proposition 4.2, i.e., for every \(x \in O \) there exists a dominant variable \(r_x \in \text{Dom}(\mathcal{E}(x)) \) such that
\(r_x \notin \bigcup_{x' \in O, x' \neq x} \mathit{RVar}(E(x')) \), then the computations \((E(x))_{x \in O}\) can be replaced by the random variables \((r_x)_{x \in O}\) from which we can directly deduce that \(P\) is \(O\)-uniform. However, \(\mathit{Simple}_{\mathit{Dom}}(E)\) is also computationally more expensive than checking the conditions in Proposition 4.2. Therefore, we apply \(\mathit{Simple}_{\mathit{Dom}}(E)\) only when the type system fails.

\(\mathit{Simple}_{\mathit{Dom}}\) is generally very effective in our experiments, but fails on one benchmark. This is because \(\mathit{Simple}_{\mathit{Dom}}\) only relies upon syntactic information of the computation. For instance, consider the observable set \(\{x_1, x_2\}\) taking from the second-order masked implementation of the AES Sbox [114], where

\[
\begin{align*}
\mathcal{E}(x_1) &= \{ \text{Sbox}((0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_2) \oplus r_3, \\
\mathcal{E}(x_2) &= \{ \text{Sbox}((r_0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_2) \oplus r_3,
\end{align*}
\]

\(k\) is a private input variable, and \(r_0, r_1, r_2, r_3\) are random variables. \(\mathit{Simple}_{\mathit{Dom}}\) is not able to simplify the sub-expression \(r_2 \oplus r_3\) into a random variable, though both \(r_2\) and \(r_3\) are dominant variables of \(r_2 \oplus r_3\).

\(\mathit{Simple}_{\mathit{Dom}}\) could be applied if we could transform \(\mathcal{E}(x_1)\) and \(\mathcal{E}(x_2)\) to equivalent forms (by the associativity of \(\oplus\)), i.e.,

\[
\text{Sbox}((0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_2) \oplus r_3 \quad \text{and} \quad \text{Sbox}((r_0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_2) \oplus r_3.
\]

However, carrying out such a transformation automatically is very challenge in general, as there is no canonical representation of the computation to which \(\mathit{Simple}_{\mathit{Dom}}\) can be applied. To address this challenge, we propose the sound transformation which aims to collapse several variables into one variable, e.g., collapse \(r_2\) and \(r_3\) into a new random variable even if they do not appear as the sub-expression \(r_2 \oplus r_3\). This idea is formalized as the following definition.

Definition 4.8. Given a set of computations \(E\) and a set of variables \(Z \subseteq \bigcup_{e \in E} \mathit{Var}(e)\), \(Z\) is **collapsible** with respect to \(E\) if the following two conditions hold:

1. \(Z \subseteq X_p\) or \(Z \subseteq X_k\) or \(Z \subseteq X_r\), namely, variables in \(Z\) have the same type;
2. and there exist sub-expressions \(e_1, \ldots, e_m\) in \(E\) such that:
 - sub-expression \(e_j\) for each \(1 \leq j \leq m\) can be rewritten as \((\bigoplus_{z \in Z} z) \oplus e'_j\), i.e., clustering the variables in \(Z\) together,
 - and each variable \(z \in Z\) only occurs in \(\{e_1, \ldots, e_m\}\), and occurs in \(e_j\) for each \(1 \leq j \leq m\) exactly once.

One can observe that if \(Z\) is collapsible, then \(\bigoplus_{z \in Z} z\) can be replaced by a fresh variable respecting the type (i.e. public, key, or random) when analyzing \(\{E(x) \mid x \in O\}\) for the observable set \(O\). For simplicity, we usually use \(Z\) to denote the fresh variable. We denote by \(\mathit{Simple}_{\mathit{Col}}(E)\) the set of computations computed from \(E\) by repeatedly applying this strategy. \(\mathit{Simple}_{\mathit{Col}}(E)\) is implemented in polynomial-time by iteratively searching pairs of variables \(\{x_1, x_2\}\) that are collapsible and replacing them by \(\{x_1, x_2\}\).

The third transformation is the application of algebra laws. We denote by \(\mathit{Simple}_{\mathit{Alg}}(E)\) the set of computations computed from \(E\) by repeatedly applying algebra laws such as \(e \oplus e = 0, 0 \oplus e = e, 0 \times e = 0, 0 \oplus 0 = 0\) and \(e - e = 0\). For \(0 \oplus e = e, 0 \times e = 0, 0 \oplus 0 = 0\), we directly search for the constant 0. For \(e \oplus e = 0\) and \(e - e = 0\), the representation of computations in \(E\) shares the same common sub-expressions so that we do not need to compare whether two sub-expressions are same or not when applying \(\mathit{Simple}_{\mathit{Alg}}(E)\). Moreover, instead of considering only sub-expressions of the form \(e \oplus e\) (resp. \(e - e\)), we search for two occurrences of the sub-expression \(e\) such that the operators on the path between the roots of two occurrences of \(e\) are all \(\oplus\) (resp. \(-\)).

It is straightforward to verify the following proposition.
Proposition 4.9. Given a program P and an observable set O, let \overline{P} denote the program
\[(x \leftarrow \overline{E}(x)); x \in O \text{ return;}
\]
where $\overline{E}(x)$ is obtained from $E(x)$ by applying Simply$_{Dom}(E)$, Simply$_{Cal}(E)$ and/or Simply$_{Alg}(E)$, then \overline{P}^O and P^O generate the same distribution over O.

Example 4.10. Let us consider the above example, i.e., the observable set $\{x_1, x_2\}$, where
\[
\begin{align*}
E(x_1) &= \{Sbox((0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_2) \oplus r_3, \\
E(x_2) &= \{Sbox((r_0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_2) \oplus r_3,
\end{align*}
\]
k is a private input variable, and r_0, r_1, r_2, r_3 are random variables. The type system in Figure 4 fails to prove $\vdash \{x_1, x_2\} : \tau_{uf}$. One can observe that $Z = \{r_2, r_3\}$ is collapsible with respect to $\{E(x_1), E(x_2)\}$, so by replacing $Z = \{r_2, r_3\}$ with a new random variable \overline{Z}, $\{E(x_1), E(x_2)\}$ can be simplified to
\[
E_1 = \{Sbox((0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_1) \oplus \overline{Z}, \ Sbox((r_0 \oplus ((k \oplus r_0) \oplus r_1)) \oplus r_1) \oplus \overline{Z}\}.
\]
By iteratively applying Simply$_{Alg}$ to E_1 using algebraic laws $r_0 \oplus r_0 \equiv 0$ and $r_1 \oplus r_1 \equiv 0$, we obtain
\[
E_2 = \{Sbox(0 \oplus ((k \oplus r_0) \oplus 0)) \oplus \overline{Z}, \ Sbox((k \oplus 0) \oplus 0) \oplus \overline{Z}\}.
\]
Since $0 \oplus e \equiv 0 \oplus e \equiv e$, by iteratively applying Simply$_{Alg}$ to E_2, we obtain
\[
E_3 = \{Sbox(k \oplus r_0) \oplus \overline{Z}, \ Sbox(k) \oplus \overline{Z}\}.
\]
Since r_0 is the dominant variable of $Sbox(k \oplus r_0) \oplus \overline{Z}$ but does not occur in $Sbox(k) \oplus \overline{Z}$, by applying Simply$_{Dom}$, we obtain $E_4 = \{r_0, \ Sbox(k) \oplus \overline{Z}\}$. Now, \overline{Z} becomes the dominant variable of $Sbox(k) \oplus \overline{Z}$ but does not occur in r_0, by applying Simply$_{Dom}$ again, we obtain that $E_5 = \{r_0, \overline{Z}\}$, from which we can deduce $\vdash \{x_1, x_2\} : \tau_{uf}$.

4.4 Type Inference Algorithm

In this subsection, we present our type inference algorithm.

To prove that P is order-d secure, it is necessary to ensure that, for all size-d observable subsets $O \subseteq X_o$, P is O-SI. Evidently, exhaustive enumeration of $\binom{|X_o|}{d}$ subsets may not scale. To address this issue, the key idea is Proposition 2.1 which states that if the program P is O-SI (resp. O-uniform), then P is also O'-SI (resp. O'-uniform) for any subset $O' \subseteq O$. Therefore, the main strategy is to find observable sets $\{O_i\}_{i=1}^n$ as large as possible such that P is O_i-SI for all $1 \leq i \leq n$, and for each size-d subset $O \subseteq X_o$, $O \subseteq O_i$ for some $1 \leq i \leq n$.

Our idea is formalized in Algorithm 1, where $\vdash O : \tau$ denotes the type inference without applying the transformations Simply$_{Dom}$ or Simply$_{Cal}$; $\vdash_{\text{Simply}_{Dom}} O : \tau$ denotes the type inference aided with the transformation Simply$_{Dom}$; $\vdash_{\text{Simply}_{Cal}} O : \tau$ denotes the type inference aided by both transformations Simply$_{Dom}$ and Simply$_{Cal}$. Taking a program P, sets of public (X_p), private (X_k), random (X_r) and observable (X_o) variables, and the order d as inputs, the algorithm first initializes three data structures: PLS for storing all potential leaky observable sets, λ for storing the simplified computation of each variable, and π for storing the set of dominant variables of the (simplified) computation $E(x)$ for each variable x.

At Line 3, Algorithm 1 computes the set X_{check} of observable variables whose computation involves either private or random variables. This allows to isolate the set of observable variables whose computation involves public input variables only. Hence, according to rule (Std1), it suffices to consider size-d subsets $O \subseteq X_o \setminus \{x \in X_o \mid \text{Var}(E(x)) \subseteq X_p\}$. At Lines 4-8, it simplifies the
Algorithm 1: Type inference algorithm.

```
1 PLS := ∅; λ := empty_map; π := empty_map;
2 Function HOME(\(P, X_p, X_k, X_r, X_o, d\))
3 \(X_{\text{check}} := \{x \in X_o \mid \text{Var}(E(x)) \not\subseteq X_p\};\)
4 foreach \(x \in X_{\text{check}}\) do
5   if Simply\_Alg\(E(x)) \neq E(x)\) then
6     \(\lambda(x) := \text{Simply}\_Alg(E(x));\)
7     \(\pi(x) := \text{Dom}(\lambda(x));\)
8   else \(\pi(x) := \text{Dom}(E(x));\)
9   \(\text{Explore}((d, X_{\text{check}}));\)
10 return PLS;
11
12 Function Explore(Y)
13   foreach \((i, O) \in Y\) do
14     Choose a subset \(C_{i, O} \subseteq O\) in a topological order from leaf to root s.t. \(|C_{i, O}| = i;\)
15     if Check\((C_{i, O});(i, O) \in Y\) = \(\top\) then
16       foreach \((i, O) \in Y, x \in O \setminus C_{i, O}\) in a topological order from leaf to root do
17       if Check\((C_{i, O};(i, O) \in Y;\{x\}) = \(\top\) then
18         \(C_{i, O} := C_{i, O} \cup \{x\};\)
19     else PLS := PLS \cup \{(i, O) \in Y; C_{i, O}\};
20     \(Y' := \{(i, O) \in Y \mid |O| > i \land i \neq 0\};\)
21     if \(Y' = \emptyset\) then return;
22     if \((i, O) \in Y', 0 \leq i < \min(i, |O \setminus C_{i, O}|)\) s.t. \(\sum_{(i, O) \in Y'} i_j \neq 0\) do
23       \(\text{Explore}((Y \setminus Y'; \cup_{(i, O) \in Y'} \{(i - i_j, C_{i, O});(i_j, O \setminus C_{i, O})\});\)
24     return;
25
26 Function Check\((C_{i, O};(i, O) \in Y; Y = \emptyset\)
27 if \(\vdash Y \cup \{O; C_{i, O} : \top\text{ for some } \tau \in \{\text{uf}, \text{s1}\}\text{ is valid}\)
28 return \(\top;\)
29 else if \(\vdash\text{Simply}\_\text{dom} Y \cup \{O; C_{i, O} : \top\text{ for some } \tau \in \{\text{uf}, \text{s1}\}\text{ is valid}\)
30 return \(\top;\)
31 else if \(\vdash\text{Simply}\_\text{col} Y \cup \{O; C_{i, O} : \top\text{ for some } \tau \in \{\text{uf}, \text{s1}\}\text{ is valid}\)
32 return \(\bot;\)
33 return \(\bot;\)
```

computation \(E(x)\) for each variable \(x \in X_{\text{check}}\) by invoking Simply_Alg and computes its dominant variables; the results are stored in \(\lambda\) and \(\pi\) for later use. After that, it invokes the function Explore with the set \((d, X_{\text{check}})\) (Line 9). We assume that \(|X_{\text{check}}| \geq d\), otherwise we can directly check whether \(\vdash X_{\text{check}} : \tau_{s1}\) is valid or not.

The function Explore is more involved. It aims at proving that for all pairs \((i, O) \in Y\) and all possible subsets \(O_i \subseteq O\) with size \(i\), the type judgement \(\vdash \bigcup_{(i, O) \in Y} O_i : \tau_{s1}\) is valid. Taking a set \(Y\) of pairs \((i, O)\) as input which satisfies the following three properties:

1. \(\sum_{(i, O) \in Y} i = d\), namely, the sum of orders’ \(i\) for subsets \(O\) in \(Y\) is the target order \(d\);
2. \(\bigcup_{(i, O) \in Y} O\) = \(X_{\text{check}}\), namely, the subsets \(O\) in \(Y\) form a partition of \(X_{\text{check}}\); and
3. \(|O| \geq i\) for all \((i, O) \in Y\), namely, there are at least \(i\) variables in \(O\) for each \((i, O) \in Y\).

Remark that these properties are maintained and required to show the correctness and termination of our algorithm.
An illustration of the function Explore is given in Figure 5. The function Explore first chooses a size-i subset $C_{i, O} \subseteq O$ for each pair $(i, O) \in \mathcal{Y}$ in a topological order from leaf to root (Line 13). Then it checks whether the type judgement $\vdash \bigcup_{(i, O) \in \mathcal{Y}} C_{i, O} : \tau$ for some $\tau \in \{\tau_{uf}, \tau_{sl}\}$ is valid or not by invoking the function Check (Line 14).

- If it is valid, i.e., the observable set $\bigcup_{(i, O) \in \mathcal{Y}} C_{i, O}$ has distribution type τ_{uf} or τ_{sl} (as shown in the middle-part of Figure 5), then Explore iteratively tries to add the remaining observable variables x to $C_{i, O}$ for $x \in O \setminus C_{i, O}$ and $(i, O) \in \mathcal{Y}$ by invoking the function Check (Lines 15-17). The effect of this addition is shown in the right-part of Figure 5.
- Otherwise $\vdash \bigcup_{(i, O) \in \mathcal{Y}} C_{i, O} : \tau$ for any $\tau \in \{\tau_{uf}, \tau_{sl}\}$ is invalid, then $\bigcup_{(i, O) \in \mathcal{Y}} O_i$ is a potentially leaky set and is added to the set PLS (Line 18).

Finally, to cover $\bigcup_{(i, O) \in \mathcal{Y}} O_i$ for all possible size-i subsets $O_i \subseteq O$ and pairs $(i, O) \in \mathcal{Y}$, it remains to check the observable sets $\bigcup_{(i, O) \in \mathcal{Y}} O_i$, where there exist at least one pair $(i, O) \in \mathcal{Y}$ such that O_i contains at least one variable from $O \setminus C_{i, O}$. (Otherwise $\bigcup_{(i, O) \in \mathcal{Y}} O_i \subseteq \bigcup_{(i, O) \in \mathcal{Y}} C_{i, O}$.) To do this, we first extract the pairs (i, O) such that $|O| > i$ and $i \neq 0$, i.e., $\mathcal{Y}' := \{(i, O) \in \mathcal{Y} \mid |O| > i \lor i \neq 0\}$ at Line 19. If \mathcal{Y}' is empty, then all the possible subsets $\bigcup_{(i, O) \in \mathcal{Y}} O_i$ are covered and Algorithm 1 terminates (Line 20). Otherwise, we partition all the pairs $(i, O) \in \mathcal{Y}'$ into pairs $(i-j, C_{i, O}), (i, O \setminus C_{i, O})$ for all combinations of values $0 \leq i_j \leq \min(i, |O \setminus C_{i, O}|)$ such that $\sum_{(i, O) \in \mathcal{Y}'} i_j \neq 0$. The condition $\sum_{(i, O) \in \mathcal{Y}'} i_j \neq 0$ is used to avoid the case $\bigcup_{(i, O) \in \mathcal{Y}} O_i \subseteq \bigcup_{(i, O) \in \mathcal{Y}} C_{i, O}$. For each such combination of values, the partitioned pairs $((i-j, C_{i, O}), (i, O \setminus C_{i, O}) \mid (i, O) \in \mathcal{Y}')$ together with the pairs $((i, O) \in \mathcal{Y} \mid |O| = i \lor i = 0)$ (i.e., $\mathcal{Y} \setminus \mathcal{Y}'$) are checked by recursively calling the function Explore. It is easy to observe that the recursion maintains the above three properties.

The function Check first verifies whether $\vdash Y \cup \bigcup_{(i, O) \in \mathcal{Y}} O_i : \tau$ for some $\tau \in \{\tau_{uf}, \tau_{sl}\}$ is valid, which may be aided with data structures λ and π (Line 25). If it is valid, \top is returned (Line 26). Otherwise, it is verified with the additional transformation Simply$_Dom$ (Line 27). If it still fails, $\vdash Y \cup \bigcup_{(i, O) \in \mathcal{Y}} O_i : \tau$ for some $\tau \in \{\tau_{uf}, \tau_{sl}\}$ is checked using the additional transformation Simply$_Col$ on the expressions yielded by Simply$_Dom$ (Line 29). Once $\vdash Y \cup \bigcup_{(i, O) \in \mathcal{Y}} O_i : \tau$ for some $\tau \in \{\tau_{uf}, \tau_{sl}\}$ is derived, Check returns \top (Lines 28 and 30). If all of these steps fail, \bot is returned (Line 31). Notice that during the above type inference, once $\vdash Y \cup \bigcup_{(i, O) \in \mathcal{Y}} O_i : \tau_{lk}$ becomes valid, Check also returns \bot. Moreover, in order to avoid recomputing Simply$_Dom$ and Simply$_Col$, the sequence of applied transformations are recorded, and the simplified expressions are cached. When the function Check is invoked at Line 16, i.e., Y is nonempty, we first check whether the recorded sequence of applied transformations is still legal. If it is still applicable, we will reuse the simplified expressions and apply Simply$_Dom$ and/or Simply$_Col$ to $E(x)$ as well. Otherwise, the function Check immediately returns \bot.

Remark that the type inference rules are applied in the order of increasing complexities of checking the premises while preferring τ_{uf} over τ_{sl}. We also remark that the choice of the subsets at Line 13 and the variable x at Line 15 may have significant impact on the performance. We choose variables from leaf to root following the order of the size of the defining computation, in light of Rule (Std2) in Figure 4.

The procedure terminates as we only partition pairs $(i, O) \in \mathcal{Y}$ such that $|O| > i$ and $i \neq 0$ and the sizes of $C_{i, O}$ and $O \setminus C_{i, O}$ in partitioned pairs $(i-j, C_{i, O})$ and $(i, O \setminus C_{i, O})$ eventually become smaller and smaller in recursive calls until $|O| = i$ or $i = 0$. (Note that we keep pairs of the form $(0, O)$ in the worklist for simplifying presentation. They are indeed removed in our implementation.)

Theorem 4.11. P is order-d secure if $\text{PLS} = 0$. Moreover, if P is O-leaky for $O \subseteq X_{\text{check}}$ with $|O| = d$, then $O \in \text{PLS}$.

Note that the reverse of Theorem 4.11 may not hold. To prove Theorem 4.11, we start with the following lemmas. First, we show that the above three properties always hold.

Lemma 4.12. In Algorithm 1, at each call Explore(\(Y\)), the following three properties are hold:

1. \(\sum_{(i, O) \in Y} i = d\);
2. \(\bigcup \{O \mid (i, O) \in Y\} = X_{\text{check}}\);
3. \(|O| \geq i\) for all \((i, O) \in Y\).

Proof. Let \(Y_{\ell}\) denote the parameter \(Y\) at the \(\ell^{th}\) call of Explore. Let us apply induction on \(\ell\). The base case \(\ell = 1\) immediately follows from the fact that \(Y_1 = \{(d, X_{\text{check}})\}\) (note that we assumed \(|X_{\text{check}}| \geq d\). It remains to prove the inductive step. Suppose the result holds at \(\ell > 1\) and \(Y_{\ell+1} = (Y_{\ell} \setminus Y') \cup \{(i-j, c_i, o), (j, o \setminus c_i, o) \mid (i, o) \in Y'\}\), where \(Y' = \{(i, O) \in Y_{\ell} \mid |O| > i \land i \neq 0\}\).

- By applying the induction hypothesis, we get that \(\sum \{i \mid (i, O) \in Y_{\ell}\} = d\). Since \(\sum \{i \mid (i, O) \in Y_{\ell+1}\} = \sum \{i \mid (i, O) \in Y_{\ell} \setminus Y'\} + \sum \{i-j, i_j \mid (i, O) \in Y'\}\), we conclude the proof of Item (1).
- By applying the induction hypothesis, we get that \(\bigcup \{O \mid (i, O) \in Y_{\ell}\} = X_{\text{check}}\). Since \(\bigcup \{O \mid (i, O) \in Y_{\ell+1}\} = \bigcup \{O \mid (i, O) \in Y_{\ell} \setminus Y'\} \cup \bigcup \{O \mid (i, O) \in Y'\} \cup \bigcup \{O \mid (i, O) \in Y'\} \cup \bigcup \{O \mid (i, O) \in Y'\}\), we conclude the proof of Item (2).
- By applying the induction hypothesis, \(|O| \geq i\) for all \((i, O) \in Y_{\ell} \setminus Y'\). For each pair \((i, O) \in Y_{\ell}\), according to Lines 13 and 17, \(|C_i, O| \geq i\), hence \(|C_i, O| \geq i-j\). Since \(0 \leq i_j \leq \min(i, |O \setminus C_i|)\), we get that \(|O \setminus C_i, O| \geq i\). We conclude the proof of Item (3).

\(\square\)

We now prove the termination of Algorithm 1.

Lemma 4.13. Algorithm 1 always terminates.

Proof. It suffices to show that the recursive procedure call of Explore always terminates. Let \(Y_{\ell}\) denote the parameter \(Y\) at the \(\ell^{th}\) call of Explore. By Lemma 4.12(3), \(|O| \geq i\) for all \((i, O) \in Y_{\ell}\).

- If \(|O| = 1\) or \(i = 0\) for all \((i, O) \in Y_{\ell}\), then \(Y' = \emptyset\). In this case, Explore will not be called at Line 22 during the \(\ell^{th}\) call. Hence, Algorithm 1 terminates.
We complete the proof. □

Lemma 4.14. For every subset \(O \subseteq X_{\text{check}} \) such that \(|O| = d \), \(O \) is covered by Algorithm 1, namely, either \(O \) is added into \(\text{PLS} \), or there exists a subset \(O' \) such that \(+ O : \tau_{s1} \) is valid and \(O \subseteq O' \).

Proof. Given a set \(\mathcal{Y} \) of pairs, let \(\text{Cover}(\mathcal{Y}) \) denote the set of subsets \(O \subseteq X_{\text{check}} \) such that \(|O| = d \) and \(O \) contains \(i \) elements of \(O' \) for each pair \((i, O') \in \mathcal{Y} \). It suffices to show that for every call \(\text{Explore}(\mathcal{Y}) \), each subset \(O \in \text{Cover}(\mathcal{Y}) \) is covered.

Let \(\mathcal{Y}_\ell \) denote the parameter \(\mathcal{Y} \) at the \(\ell \)th call of \(\text{Explore} \). We apply induction on \(\ell \), where the base case is the largest \(\ell \). Note that such \(\ell \) exists by Lemma 4.13.

Base case. The base case is the largest \(\ell \) such that \(\mathcal{Y}' = \emptyset \) at the \(\ell \)th call of \(\text{Explore} \). Since \(\mathcal{Y}' = \{(i, O') \in \mathcal{Y}_\ell \mid |O'| > i \land i \neq 0 \} = \emptyset \), by Lemma 4.12(3), \(|O'| = i \) or \(i = 0 \) for all \((i, O') \in \mathcal{Y}_\ell \). By Lemma 4.12(1 and 2), \(\text{Cover}(\mathcal{Y}) \) is singleton set. Suppose \(\text{Cover}(\mathcal{Y}) = \{O\} \), then \(O \) is covered. Indeed, either \(+ O : \tau_{s1} \) is valid or \(O \) is added into \(\text{PLS} \).

Inductive step. There exists some pair \((i, O') \in \mathcal{Y}_\ell \) such that \(|O'| > i \) and \(i \neq 0 \). For every subset \(O \in \text{Cover}(\mathcal{Y}_{\ell+1}) \), either \(O \subseteq \bigcup_{(i', O') \in \mathcal{Y}_\ell} C_{i', O'} \) or \(O \not\subseteq \bigcup_{(i', O') \in \mathcal{Y}_\ell} C_{i', O'} \).

- If \(O \subseteq \bigcup_{(i', O') \in \mathcal{Y}_\ell} C_{i', O'} \), then \(O \) is covered. Indeed, \(+ (i, O') : \tau_{s1} \) is valid.
- Otherwise \(O \not\subseteq \bigcup_{(i', O') \in \mathcal{Y}_\ell} C_{i', O'} \), then \(O \) contains at least one variable from \(O' \setminus C_{i', O'} \) for some pair \((i', O') \in \mathcal{Y}_\ell \), i.e., \(O \cap (O' \setminus C_{i', O'}) \neq \emptyset \). There must exist a combination of values \(i_j : 0 < i_j < \min(i, |O' \setminus C_{i', O'}|) \) for \((i, O') \in \mathcal{Y}' \) such that \(O \in \text{Cover}(\mathcal{Y}_\ell \cup \{(i - i_j, C_{i', O'}), (i_j, O' \setminus C_{i', O'}) \mid (i, O') \in \mathcal{Y}' \}) \).

By applying induction hypothesis, the subset \(O \) is covered.

We complete the proof. □

Proof of Theorem 4.11. If \(\text{PLS} = \emptyset \), then by Lemma 4.14, \(+ O : \tau_{s1} \) is valid for every size-\(d \) subset \(O \subseteq X_{\text{check}} \). Hence \(P \) is order-\(d \) secure.

On the other hand, for every size-\(d \) subset \(O \subseteq X_{\text{check}} \), if \(P \) is \(O \)-leaky, then \(+ O : \tau_{s1} \) is not valid. By Lemma 4.14, all the size-\(d \) subsets \(O \subseteq X_{\text{check}} \) are covered by Algorithm 1, hence, \(O \) is added into \(\text{PLS} \). □

Example 4.15. We demonstrate Algorithm 1 on the motivating example (cf. Section 3.1) for \(d = 2 \). First of all, \(X_{\text{check}} = X_o = \{x', A, y_0, \ldots, y_5, r, r'\} \) as \(X_p = \emptyset \). After applying the transformation \(\text{Simply}_{\text{Alg}} \), \(\lambda \) and \(\pi \) are given below:

\[
\begin{align*}
\lambda(y_3) &= (r' \oplus k), & \lambda(y_5) &= (r' \oplus k) - (r' \oplus r), \\
\lambda(A) &= (r' \oplus k) - (r' \oplus r) \oplus (((k \oplus r) \oplus r') - r') \oplus (k \oplus r), \\
\pi(x') &= \{r\}, \quad \pi(r) = \{r\}, \quad \pi(r') = \{r'\}, \quad \pi(y_0) = \{r, r'\}, \quad \pi(y_1) = \{r\}, \quad \pi(y_3) = \{r, r'\}, \quad \pi(y_5) = \{r\}, \quad \pi(A) = \emptyset.
\end{align*}
\]

HOME invokes \(\text{Explore}((2, X_o)) \). Suppose \(\text{Explore} \) chooses \(\{r, r'\} \) at Line 13, i.e., \(C_{2, X_o} = \{r, r'\} \) then, \(+ C_{2, X_o} : \tau_{uf} \) is valid, namely, \(\text{Check}((2, X_o)) \) will return \(\top \). The loop at Lines 15-17 will iteratively test \(x', y_0, \ldots, y_5, A \). Among them, only \(y_3 \) can be added into \(C_{2, X_o} \) according to rule \((\text{Sd2}) \). Now, we can deduce that all size-2 subsets \(O \subseteq C_{2, X_o} = \{r, r', y_3\} \) have type \(\tau_{uf} \) or \(\tau_{s1} \).
We first lift the SMT-based method [60] from first-order to higher-order.

We derive \(\vdash \{ \oplus_k \Box \} \).

5 MODEL-COUNTING AND PATTERN MATCHING BASED METHODS

We propose in this section two model-counting based methods (cf. Section 5.1—5.2) for resolving potential leaky observable sets prescribed by type inference algorithm. Generally, model-counting is very costly, so we propose a complementary pattern matching based method (cf. Section 5.3) to efficiently resolve potential leaky observable sets from known sets, avoiding a vast amount of model-counting usage.

5.1 SMT-based Method

We first lift the SMT-based method [60] from first-order to higher-order.

Recall that \(P \) is \(O \)-leaky iff \(\llbracket P \rrbracket_{\eta_1} \neq \llbracket P \rrbracket_{\eta_2} \) for some pair \((\eta_1, \eta_2) \in \Theta^2 =_{X_p} \). Let \(O = \{x_1, \ldots, x_m\} \).

For every valuation \(\eta \in \Theta \) and tuple of values \((c_1, \ldots, c_m) \in I^m \), let \(\#_\eta(x_1 = c_1, \ldots, x_m = c_m) \) denotes the number of assignments \(\eta_r : X_r \to I \) such that for all \(1 \leq j \leq m \), \(E(x_j) \) evaluates to \(c_j \) under \(\eta \) and \(\eta_r \). Then, \(O \)-leaky can be characterized as the following logical formula:

\[
\Omega^O := \exists(\eta_1, \eta_2) \in \Theta^2 =_{X_p}, \exists(c_1, \ldots, c_m) \in I^m.
\]

\[
(\#_{\eta_1}(x_1 = c_1, \ldots, x_m = c_m) \neq \#_{\eta_2}(x_1 = c_1, \ldots, x_m = c_m))
\]

Proposition 5.1. \(\Omega^O \) is satisfiable iff \(P \) is \(O \)-leaky.

Proof. The program \(P \) is \(O \)-leaky iff the following formula holds:

\[
\exists(\eta_1, \eta_2) \in \Theta^2 =_{X_p}, \exists(c_1, \ldots, c_m) \in I^m. \llbracket P \rrbracket_{\eta_1}^O(c_1, \ldots, c_m) \neq \llbracket P \rrbracket_{\eta_2}^O(c_1, \ldots, c_m)
\]

Since \(\llbracket P \rrbracket_{\eta_1}^O(c_1, \ldots, c_m) = \#_\eta(x_1 = c_1, \ldots, x_m = c_m) \cdot 2^{k \times |X_r|} \) for \(\eta \in \{\eta_1, \eta_2\} \), then the program \(P \) is \(O \)-leaky iff the following formula holds:

\[
\exists(\eta_1, \eta_2) \in \Theta^2 =_{X_p}, \exists(c_1, \ldots, c_m) \in I^m. \#_{\eta_1}(x_1 = c_1, \ldots, x_m = c_m) \cdot 2^{k \times |X_r|} \neq \#_{\eta_2}(x_1 = c_1, \ldots, x_m = c_m) \cdot 2^{k \times |X_r|}
\]

The result follows immediately.

We further encode Ω^O as a first-order logic formula that can be solved by SMT solvers (e.g., Z3 [50]). Suppose $E(x_j) = e_j$ for $1 \leq j \leq m$, let $E_0 = E^1 \cup E^2$ with $E^1 = \{ e \mid \text{Var}(e) \cap X_k = \emptyset \}$, and $E^2 = \{ e \mid \text{Var}(e) \cap X_k = \emptyset \}$. We define the first-order logic formula Ψ^O as

\[
\Psi^O := \left(\bigwedge_{e \in E^1} \land f : \text{RVar}(e) \rightarrow I (\Theta_{e,f} \land \Theta'_{e,f}) \right) \land \left(\bigwedge_{e \in E^2} \land f : \text{RVar}(e) \rightarrow I (\Theta_{e,f}) \right) \land \left(\Theta_{v2l} \land \Theta'_{v2l} \land \Theta_e \right),
\]

where

- **Program logic ($\Theta_{e,f}$ and $\Theta'_{e,f}$):** for every expression $e = E(x) \in E_O$ denoting the computation of the variable x, and for every function $f : \text{RVar}(e) \rightarrow I$ that enumerates an assignment of the random variables, the logical formula $\Theta_{e,f}$ encodes the expression e into a first-order logic formula and asserts that the value of e is equal to a fresh variable x_f with all the random variables r instantiated by the concrete values $f(r)$. For instance, consider $e = (k \land r_1) \lor r_2$ and the function f with $f(r_1) = 1$ and $f(r_2) = 0$, then $\Theta_{e,f}$ is the logic formula $x_f = (k \land 1) \lor 0$. (Note there are $2^{RVar(e)}$ distinct conjuncts, each of which corresponds to one possible assignment of the random variables, but all of which share the variables from $X_p \cup X_k$)

$\Theta'_{e,f}$ is similar to $\Theta_{e,f}$ except that the variables x_f and $k \in X_k$ in $\Theta_{e,f}$ are replaced by fresh variables x'_f and k', respectively. For instance, consider $e = (k \land r_1) \lor r_2$ with $k \in X_k$ and the function f with $f(r_1) = 1$ and $f(r_2) = 0$, then $\Theta'_{e,f}$ is the logic formula $x'_f = (k' \land 1) \lor 0$. Note that for every $e \in E^2$, we do not construct $\Theta'_{e,f}$, as $e \in E^2$ does not have any private variable $k \in X_k$ and hence $\Theta'_{e,f}$ would be the same as $\Theta_{e,f}$. For example, consider $e = (p \land r_1) \lor r_2$ with $p \in X_p$ and the function f with $f(r_1) = 1$ and $f(r_2) = 0$, then both $\Theta_{e,f}$ and $\Theta'_{e,f}$ are $x_f = (p \land 1) \lor 0$.

- **Vector to integer (Θ_{v2l} and Θ'_{v2l}):** Θ_{v2l} asserts that for every function $f : \bigcup_{e \in E_O} \text{RVar}(e) \rightarrow I$ that enumerates an assignment of the random variables, a fresh integer variable I_f is 1 if $x_{i,f} = c_i$ holds for every variable $x_i \in O = \{ x_1, \cdots, x_m \}$, otherwise 0, where the fresh variables c_i’s in Θ_{v2l} are identical for all the functions f’s. By doing so, we enumerate all the possible assignments of random variables and then count the number of assignments f’s of random variables under which (e_1, \cdots, e_m) evaluate (c_1, \cdots, c_m) when variables $x \in X_p \cup X_k$ take some concrete values and random variables take concrete values from f. Intuitively, if there are two distinct functions f_1 and f_2 such that the values of x_f’s are identical (i.e., $x_{i,f} = c_i$ holds for every variable $x_i \in O$ and $f \in \{ f_1, f_2 \}$) when the input variables $X_p \cup X_k$ are 0, we deduce that there are two assignments of random variables under which (e_1, \cdots, e_m) evaluate (c_1, \cdots, c_m) when the input variables $X_p \cup X_k$ are 0. Formally,

\[
\Theta_{v2l} := \bigwedge_{f : \bigcup_{e \in E_O} \text{RVar}(e) \rightarrow I} \left(I_f = \left((x_{1,f} = c_1 \land \cdots \land x_{m,f} = c_m) \land 1 : 0 \right) \right).
\]

Θ'_{v2l} is similar to Θ_{v2l} except that I_f is replaced by I'_f, and x_f is replaced by x'_f for all $x \in O$ such that $E(x) \in E^1$. Note that $k' \in X_k$ may have a different value than k, but $x \in X_p$ has the same value in Θ_{v2l} and Θ'_{v2l}. This conforms to $(\eta_1, \eta_2) \in \Theta^X_{X_p}$ in Eqn. (1).

- **Different sums (Θ_k):** It asserts two sums of assignments f’s of random variables for variables $(k)_{k \in X_k}$ and $(k')_{k \in X_K}$ (i.e., integers I_f and I'_f) differ. This conforms to $\#_{\eta_1}(x_1 = c_1, \cdots, x_m =
\[
\begin{align*}
(y_{000} = (k \oplus 0) \oplus 0) \land (y_{000}' = (k' \oplus 0) \oplus 0) \land (y_{001} = (k \oplus 1) \oplus 0) \land (y_{001}' = (k' \oplus 1) \oplus 0) \land \\
(y_{010} = (k \oplus 0) \oplus 1) \land (y_{010}' = (k' \oplus 0) \oplus 1) \land (y_{011} = (k \oplus 1) \oplus 1) \land (y_{011}' = (k' \oplus 1) \oplus 1) \land \\
(y_{00} = 0 \oplus 0) \land (y_{01} = 0 \oplus 1) \land (y_{10} = 1 \oplus 0) \land (y_{11} = 1 \oplus 1) \land \\

(I_{00} = (y_{000} = c_1 \land y_{000} = c_2) \ ? 1 : 0) \land (I_{01} = (y_{001} = c_1 \land y_{001} = c_2) \ ? 1 : 0) \land \\
(I_{10} = (y_{010} = c_1 \land y_{010} = c_2) \ ? 1 : 0) \land (I_{11} = (y_{011} = c_1 \land y_{011} = c_2) \ ? 1 : 0) \land \\
(I_{00}' = (y_{000} = c_1 \land y_{000} = c_2) \ ? 1 : 0) \land (I_{01}' = (y_{001} = c_1 \land y_{001} = c_2) \ ? 1 : 0) \land \\
(I_{10}' = (y_{010} = c_1 \land y_{010} = c_2) \ ? 1 : 0) \land (I_{11}' = (y_{011} = c_1 \land y_{011} = c_2) \ ? 1 : 0) \land \\
((I_{00} + I_{01} + I_{10} + I_{11}) \neq (I_{00}' + I_{01}' + I_{10}' + I_{11}'))
\end{align*}
\]

Fig. 6. The SMT encoding $\Psi\{y_0, y_1\}$.

\[
\Theta_\#: := \sum_{f: \bigcup_{e \in E_0} RVar(e) \rightarrow I} I_f \neq \sum_{f: \bigcup_{e \in E_0} RVar(e) \rightarrow I'} I'_f,
\]

where $\sum_{f: \bigcup_{e \in E_0} RVar(e) \rightarrow I} I_f$ is the sum of all the assignments f’s of random variables for $(k)_{k \in X_k}$, and $\sum_{f: \bigcup_{e \in E_0} RVar(e) \rightarrow I} I'_f$ is the sum of all the assignments f’s of random variables for $(k')_{k \in X_k}$.

Overall, the logical formula Ω^O is satisfiable iff there exist a pair of valuations $(\eta_1, \eta_2) \in \Theta^e_{\Sigma X_p}$ and an assignment of variables (c_1, \ldots, c_m) such that the sums of assignments f’s of random variables for variables $(k)_{k \in X_k}$ and $(k')_{k \in X_k}$ under which the expressions (e_1, \ldots, e_m) evaluate to (c_1, \ldots, c_m) are different.

It is straightforward to get the following proposition,

Proposition 5.2. Ω^O is satisfiable iff Ψ^O is satisfiable, where the size of Ψ^O is exponential in the number of (bits of) random variables.

By Proposition 5.1 and Proposition 5.2, we get that:

Corollary 5.3. Ψ^O is satisfiable iff P is O-leaky.

Example 5.4. Let us consider the observable set $\{y_0, y_3\}$ in the motivating example (cf. Section 3.1). Recall that $E(y_0) = (k \oplus r) \oplus r'$ and $E(y_3) = r' \oplus r$. In this case, $E^1 = \{E(y_0)\}$ and $E^2 = \{E(y_3)\}$. For clarity, we only show the case when all variables are Boolean. The SMT formula $\Psi\{y_0, y_3\}$ is shown in Figure 6.

- The first two lines correspond to the logical formulas $\Theta_{E(y_0), f}$ and $\Theta'_{E(y_0), f}$ which enumerates all the possible functions $f : \{r, r'\} \rightarrow \{0, 1\}$ of the random variables. For instance, the conjunct $y_{000} = (k \oplus 0) \oplus 0$ (resp. $y_{001} = (k \oplus 1) \oplus 0$) asserts that the computation $E(y_0)$ is equal to the fresh variable y_{000} (resp. y_{001}) when the random variables r and r' are assigned by 0 (resp. 0 and 1). y_{00}' and y_{01}' are the same as y_{00} and y_{01} except that the private input variable k is replaced by k'.
- The third line corresponds to the logical formulas $\Theta_{E(y_3), f}$ which enumerates all the possible functions $f : \{r, r'\} \rightarrow \{0, 1\}$ of the random variables. Since the computation $E(y_3) = r' \oplus r$ does not involve any private input variable, we omit the logical formulas $\Theta'_{E(y_3), f}$ which are the same as $\Theta_{E(y_3), f}$.
- The next four lines correspond to the logical formulas $\Theta_{\cup_{\nu} f}$ and $\Theta'_{\cup_{\nu} f}$. For instance, the conjunct $I_{00} = (y_{000} = c_1 \land y_{000} = c_2) \ ? 1 : 0$ asserts that the fresh integer variable I_{00} (corresponding to the function f with $f(r) = f(r') = 0$) is 1 if y_{000} (i.e., the computation
Algorithm 2: A brute-force algorithm

1. Function BFEnum($P, O = \{x_1, \cdots, x_m\}$)
2. forall $\eta_p : \bigcup_{x \in O} X_p \cap \text{Var}(E(x)) \rightarrow \mathbb{I}$ do
3. $D_1 := \lambda(c_1, \cdots, c_m) \in \mathbb{I}^m, 0$;
4. $b := \text{false}$;
5. forall $\eta_k : \bigcup_{x \in O} X_k \cap \text{Var}(E(x)) \rightarrow \mathbb{I}$ do
6. $D_2 := \lambda(c_1, \cdots, c_m) \in \mathbb{I}^m, 0$;
7. if $b = \text{false}$ then
8. $D_1 := \text{Counting}(P, O, \eta_p, \eta_k)$;
9. $b := \text{true}$;
10. else
11. $D_2 := \text{Counting}(P, O, \eta_p, \eta_k)$;
12. if $D_1 \neq D_2$ then return SAT;
13. return UNSAT;
14. Function Counting($P, O = \{x_1, \cdots, x_m\}, \eta_p, \eta_k$)
15. forall $\eta_r : \bigcup_{x \in O} \text{RVar}(E(x)) \rightarrow \mathbb{I}$ do
16. $D[E_{\eta_p, \eta_k, \eta_r}(x_1), \cdots, E_{\eta_p, \eta_k, \eta_r}(x_m)] +$;
17. return D;

$E(y_0)$ under the function f with $f(r) = f(r') = 0$ is c_1 and y_{300} (i.e., the computation $E(y_3)$ under the function f with $f(r) = f(r') = 0$) is c_2.

- The last one corresponds to the logical formula Θ_φ. For instance, the conjunct $(l_{00} + l_{01} + l_{10} + l_{11})$ sums up the numbers of functions $f : \{r, r'\} \rightarrow \{0, 1\}$ of the random variables such that the computations $E(y_1)$ and $E(y_3)$ evaluate to c_1 and c_2 respectively.

$\psi(y_0, y_3)$ is satisfiable. For instance, when $k = 1, k' = 0$ and $c_1 = c_2 = 0$, we can see that $l_{00} + l_{01} + l_{10} + l_{11} = 0$ and $l_{00} + l_{01} + l_{10} + l_{11} = 1 + 0 + 0 + 1 = 2$, which is a witness of $\psi(y_0, y_3)$. This implies that the program is $\{y_0, y_3\}$-leaky.

5.2 Brute-force Method

The brute-force method (cf. Alg. 2) enumerates all possible valuations and then computes corresponding distributions again by enumerating the assignments of random variables.

Proposition 5.5. Ω^O is satisfiable iff Algorithm 2 returns SAT.

The complexity of Algorithm 2 is exponential in the number of (bits of) variables in computations $(E(x))_{x \in O}$, so it would experience significant performance degradation when facing a large number of variables. We propose a GPU-accelerated parallel algorithm to boost the performance (cf. Section 6.1).

5.3 Method based on Pattern Matching

In order to avoid (costly) model-counting, we propose a novel pattern matching based method, which allows to resolve potential leaky observable sets more efficiently. This idea comes from the observation that cryptographic programs usually have very similar blocks and many observable sets share common observable variables. As a warm-up, let us first consider two observable sets $\{x, y\}$ and $\{x', y'\}$, where $E(x) = r, E(y) = k \oplus r, E(x') = r', E(y) = k \oplus r'$, k is a private input and r, r' are two random variables. Then $\{E(x), E(y)\}$ and $\{E(x'), E(y')\}$ are equivalent up to renaming of random variables, thus, observable sets $\{x, y\}$ and $\{x', y'\}$ have same distribution type.
Based on this observation, we propose a pattern matching method for inferring distribution types of observable sets O from observable sets O' whose distribution types are known. Before formalizing this idea, we first introduce type-respecting bijection functions.

Given a bijective function $f : X \rightarrow X$, the function f is type-respecting if for every $x \in X$, $f(x)$ is public (resp. private and random) iff x is public (resp. private and random).

Definition 5.6. Two sets of computations E and E' are isomorphic respecting the type of variables, denoted by $E \cong E'$, if there is a type-respecting bijection $h : \text{Var}(E) \rightarrow \text{Var}(E')$ such that $E' = \{h(e) \mid e \in E\}$, where $h(e)$ denotes the computation obtained from e by renaming each variable x with $h(x)$.

For two observable sets O and O' with the same size, it is easy to see that O and O' have the same distribution type if $\{E(x) \mid x \in O\} \cong \{E(x') \mid x' \in O'\}$.

One might notice that constants have to be preserved in the definition of isomorphic with respect to the type of variables. In general, changing a constant in E may change its distribution type. For instance, let us consider a family of sets E_i of (simplified) computations taking from the fourth-order masked implementation of the Sbox [114],

$$E_{i,j} := \{x_0, \text{Sbox}(k \oplus j \oplus x_0) \oplus r, \text{Sbox}(k \oplus i \oplus x_0) \oplus r\}, \text{for } 0 \leq i \neq j \leq 255,$$

where x_0 and r are two random variables and k is a private input. In this case, for any distinct pairs of constants (i, j) and (i', j'), $E_{i,j} = E_{i',j'}$ does not hold, thus, we cannot infer the distribution of $E_{i,j}$ from $E_{i',j'}$, although they are almost identical.

To address this issue, we propose a generalization taking into account constants. Our idea is inspired on the observation that some constant can be assimilated without affecting the distribution of computations. For instance, regarding $k \oplus j$ to be k', then $k \oplus i \equiv (k' \oplus j) \oplus i \equiv k' \oplus (j \oplus i)$. Suppose the distribution of $E_{1,2}$ is known and by applying $k \oplus i \equiv k' \oplus (j \oplus i)$, $E_{i,j}$ is normalized as (note $3 = 1 \oplus 2$)

$$\text{norm}(E_{1,2}) := \{x_0, \text{Sbox}(k' \oplus x_0) \oplus r, \text{Sbox}(k' \oplus 3 \oplus x_0) \oplus r\}.$$

Then, for any $0 \leq i \neq j \leq 255$ such that $(j \oplus i) = 3$, by applying $k \oplus i \equiv k' \oplus (j \oplus i)$, $E_{i,j}$ is also normalized as

$$\text{norm}(E_{i,j}) := \{x_0, \text{Sbox}(k' \oplus x_0) \oplus r, \text{Sbox}(k' \oplus 3 \oplus x_0) \oplus r\}.$$

We can observe that $E_{i,j} \cong E_{1,2}$, thus, $E_{i,j}$ has the same distribution as $E_{1,2}$. This idea is formalized in the following definition.

Definition 5.7. A constant c is assimilable in a set E of computations if E can be transformed into a set E' of equivalent computations by algebra laws such that all occurrences of the constant c in E' are within the context of $x \circ c$ for operator $\circ \in \{\oplus, +, \} and some variable x, such that x is either not used elsewhere or used as $x \circ c'$ for some constant c' (note that $c \neq c'$).

If c is assimilable in E, we denote by $\text{norm}(E)$ the set of normalized computations which is obtained from E' by iteratively

1. replacing all occurrences of the constant c in E' (as $x \circ c$) by x, and
2. every possible $x \circ c'$ (for $c' \neq c$) by $x \circ c''$, where $c'' = c' \circ c$, $\oplus = \neg$, $\neg = \neg$ and $\oplus = \oplus$.

By this replacement, $\text{norm}(E') = E'[x/(x \circ c)][\forall(x \circ c') \in E' : (x \circ c'')/(x \circ c')]$, one can reduce the number of constants in E.

Example 5.8. Let us consider $e = (x \oplus 1) + (x \oplus 2) + (y \oplus 1)$. The constant 1 is not assimilable because there are two occurrences of 1 which are within two different contexts $x \oplus 1$ and $y \oplus 1$ respectively. However, 2 is assimilable (by x), as 2 occurs in the context of $x \oplus 2$ and x occurs
We have implemented our methods in a tool (fixed size bit-vector theory) for the SMT-based method. The tool works as follows:

THEOREM 5.9. For observable sets \(O \) and \(O' \), if \(\text{norm}(\{\mathcal{E}(x) \mid x \in O\}) = \text{norm}(\{\mathcal{E}(x) \mid x \in O'\}) \), then \(O \) and \(O' \) have same the distribution types.

Proof. Let \(E = \{\mathcal{E}(x) \mid x \in O\} \) and \(E' = \{\mathcal{E}(x) \mid x \in O'\} \). Let \(n \) be the number of constants assimilated when computing \(\text{norm}(E) \) and \(\text{norm}(E') \). We prove by applying induction on \(n \).

- **Base case** \(n = 0 \). Then, \(\text{norm}(E) \) and \(\text{norm}(E') \) are isomorphic respecting the type of variables. Let \(h : \text{Var}(E) \to \text{Var}(E') \) be the type-respecting bijection, then for every pair \((\eta_1, \eta_2) \in \Theta^2_{=Xp} \), there exists a pair \((\eta'_1, \eta'_2) \in \Theta^2_{=Xp} \) such that \(\eta_1(x) = \eta'_1(h(x)) \) for all \(i \in \{1, 2\} \) and \(x \in (X_p \cup X_k) \cap \text{Var}(E) \).

Moreover, for every pair \((\eta_1, \eta_2) \in \Theta^2_{=Xp} \), there exists a pair \((\eta'_1, \eta'_2) \in \Theta^2_{=Xp} \) such that \(\eta_1(h^{-1}(x)) = \eta'_1(x) \) for all \(i \in \{1, 2\} \) and \(x \in (X_p \cup X_k) \cap \text{Var}(E') \), and \(\|P\|_{\eta_1} = \|P\|_{\eta_1'} \) iff \(\|P\|_{\eta_2} = \|P\|_{\eta_2'} \). Thus, the result immediately follows.

- **Inductive set** \(n \geq 1 \). Without loss of generation, we assume that \(c \) is assimilated by \(x \circ c \) in \(E \), and \(x \circ c_1, \ldots, x \circ c_k \) are all the occurrences of \(x \) with constants \(c_1, \ldots, c_k \). Then, for every \(\eta_1 \in \Theta, \|P\|_{\eta_1} \) using \(E \) and \(\|P\|_{\eta_1} \) using \(E' \), there exist a pair \((\eta'_1, \eta'_2) \in \Theta^2_{=Xp} \) such that \(\eta_1(x) = \eta'_1(x) \) for all \(x \in (X_p \cup X_k) \cap \text{Var}(E) \), and \(\|P\|_{\eta_1} = \|P\|_{\eta_1'} \) iff \(\|P\|_{\eta_2} = \|P\|_{\eta_2'} \). Thus, the result immediately follows.

Remark that pattern matching based method could be used to match secure sets and for program debugging. When a new program is just a minor revision of a verified program, this method may be able to quickly check many observable sets.

6 IMPLEMENTATION

We have implemented our methods in a tool HOME. We use Z3 [50] as the underlying SMT solver (fixed size bit-vector theory) for the SMT-based method. The tool works as follows:

1. apply Algorithm 1 to compute the set of potential leaky observable sets;
2. for each procedure call Check(\(\{C_i, O\}_{(i, O) \in Y} \)) at Line 14, when the type inference fails to derive any distribution type of \(\bigcup_{(i, O) \in Y} C_i, O \), check whether there is a recorded set of computations \(E' \) such that \(\text{norm}(E) = \text{norm}(E') \) via the pattern matching based method, where \(E \) is the set of computations \(\{\mathcal{E}(x) \mid x \in \bigcup_{(i, O) \in Y} C_i, O \} \) after transformations (e.g., \(\text{Simply}_{\text{Alg}}, \text{Simply}_{\text{Dom}} \) and \(\text{Simply}_{\text{Col}} \)), if \(E' \) exists, then returns the distribution type of \(E' \);
3. if \(E' \) does not exist, apply model-counting methods to the set \(E \) and record \(E \) with its corresponding distribution type for later pattern matching.

Finally, PLS contains exactly the set of leaky observable sets. Note that we do not apply pattern matching and model-counting based methods to observable sets whose size is greater than the security order d for efficiency consideration.

To boost the performance of the model-counting method, we implement a GPU-accelerated parallel algorithm, as described below.

6.1 GPU-accelerated Parallel Algorithm

In this subsection, we show how to leverage GPU’s superior compute capability to check satisfiability of Ω^O in Eqn. (1). In general, given a potential leaky observable set O, we automatically synthesize a GPU program from the computations of observable variables in O such that the GPU program outputs SAT iff Ω^O is satisfiable, i.e., the program is O-leaky.

Our work is based on CUDA, a parallel computing platform and programming model for NVIDIA GPUs. Specifically, we utilize Nvidia GeForce GTX 1080 (Pascal) with compute capability 6.1. From a programming perspective, the CUDA architecture defines three levels of threads, i.e., grid, block and warp, to organize units. A warp consists of 32 consecutive threads which are executed in the Single Instruction Multiple Thread fashion on Streaming Processors, namely, all threads execute the same instruction, and each thread carries out that operation on its own private data. A block running on Streaming Multiprocessors contains at most 32 wraps (giving rise to 32×32 threads). The maximum number of blocks in a grid is 65, 535 × 65, 535 and each grid runs on the Scalable Streaming Processor Array. The code running on GPUs is usually referred to as Kernel.

We parallelize Algorithm 2 as a CUDA program. In this work, we illustrate the idea on byte programs, i.e., each variable is of 8-bit. Typically, the number of random variables is usually much larger than that of the other variables. Therefore, we enumerate assignments of random variables in GPUs while enumerate valuations of public and input variables in CPUs. Namely, the COUNTING function in Algorithm 2 is implemented as a Kernel. However, it would be difficult to implement a generic Kernel to compute distributions of sets of computations $(E(x))_{x \in O}$, unless computations are evaluated by traversing their abstract syntax trees, which is control-flow intensive and would downgrade the GPU performance. As a result, instead of designing a generic Kernel, for each observable set O, we automatically synthesize a CUDA program which checks whether Ω^O is satisfiable based on Algorithm 2.

The numbers of threads per block and blocks per grid in each synthesized CUDA program are determined by the number $R := |\bigcup_{x \in O} \text{RVar}(E(x))|$ of random variables in $(E(x))_{x \in O}$. If $R = 3$, we choose 2-D (16, 16) blocks each of which has 2^8 threads, and 2-D (256, 256) grids each of which has 2^{16} blocks. (Note that the number 2^{24} of threads exactly corresponds to the number of valuations of three 8-bits random variables.) Moreover, we do not need to enumerate those valuations, as the thread Id and block Id (i.e., threadIdx and blockIdx in CUDA) of each host thread in GPU exactly corresponds one of those valuations. If $R < 3$, we reduce the number of blocks and/or threads such that the total number of threads is the number of valuations of random variables. Otherwise $R > 3$, we set 2^8 number of threads in each block and 2^{16} number blocks in one grid for three random variables, while the valuations of the rest of the random variables are enumerated in GPU.

For each operation used in computations of $(E(x))_{x \in O}$ but is not supported in CUDA, we synthesize a corresponding __device__ function which will be called from GPUs only and executed therein. For each computation $E(x)$, we also synthesize a __device__ function which computes the value of $E(x)$ using __device__ functions for operations based on thread Id and block Id of the host thread which represent the valuations of some random variables.

For memory management, we use int arrays to store distributions, which are accessed both from CPU for comparing distributions (read-only) and GPU for computing distributions (read and write).
Algorithm 3: The skeleton of synthesized GPU programs

```c
__device__ unsigned char op1(...)  
...;  
__device__ unsigned char opj(...)  
...;  
__device__ unsigned char exp1(\eta_p, \eta_k, \eta_r, threadIdx, blockIdx)  
...;  
__device__ unsigned char expm(\eta_p, \eta_k, \eta_r, threadIdx, blockIdx)  
...;  
int main GPUBFEnum(P, O = \{x_1, \ldots, x_m\})  
int *D_1; int *D_2;  
cudaMallocManaged(&D_1, 256^m);  
cudaMallocManaged(&D_2, 256^m);  
dim3 block(16,16);  
dim3 grid(4096/block.x,4096/block.y);  
forall \eta_p : \bigcup_{x \in O} X_P \cap \text{Var}(E(x)) \rightarrow \mathbb{I} do  
memset(D_1, 0, sizeof(unsigned char));  
b := false;  
forall \eta_k : \bigcup_{x \in O} X_K \cap \text{Var}(E(x)) \rightarrow \mathbb{I} do  
memset(D_2, 0, sizeof(unsigned char));  
if b = false then  
    KernelCounting<<<grid, block>>> (D_1, \eta_p, \eta_k, O);  
cudaDeviceSynchronize();  
b := true;  
else  
    KernelCounting<<<grid, block>>> (D_2, \eta_p, \eta_k, O);  
cudaDeviceSynchronize();  
if D_1 != D_2 then  
    return UNSAT;  
return SAT;  
__global__ void KernelCounting(D, \eta_p, \eta_k, O)  
{r_1, \ldots, r_h} := \bigcup_{x \in O} \text{RVar}(E(x));  
forall \eta_r : \{r_4, \ldots, r_h\} \rightarrow \mathbb{I} do  
c_1 := \text{EXP}_1(\eta_p, \eta_k, \eta_r, threadIdx, blockIdx);  
...  
c_m := \text{EXP}_m(\eta_p, \eta_k, \eta_r, threadIdx, blockIdx);  
index := \sum_{j=0}^{m-1} c_j \times 256^j;  
atomicAdd(&D[index], 1);
```

We utilize unified memory provided by CUDA to allocate memory for both int arrays, namely, to allocate memory by invoking the cudaMallocManaged function, by which the managed pointers to int arrays are valid on both the GPU and CPU. To resolve data race, the update of int arrays in Kernel is performed in one atomic transaction (via the atomicAdd function in CUDA).
Concretely, Algorithm 3 shows a skeleton of synthesized GPU programs, where the number of random variables is greater than 3. Other cases are similar. The \texttt{__device__} functions implement all the CUDA non-supported operations and expressions which are invoked and executed on GPU. \texttt{D1} and \texttt{D2} are int arrays for storing distributions. The function \texttt{KERNELCOUNTING} is the kernel which computes distributions for each valuation of public and private input variables. The function \texttt{KERNELCOUNTING} is invoked at Line 20 and Line 24 for each valuation of public and private input variables. After each invoking of \texttt{KERNELCOUNTING}, the function \texttt{cudaDeviceSynchronize} is invoked which waits until all preceding commands in all streams of all host threads have completed. In the body of \texttt{KERNELCOUNTING}, the valuations of the first three random variables are implicitly represented by \texttt{threadIdx} and \texttt{blockIdx}, while \texttt{\eta_r} denotes a valuation of other random variables. Finally, the values of expressions are iteratively computed via calling the corresponding \texttt{__device__} functions. The value vector of expressions is encoded as an index to the array \texttt{D}, where the value at this index increases 1 atomically to avoid data race.

7 EVALUATION

The experiments were conducted on arithmetic programs over the byte domain. We used a server with 64-bit Ubuntu 16.04.4 LTS, Intel Xeon CPU E5-2690v4, 2.6GHz and 256GB RAM (only one core is used in our computation). For GPU based algorithms, we use NVIDIA GeForce GTX 1080 with compute capability 6.1, as mentioned in Section 6.1.

7.1 Evaluation on Higher-Order Masking

We evaluate our methods on implementations of masked arithmetic algorithms, ranging from multiplication algorithms to (round-reduced or full) AES/MAC-Keccak. Some of them are provided by authors of [8], while the others are implemented according to the published masked algorithms.

The results of our type inference (Algorithm 1 without applying model-counting and pattern matching based methods) are presented in Table 1. Column 1 shows the reference and description of the program, where \texttt{A2B} and \texttt{B2A} denote the implementations of conversion algorithms from Boolean to arithmetic masking and arithmetic to Boolean masking respectively, \texttt{SecH} and \texttt{SecR} denote the implementations of the non-linear transformation and the round function of \texttt{Simon} [117], and \texttt{DOM AND} is a \texttt{GF}(2^8) version from [69]. Columns 2-7 show the statistics of Algorithm 1, including the numbers of potential leaky observable sets, tuples that should be considered with respect to masking order \(d\) (i.e., all non-empty subsets of \(X_o\) with size \(\leq d\)) in order to compare with the tool of [8], sets actually checked by Algorithm 1, sets whose verification involves the \texttt{SimplyDom} and \texttt{SimplyCol} transformations, and verification time (excluding program parsing). Likewise, Columns 8–11 show the results reported in [8], the unique sound (but incomplete) approach that is able to automatically verify masked implementations of higher-order arithmetic programs under an equivalent leakage model of the ISW model. Since the tool of [8] is unavailable, in Columns 8–11, we simply replicate the statistics of the BBDFGS algorithm from the paper [8] when it is available (N/A is marked otherwise). Recall that [8] used a different experimental setup: a headless VM with a dual core 64-bit processor clocked at 2GHz (only one core is used in the computation). Note that \texttt{Sbox} [114] under fourth-order masking is verified under third-order security only in order to compare with [8], while other benchmarks are verified under their masking orders.

Results on common benchmarks. All the programs not marked as N/A in Columns 8–11 are provided by the authors of [8]. We only did necessary pre-processing, e.g., transformed them into SSA form. Because of this, from Columns 3 and 9 (i.e., \#Tuples), one can see that we considered more tuples in several benchmarks (e.g., Full AES (4) [48], Full MAC-Keccak [8], Sbox [111], Key
Table 1. Experimental results of type inference on masked programs.

<table>
<thead>
<tr>
<th>Description</th>
<th>HOME</th>
<th>[8]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Result</td>
<td>♯Tuples</td>
</tr>
<tr>
<td>First-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplication [111]</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Sbox (4) [48]</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>Full AES (4) [48]</td>
<td>0</td>
<td>20,060</td>
</tr>
<tr>
<td>Full Keccak [8]</td>
<td>0</td>
<td>18,218</td>
</tr>
<tr>
<td>B2A [64]</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>A2B [64]</td>
<td>37</td>
<td>48</td>
</tr>
<tr>
<td>B2A [46]</td>
<td>0</td>
<td>1,448</td>
</tr>
<tr>
<td>A2B [45]</td>
<td>45</td>
<td>86</td>
</tr>
<tr>
<td>B2A [21]</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>B2A [42]</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Second-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbox [114]</td>
<td>0</td>
<td>1,188,111</td>
</tr>
<tr>
<td>Multiplication [111]</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>Sbox [111]</td>
<td>2</td>
<td>7,503</td>
</tr>
<tr>
<td>Key schedule [111]</td>
<td>0</td>
<td>31,828,231</td>
</tr>
<tr>
<td>B2A [21]</td>
<td>0</td>
<td>1,653</td>
</tr>
<tr>
<td>B2A [113]</td>
<td>0</td>
<td>780</td>
</tr>
<tr>
<td>SecH (2) [117]</td>
<td>0</td>
<td>1,770</td>
</tr>
<tr>
<td>SecR [117]</td>
<td>0</td>
<td>3,003</td>
</tr>
<tr>
<td>DOM AND [69]</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>Third-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplication [111]</td>
<td>0</td>
<td>24,804</td>
</tr>
<tr>
<td>Sbox (5) [48]</td>
<td>0</td>
<td>6,784,540</td>
</tr>
<tr>
<td>B2A [46]</td>
<td>0</td>
<td>457,310</td>
</tr>
<tr>
<td>B2A [21]</td>
<td>0</td>
<td>69,640</td>
</tr>
<tr>
<td>DOM AND [69]</td>
<td>0</td>
<td>23,426</td>
</tr>
<tr>
<td>Fourth-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbox [114]</td>
<td>98,176</td>
<td>4,874,429,560</td>
</tr>
<tr>
<td>Multiplication [111]</td>
<td>0</td>
<td>2,024,785</td>
</tr>
<tr>
<td>Sbox (4) [48]</td>
<td>0</td>
<td>3,910,710,930</td>
</tr>
<tr>
<td>B2A [21]</td>
<td>0</td>
<td>457,310</td>
</tr>
<tr>
<td>B2A [113]</td>
<td>0</td>
<td>6,434,740</td>
</tr>
<tr>
<td>DOM AND [69]</td>
<td>0</td>
<td>23,426</td>
</tr>
<tr>
<td>Fifth-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplication [111]</td>
<td>0</td>
<td>216,071,394</td>
</tr>
<tr>
<td>Sbox (4) [48]</td>
<td>0</td>
<td>2,782,230,535,161</td>
</tr>
<tr>
<td>B2A [113]</td>
<td>0</td>
<td>901,289,592</td>
</tr>
</tbody>
</table>

From the experimental results, we can observe that there are two benchmarks (i.e., Sbox [111] under second-order masking and Sbox [114] under fourth-order masking) which have potential leaky observable sets, and Algorithm 1 produces the same number as [8]. This demonstrates that Algorithm 1 is at least as precise as the one in [8]. We will report in Section 7.2 the results of resolving these potential leaky observable sets using our model-counting and pattern matching methods.

From Columns 4 and 10 (i.e., ♯Sets), one can observe that the number of observable sets actually verified by Algorithm 1 is less than the one in [8] on all the common benchmarks (despite there are

schedule [111], Sbox (4) [48], Sbox (5) [48]) than [8], namely, we considered more observable variables than [8].

From the experimental results, we can observe that there are two benchmarks (i.e., Sbox [111] under second-order masking and Sbox [114] under fourth-order masking) which have potential leaky observable sets, and Algorithm 1 produces the same number as [8]. This demonstrates that Algorithm 1 is at least as precise as the one in [8]. We will report in Section 7.2 the results of resolving these potential leaky observable sets using our model-counting and pattern matching methods.

From Columns 4 and 10 (i.e., ♯Sets), one can observe that the number of observable sets actually verified by Algorithm 1 is less than the one in [8] on all the common benchmarks (despite there are
more observable variables to be considered in several benchmarks). The differences are noticeable on several benchmarks (e.g., Full AES [48], Full Keccak, Sbox, Multiplication, Sbox [48, 111] and Key schedule). Reducing the number of verified observable sets allows us to verify 5th-order Sbox (4) [48] which has not been done in [8]. Furthermore, from Columns 7 and 11 (i.e., Time), we observe that Algorithm 1 is faster than [8] on almost all the benchmarks, and the improvement is significant on larger benchmarks (e.g., 110X, 64X and 31X speed-up for Key schedule, Full AES (4) and 4th-order Sbox [114]). These results demonstrate the performance of our type inference algorithm. Furthermore, the algorithm presented in [8] has an issue which may miss the verification of some observable sets. (We have informed some authors of [8].)

Results on new benchmarks. All the programs marked as N/A are new benchmarks. We note that B2A [42] in Common Lisp has been semi-automatically verified under the ISW model by Coron [43], the AES implementation [48] including Sbox (4) has been semi-automatically proved under the d-NI model [9]. Some of the first-order A2B and B2A (except A2B [45]) have been verified in [60]. All the other higher-order benchmarks have not been verified by computer-aided tools.

From Table 1, we can observe that almost all benchmarks can be proved secure using our type inference algorithms in a few seconds. The exceptions include B2A [64], A2B [64], A2B [45] and B2A [42] which respectively have 1, 37, 45 and 1 potential leaky observable set(s). We shall see in Section 7.2 that these potential leaky observable sets are actually spurious using model-counting. To our knowledge, it is the first time that these higher-order programs are automatically proved secure by computer-aided tools. Recall that A2B and B2A are two kinds of conversion algorithms between arithmetic and Boolean masking. Our tool could be used to verify masked implementations of cryptographic algorithms that use A2B and/or B2A conversion algorithms.

Usage of the transformations SimplyDom and SimplyCol. Columns 5 and 6 show the number of sets whose verification involves the transformations SimplyDom and SimplyCol, respectively. We can see that SimplyDom is heavily used, while SimplyCol is used only in one benchmark (i.e., second-order and fourth-order Sbox [114]), which allows to prove lots of observable sets (e.g., 256 on second-order Sbox [114]) without invoking model-counting. Moreover, SimplyDom and SimplyCol and simplify the expressions of the 98,176 potential leaky observable sets for Sbox [114], so that pattern matching and model-counting methods can be easily applied. Remark that statistics of the transformation SimplyAlg is not reported, as its complexity is of constant-time and is negligible.

Remark that our experimental setting is better than the one of [8]. We also conducted experiments on a server with Intel(R) Xeon(R) CPU E5-2603v4@1.70GHz (only one core is used in the computation) and 32G RAM. The time cost increased slightly (e.g., the time on Full AES and Full Keccak becomes 3.4s and 134.3s respectively), but is still lower than that of [8]. We leave the comparison of the two tools on the same platform as future work.

7.2 Comparison of Model-Counting Methods

One important component of our approach is the model-counting method on which we rely to resolve potential leaky observable sets. As mentioned in Section 1, we consider two baseline algorithms (based on SMT encoding and brute-force methods) and a novel GPU-accelerated parallel algorithm. For the sake of evaluation, we carry out experiments only on programs that have potential leaky observable sets reported by our type inference algorithm (cf. Result in Table 1). We also implemented two programs for computing k^3 and k^{254}, which contain 1 private input variable, 3 and 5 random input variables, respectively. These programs are taken from the first-order secure exponentiation [111] without the first RefreshMask function.

Table 2 shows the statistics of the three model-counting methods, with time limited to three hours per program. Column 1 shows the reference and description of the program. Column 2 shows the
Table 2. Comparison of three model-counting methods. O.T. denotes run out of time (three hours).

<table>
<thead>
<tr>
<th>Description</th>
<th>Order</th>
<th>♯CNT</th>
<th>Result</th>
<th>SMT</th>
<th>BFEnum</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>k^3 [111]</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>96m</td>
<td>0.2s</td>
<td>0.43s</td>
</tr>
<tr>
<td>k^{254} [111]</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>O.T.</td>
<td>30m</td>
<td>7.03s</td>
</tr>
<tr>
<td>B2A [64]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>17s</td>
<td>2s</td>
<td>0.86s</td>
</tr>
<tr>
<td>A2B [64]</td>
<td>1</td>
<td>37</td>
<td>0</td>
<td>O.T.</td>
<td>O.T.</td>
<td>33.18s</td>
</tr>
<tr>
<td>A2B [45]</td>
<td>1</td>
<td>45</td>
<td>0</td>
<td>O.T.</td>
<td>O.T.</td>
<td>160m</td>
</tr>
<tr>
<td>B2A [42]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1m 35s</td>
<td>10m 59s</td>
<td>3.17s</td>
</tr>
<tr>
<td>Sbox [111]</td>
<td>2</td>
<td>2</td>
<td>1(1)</td>
<td>O.T.</td>
<td>O.T.</td>
<td>3,600s</td>
</tr>
<tr>
<td>Sbox [114]</td>
<td>4</td>
<td>766</td>
<td>98,176</td>
<td>O.T.</td>
<td>O.T.</td>
<td>323s</td>
</tr>
</tbody>
</table>

security order. Column 3 (♯CNTs) shows the time of the model-counting method. Column 4 shows the number of genuine leaky observable sets. Columns 5–7 show the verification time (excluding the time for type inference algorithm) of the SMT-based, (naïve) brute-force and GPU-accelerated parallel methods, respectively.

The resolution shows that all potential leaky observable sets of B2A [64], A2B [64], A2B [45] and B2A [42] are spurious, while all potential leaky observable sets of Sbox [114] are genuine. On program Sbox [111], we resolved one of two potential leaky observable sets as a genuine one in 1 hour, but the other set cannot be resolved in 2 hour, which is the only case which was unsuccessful in our experiments.

In detail, the GPU-accelerated parallel method significantly outperforms the other two methods on large programs. In particular, the SMT-based and brute-force methods runs out of time on five and four programs, respectively. On the small program k^3, the brute-force method is significantly faster than the SMT-based one, and is also faster than the GPU-accelerated one. The latter is because that the GPU-accelerated method synthesizes a GPU program for each expression and the involved I/O cost is remarkable in small programs. The GPU-accelerated algorithm provides two orders of magnitude improvements on the program k^{254}. A2B [64] has been verified in [60] based on the oracle provided by the authors. However, it is not always the case that one can find such an oracle luckily. It runs out of time if we use the SMT-based method or the brute-force method without the oracle, while the GPU-accelerated method can verify this program in less than 1 minute. As a conclusion, when model-counting is concerned, we recommend the GPU-accelerated algorithm.

For the fourth-order Sbox [114] which is faulty, it only took 4 minutes to automatically resolve all the 98,176 potential leakage sets as genuine ones. Therefore, our tool is still faster than [8] albeit it needs to invoke the model-counting method to resolve those sets which cannot be determined by type inference. It should be emphasized that this was not possible without the pattern matching based method described in Section 5.3. Indeed, we estimate (based on the experiment) that each set would require approximately 0.5s, and in total they would require approximately 14 hours. Instead, we identified 766 (255 \times 2 + 256) patterns which can be used to handle all 98,176 potential leaky observable sets. As a result, only 766 times of model-counting are needed, which took less than 7 minutes, i.e., two orders of magnitude faster.

The 766 patterns are summarized as follows:

1. \{x_0, Sbox(k \oplus x_0) \oplus r, Sbox(k \oplus i \oplus x_0) \oplus r\};
2. \{Sbox(k) \oplus r, Sbox(k \oplus x_0) \oplus r, Sbox(k \oplus i \oplus x_0) \oplus r\};
3. \{x_0, Sbox(k) \oplus r, Sbox(k \oplus x_0 \oplus j) \oplus r\};

where $0 < i \leq 255$ and $0 \leq j \leq 255$, x_0 is a random variable, k is a private input, and r is a random variable which is introduced by our transformations. The family in Item (1) captures 65,280 observable sets, namely, 256 observable sets for each $0 < i \leq 255$, the family in Item (2) captures...
32,640 observable sets, namely, 128 observable sets for each $0 < i \leq 255$, and the family in Item (3) captures 256 observable sets, 1 observable set for each $0 \leq j \leq 255$.

Barthe et al. [8] manually analyzed the 98,176 potential leaky observable sets which are summarized by four families. These are similar to our automatically computed patterns except for the patterns in Item (3), which is \{x_0, y_0, Sbox(k \oplus x_0 \oplus j \oplus r) with y_0 = Sbox(x_0) in [8] (note the third expression is adjusted for sake of presentation). After manually analyzing source code of Sbox [114] under fourth-order masking, we confirm that our pattern is correct while the pattern in [8] is not correct. This demonstrates that it is hard to manually examine potential leaky observable sets.

7.3 Comparison with maskVerif

Our tool HOME is designed to tackle arithmetic programs, but it is also interesting to evaluate its performance on Boolean programs, for which we compare with the latest version of the open source tool maskVerif [10], which is limited to Boolean programs. To the best of our knowledge, maskVerif is the only open source tool for verifying higher-order Boolean programs. We experiment on the largest 6 Boolean programs (P12–P17) from [54] which are one-round versions of the full 24-round MAC-Keccak [8], together with randomly selected benchmarks from maskVerif.

In our experiment, maskVerif reported “stack overflow” error on P12–P17. (We have reported this issue to the developers of maskVerif.) For the sake of experiments, we removed the last 5,000 assignments for each program when testing maskVerif while our tool HOME is still tested on the whole programs P12–P17. (For the abridged version no “stack overflow” error was reported from maskVerif.) We also revised DOM AND [69] and DOM Keccak Sbox [70] by introducing the following extra dummy variables and statements:

$$t_1 = r_1 \land x; \quad t_2 = (\neg r_1) \land (\neg x); \quad t_3 = t_1 \land t_2; \quad t_4 = t_2 \land r_3; \quad \ldots \quad t_{18} = t_{16} \land r_{17}; \quad t_{19} = t_{17} \land r_{18};$$

where r_1–r_{17} are fresh random variables, and x denotes a share of a private input variable. Obviously, t_3–t_{19} are always 0.

Table 3 presents the results, with time being limited to two hours per program. Column 1 gives the programs under comparison. Columns 2-3 show the verification time of maskVerif and our tool respectively. Column 4 gives the number of leaky observable sets. On the programs taken from maskVerif, maskVerif performs better (up to 5×) than HOME. We note that there is one benchmark (second-order) DOM AES Sbox for which maskVerif performs exceptionally well. The major reason is that an ad hoc rule is used therein but could not be used in HOME because it is tailored for Boolean programs. It is perhaps worth pointing out that we have identified some bugs of maskVerif. For instance, when maskVerif verifies DOM AND (under second-order), the leaky observable set \{(k \oplus r_0 \oplus r_1) \land r_2, r_0, r_1, r_2\} where k is private and r_0, r_1, r_2 are random variables is considered secure. This bug has inadvertently reduced the verification time of maskVerif as less sets of variables need to be examined. (We have reported this issue to the developers of maskVerif.)

On the programs P12–P17 and revised programs DOM AND [69] and DOM Keccak Sbox [70], HOME significantly outperforms maskVerif. Specifically, on the secure program P12, HOME takes 2.9s while maskVerif takes 3,223s on the reduced version. On the insecure program P13, HOME identified all the flaws of the program in 122s, while maskVerif identified 1,234 flaws of the reduced version in 3,257s. On the insecure programs P14–P17, HOME identified all the flaws using at most 168s, while maskVerif runs out of time (2 hours) and identified at most 12 flaws. On second-/third-order revised programs, HOME is 8.6–130× faster than maskVerif. On fourth-order revised programs, maskVerif ran out of time.

In conclusion, even for Boolean programs, HOME demonstrates largely comparable performance on the benchmarks tested by maskVerif, and indeed considerably better performance on the new benchmarks.
Table 3. Comparison with maskVerif.

<table>
<thead>
<tr>
<th>Description</th>
<th>Time (s)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>First-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM AND [69]</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>DOM Keccak Sbox [70]</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>DOM AES Sbox [69]</td>
<td>0.23</td>
<td>4.52</td>
</tr>
<tr>
<td>TI Fides-192 APN [23]</td>
<td>86.61</td>
<td>139.40</td>
</tr>
<tr>
<td>P12 [54]</td>
<td>3.223</td>
<td>2.9</td>
</tr>
<tr>
<td>P13 [54]</td>
<td>3,257(1,234)</td>
<td>122</td>
</tr>
<tr>
<td>P14-P17 [54]</td>
<td>O.T.(≤12)</td>
<td>72-168</td>
</tr>
<tr>
<td>Second-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM AND [69]</td>
<td>16.82</td>
<td>0.89</td>
</tr>
<tr>
<td>DOM Keccak Sbox (Revised) [69]</td>
<td>16.62</td>
<td>1.93</td>
</tr>
<tr>
<td>DOM AES Sbox [67]</td>
<td>61.59</td>
<td>7,385</td>
</tr>
<tr>
<td>Third-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM AND [69]</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>DOM AND(Revised) [69]</td>
<td>828.70</td>
<td>6.39</td>
</tr>
<tr>
<td>DOM Keccak Sbox [70]</td>
<td>0.33</td>
<td>1.26</td>
</tr>
<tr>
<td>DOM Keccak Sbox(Revised) [70]</td>
<td>1,041.67</td>
<td>27.40</td>
</tr>
<tr>
<td>Fourth-Order Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM AND [69]</td>
<td>0.13</td>
<td>0.40</td>
</tr>
<tr>
<td>DOM AND(Revised) [69]</td>
<td>O.T.</td>
<td>77.40</td>
</tr>
<tr>
<td>DOM Keccak Sbox [70]</td>
<td>16.35</td>
<td>78.13</td>
</tr>
<tr>
<td>DOM Keccak Sbox(Revised) [70]</td>
<td>O.T.</td>
<td>690.79</td>
</tr>
</tbody>
</table>

8 RELATED WORK

In this section, we review related work on masking countermeasures in general, as well as existing techniques on the analysis of masked programs and the detection/mitigation of other types of side-channel leaks.

Masking. Boolean and arithmetic masking schemes [19, 26, 31, 57, 64, 75, 92, 93, 100, 107, 110, 111, 114, 122] have been widely investigated in the past two decades with differences in adversary models, masking schemes, cryptographic algorithms and compactness. Secure conversion algorithms between Boolean and arithmetic maskings have also been investigated [21, 42, 45, 46, 64, 74, 113]. These countermeasures and conversion algorithms are often designed manually for specific cryptographic algorithms. In this context, the common problem is the lack of efficient and effective tools for automatically proving their correctness [47, 48]. Our work aims to bridge this gap.

Testing. The predominant approach addressing security of (masked) implementations of cryptographic algorithms is the empirical leakage assessment by statistical significance tests or launching state-of-the-art side-channel attacks [15, 16, 16, 36, 49, 63, 72, 80, 87, 88, 91, 96, 97, 103, 106, 124]. These approaches are valuable in identifying flaws even without any knowledge of the leakage model, but can neither prove their absence nor identify all flaws, due to the limitation in measurement setup and/or explored traces. This paper purses an alternative, formal verification based approach which is largely complementary to the work based on testing.
Formal Verification. Formal verification approaches, which are able to prove the absence of side-channel leaks, have been proposed in the prior work [8–10, 18, 20, 24, 25, 27, 43, 54, 55, 60, 61, 94, 101, 120, 129]. However, as we have explained earlier, these existing formal verification methods are limited in applicability (i.e., Boolean program, stronger leakage model or first-order security only) and accuracy (i.e., false alarms).

Early work via type-based proof system refer to [18, 94], which checks if a computation result is logically dependent of the secret data and, at the same time, logically independent of any random variable used for masking the secret data. However, these incomplete approaches only support verification of first-order arithmetic programs and may be even unsound under the ISW model, as pointed out in [54].

To improve accuracy, Eldib et al. proposed model-counting based method [54, 55], which is both sound and complete under the ISW model. This method reduces the verification problem to a series of satisfiability problems encoding model-counting constraints, which is solved by leveraging SMT solvers. However, it is limited to the first-order Boolean programs only. Blot et al. extended this SMT-based method to verify higher-order programs [27]. The SMT-encoding is exponential in the number of bits of random variables and the number of orders, hence is short of scalability and limited to Boolean programs only. Our SMT-based method can be seen as an generalization of these methods. Nevertheless, our GPU-accelerated parallel algorithm significantly outperforms the SMT-based method.

To improve efficiency, Barthe et al. introduced the notion of d-NI to characterize security of masked programs and proposed a sound proof system to verify higher-order masked programs [8]. The d-NI notion was later extended to d-SNI [9] which enables compositional verification. However, these approaches are incomplete, namely, it may produce spurious leaky observable sets. Furthermore, as mentioned in Section 7.1, these approaches may miss the verification of some observable sets. In this direction, Bisi et al. [24] proposed a technique for verifying higher-order masking, which was limited to Boolean programs with linear operations only. Ouahma et al. generalized the approach of [8] to verify assembly-level code [101], but is incomplete and limited to first-order programs only. Coron [43] proposed two complementary semi-automatic approaches via elementary circuit transforms, and showed how to generate security proofs automatically, for simple circuits, but are also incomplete. Barthe et al. developed a unified framework maskVerif [10] for both software and hardware implementations taking into account glitch and transitions into account, but is limited to Boolean programs only and their tool missed the verification of some observable sets in our experiments.

As a matter of fact, the most efficient masked programs do not achieve d-SNI directly, as mentioned by Bloem et al. [25]. Thus, Bloem et al. proposed a sound approach [25] via Fourier analysis, which considers the Fourier expansion of the Boolean functions and reduces the verification to checking whether certain coefficients of the Fourier expansion are zero or not [25]. They studied the security problem of Boolean programs/hardware circuits in the d-threshold probing model [75] and its extension with glitches for any given d. The verification problem is solved by leveraging SAT solvers. However, they considered Boolean programs/hardware circuits only. Furthermore, it was shown by Barthe et al. [10] that maskVerif [10] outperforms [25]. Belaid et al. proposed another compositional verification approach in [20] to overcome the limitation of d-SNI [9], but can only verify Boolean programs composed of ISW multiplication functions, sharewise addition functions and d-SNI refresh functions.

In our prior work [59–61, 129], we have proposed gradual refinement based approaches for verifying masked Boolean and arithmetic programs respectively, which integrate the semantic type system and model-counting based methods hence bring the best of both worlds. This semantic type system was leveraged by Wang et al. [120] to identify transition-based flaws. All these approaches
are limited to first-order security only. It is challenging to generalize these approaches to higher-order masked arithmetic program, which is addressed by the current work.

Compared to the above existing formal verification approaches, the current work studies formal verification of arithmetic programs against d-threshold probing model for any given d. Both our type system and model-counting based method significantly improve the applicability and efficiency. Our pattern matching based method is novel and effective at reducing the cost of model-counting and summarizing patterns of leaky observable sets which can be used for diagnosis and debugging. Putting them together, our hybrid formal verification approach goes significantly beyond the state-of-the-art in terms of applicability, accuracy and efficiency.

Automated mitigation of power side-channel flaws. Automated mitigation techniques have been proposed to repair power side-channel flaws [1, 9, 17, 27, 53, 94, 119, 120]. For example, techniques proposed in [1, 9, 17, 94] rely on compiler-like pattern matching, whereas the ones proposed in [27, 53, 119] use inductive program synthesis and the one in [120] constraints register allocation. All these works either rely upon existing formal verification techniques, hence have similar limitations as described above, or do not use formal verification techniques, thus, correctness can not be guaranteed. It would be interesting to investigate whether our new approach can aid in the mitigation of power side-channel flaws, effectively making countermeasures better, as done in [27, 53].

Other types of side channels. In addition to power side-channel attacks, there are other types of side-channel attacks against cryptographic programs, where the side channels can be in the form of, e.g., CPU time, faults and cache behaviors. Techniques for verification and mitigation of these types of side-channel attacks have been studied in the literature, such as [3, 4, 7, 30, 37, 81, 104, 105, 125, 126] for timing side-channel attacks, [13, 14, 34, 35, 38, 51, 66, 71, 83, 116, 121, 125] for cache side-channel attacks and [12, 22, 28, 29, 56, 73] for fault attacks. Each type of side-channel has unique characteristics, which usually requires specific verification techniques, so these results are orthogonal to our work.

9 CONCLUSION

In this work, we have proposed a hybrid formal verification approach for higher-order masked arithmetic programs. The approach comprise a sound proof system equipped with an efficient algorithm for type inference which significantly outperforms the approach [8] for arithmetic programs, as well as novel model-counting and pattern matching based methods for resolving potential leaky observable sets automatically that cannot be accomplished by the existing tools. Experimental results show that our approach is not only significantly faster but also is applicable to more cryptographic implementations that could not be proved secure automatically before.

Future work includes extending our methods to verifying programs with inherent branching and loops, and/or under other leakage models such as d-NI/SNI, d-threshold probing model, as well as their extensions with glitches and transitions as done in [10, 25].

ACKNOWLEDGMENTS

The authors would like to thank Professor Gilles Barthe, Professor Benjamin Grégoire and Professor Chao Wang for providing benchmarks, and the anonymous reviewers for their valuable comments and suggestions. P. Gao, H. Xie, and F. Song were partially supported by the National Natural Science Foundation of China (NSFC) under Grants No.: 61532019 and No.: 61761136011; T. Chen was partially supported by the UK EPSRC Grant No.: EP/P00430X/1, the NSFC Grant No.: 61872340, the Guangdong Science and Technology Department Grant No.: 2018B010107004, the Natural Science Foundation of Guangdong Province, China No.: 2019A1515011689, and the Overseas Grant...
REFERENCES

and Embedded Systems. 188–205.

1:40 Gao et al.

