
 ASIC Products Application Note
ASIC Design Methodology Primer
Abstract

This application note provides an overview of the application-specific integrated circuit (ASIC) design pro-
cess. Four major phases are discussed: design entry and analysis; technology optimization and floor-
planning; design verification; and layout.

Introduction

The ASIC Design Methodology Primer provides an overview of the steps involved in application specific
integrated circuit (ASIC) design. An ASIC is a collection of logic and memory circuits on a single silicon
die. ASICs are used in a wide variety of products ranging from consumer products such as video games,
digital cameras, automobiles and personal computers, to high-end technology products such as worksta-
tions and supercomputers. The ASIC market, with steady growth over the past decade and continued
growth predicted for the next one, is expected to become a $50 billion market by the year 2000
(Dataquest, 12/16/96).

This primer is organized into three sections:

- The first section, Basic Terminology , defines key terms and the scope of this paper.

- The second and largest section, Basic Methodology Walkthrough , covers, at a high level, the
four major phases of ASIC design, and is illustrated with real design examples. This discussion
also identifies some of the major software vendors who offer ASIC design tools, and lists any
process steps unique to IBM.

- The last section, Design Challenges and Strategies summarizes the specific strengths and
capabilities IBM ASICs brings to the marketplace, and their resulting value to its customers.

Basic Terminology

ASICs are logic chips designed by the end-customers to perform a specific function and thereby meet the
specific needs of their application. Customers implement their designs in a single silicon die by mapping
their functions to a set of predesigned, preverified logic circuits provided by the ASIC vendor. These cir-
cuits are referred to as the ASIC vendor’s library , and are described in the ASIC vendor’s databook .
These circuits range from the simplest functions, such as inverters, NANDs and NORs, flip-flops and
latches, to more complex structures such as static memory arrays, adders, counters and phase-lock
loops. Recently vendors have added some highly complex circuits to their ASIC libraries, such as micro-
processors, Ethernet® functions, and peripheral component interconnect (PCI) controllers. These com-
plex designs are referred to as cores and are fast becoming a major differentiator among ASIC vendors.

ASIC Vendor Selection Criteria

An ASIC designer, seeking to create a new design and select an appropriate ASIC vendor, should con-
sider the following criteria:
Initial Publication 5/98 Page 1

• ASIC library content and characteristics:

- Does the library contain the logic circuits needed to implement the design? Are the circuits fast
enough? How many can fit on a single die?

ASIC Products Application Note
ASIC Design Methodology Primer

• Design turn-around-time (TAT):

- How long does the ASIC vendor take to fabricate, package, and test the part once the design is
completed?

• Price of the die:

- How much does the ASIC cost?
This is an important factor to all designers, but is more crucial to some customers than others.
Those in the consumer market may have this as their number one criteria when evaluating an
ASIC vendor, whereas a high-end workstation customer may put performance or function ahead
of price.

• Power consumption:

- How much power does the ASIC consume?
The importance of power utilization has greatly increased over the past several years, and
surpasses the importance of cost in some cases, such as in battery-powered applications like
cell phones and lap-top computers.

• Miscellaneous aspects:

- Packaging options, reliability, supply assurance and second-source capabilities are absolutely
critical to some customers, and of secondary importance to others.

• Design methodology.

- Design methodology is the process that a designer must follow to implement a design in an
ASIC vendor’s library. The ease with which a designer can execute this process can affect time-
to-market, design verification and reliability, and the cost of the overall design process. It is this
aspect of the ASIC product, design methodology , that is the focus of this primer. This criteria is
of importance to all ASIC customers.

Design Views

During the course of the design process, the design data exists in several different formats or views. As
the design progresses, it becomes less abstract and more specific to, and optimized for, a particular tech-
nology. Each step in the design methodology serves a different purpose and requires unique tools.These
views evolve through three major phases:

• In the initial phase the design is realized primarily as a technology-independent Hardware Descrip-
tion Language (HDL), a format very similar to a programming language, to describe the design’s
functionality.

• In the second phase the design is realized as a technology-dependent netlist that consists of a
series of instances of circuits from the ASIC vendor’s library, interconnected in a manner to imple-
ment the functionality described in the previous view.

• In the last phase the design is realized as a physical view, in which the logic circuits described in the
previous view are physically placed on a piece of silicon, called a die, and interconnected by various
layers of wiring.

Figure 1 on page 3 depicts these three design views.
Page 2 Initial Publication 5/98

ASIC Products Application Note
ASIC Design Methodology Primer

Figure 1. Design Views

Basic Methodology Walkthrough

There are four basic steps that an ASIC design must go through in order to create working silicon:

1. design entry and analysis

2. technology optimization and floorplanning

3. design verification

4. layout

Design Entry

The designer’s first task is to describe the design’s intended function. Typically this functionality is spec-

process(CLK)
begin

if (CLK = ‘1’) and (not CLK’stable) then
s_counter_output <= s_counter_input and not s_reset;
s_ref_ctr_out <= s_load;
end if;

end process;

begin
U68: INVERT_A port map (Z => s_load, A => n265);
U87 : NOR3_4 port map (Z => n275, A => COUNTb(3),
B => COUNTb(4), C => COUNTb(0));
U88 : NOR3_4 port map (Z => n275, A => COUNTb(3),

B => COUNTb(4), C => COUNTb(0));
s_ref_ctr_out_reg : D_F_LPH0001_4 port map (L2 =>
s_ref_ctr_out, D => s_load, E => CLKb);

end SYN_refctr_rtl;

CORE

SRAM
CORE

DMA

refctr

HDL View

Netlist View

Physical View
Initial Publication 5/98 Page 3

ified in a document, such as a functional specification, written in a natural language such as English in
order to facilitate its development as well as to make it accessible for review by all project team members.
Once the specification is finalized, the designer then translates the specification into a form that can be

ASIC Products Application Note
ASIC Design Methodology Primer

understood by software tools in order to direct the creation of silicon. The two principal design description
methods are:

• Hardware Description Languages (HDLs), generally used for designs of 50 thousand gates or more;
and,

• Schematic Capture, an older method, suitable only for sub-50k gate designs and generally less often
used today.

The two dominant HDLs are Verilog® and VHDL. Both are entered using a text editor such as vi on a
UNIX®-based workstation. Verilog and VHDL are languages much like programming languages, such as
C or Pascal, but they have been designed specifically for describing hardware behavior. Verilog and VHDL
are functionally equivalent. The choice of one over the other is driven primarily by the experience base of
the design group, the tool set available to the designers to process the HDL, and, possibly, by organiza-
tional dictates, such as those of the US government, which requires that all designs be written in VHDL.
Verilog dominates the US merchant ASIC market, whereas VHDL prevails in Europe, the US government,
and some large US companies such as IBM.

HDLs allow designers to describe the function of their designs at a high level, often independent of the
eventual implementation in silicon, much as a programmer can describe a function in the C language with-
out knowing the specific compiler that will create the executable object code.

With schematic capture, graphical representations of the logic functions are placed on a computer screen
and are manually connected by the designer. Schematic capture requires the designer to enter a much
lower-level description of the design, implemented directly in the logic circuits available from the ASIC
vendor, thereby sacrificing the flexibility of the higher-level description possible with HDLs. Schematic
capture may still prevail for some time with very small ASICs (10–40k gates) or those containing analog
functions. With the average size of an ASIC in the United States in 1996 exceeding 100k gates, the vast
majority of customers will be using VHDL or Verilog as their design entry vehicle. (Dataquest).

Design Entry Examples

The following sections provide a brief look at some examples of HDL and a simple schematic.

Sample High-Level Hardware Description Language (HDL)

Figure 2 on page 5 contains a portion of a direct memory access (DMA) controller written in two different
HDLs: VHDL and Verilog. Notice that though there are syntactical differences between the two languages
(for example, VHDL’s “entity DMA1...” versus Verilog’s “module DMA1...”), the types of language state-
ments and level of description are essentially equivalent. Both HDLs have execution control statements
based on the state of a signal called CLK, and both propagate certain design values based on the status
of CLK. The language statements are independent of any particular ASIC vendor’s library and are at a
level of abstraction above any particular logic circuit implementation; for example, such statements might
be at a behavioral level or register transfer language (RTL) level. Whatever the level, an HDL can be im-
plemented in several different ways, using different combinations of circuits from any one of a number of
different ASIC vendors’ libraries.

Sample Schematic

Figure 2 contrasts sharply with Figure 3 on page 5, which provides a schematic representation that is di-
rectly mapped into the logic circuits in an ASIC vendor’s library. The schematic assembles circuits such
Page 4 Initial Publication 5/98

as NOR3, AND2 and INVERT and includes explicit connections between inputs and outputs.The logic cir-
cuit implementation for this function is completely defined. Because the vast majority of ASIC designs

ASIC Products Application Note
ASIC Design Methodology Primer

done at IBM begin with an HDL description rather than schematic entry, this paper focuses primarily on
HDL in the analysis phase.

Figure 2. DMA Controller with Two Different HDLs

DMA Controller

entity DMA1 is

VHDL

port(CLK : IN STD_LOGIC;
RESET : IN STD_LOGIC;

...

FIFO_RESTART: BUFFER STD_LOGIC;

...

--*process to create latches

architecture DATAFLOW of DMA1 is

process

begin
wait until (CLK’EVENT and CLK=’1’);
OUT_END1_L2 <= OUT_END1_SIG;
OUT_END1_L1L2 <= OUT_END1_L2;
OUT_END2_L2 <= OUT_END2_SIG;
OUT_END2_L1L2 <= OUT_END2_L2;

...
end process;

module DMA1(CLK, REST, FIFO_RESTART,...)

input CLK;
input RESET;

...

output FIFO_RESTART;

//* process to create latches

always

begin : block_578
@ (posedge CLK);
OUT_END1_L2 <= OUT_END1_SIG;
OUT_END1_L1L2 <= OUT_END1_L2;
OUT_END2_L2 <= OUT_END2_SIG;
OUT_END2_L1L2 <= OUT_END2_L2;

...

endmodule;

RTL-level description
Verilog

RTL-level description

OR3

NOR3

AND3

AND2

NOR2

INVERT

INVERT
Initial Publication 5/98 Page 5

Figure 3. Schematic Representation of Logic Circuits in an ASIC Library

ASIC Products Application Note
ASIC Design Methodology Primer

Design Analysis

After entering a design in an HDL, the designer begins the process of analyzing what was entered to de-
termine if it correctly implements the intended function. The traditional method is through simulation ,
which evaluates how a design behaves. Simulation is a mature, well-understood process, and there are
many simulators available that accept HDLs written in VDHL, Verilog, or increasingly, both languages.
IBM ASICs supports many different simulators available from CAD vendors, such as Verilog-XL™ and
Leapfrog™ from Cadence; VSS™ from Synopsys; and MTI™ from Model Technology, Inc.

A more recent addition to the design analysis phase is power analysis , with many new CAD tools coming
to market in the last year. For a growing number of customers, the power consumption and dissipation of
their designs are becoming critical factors. Early feedback on the power requirements of a design allows
designers to make timely basic design trade-offs in order to achieve power targets. Because this analysis
is at the architectural level and is technology-independent, the estimates may not be extremely accurate
and may vary as much as 50% from the actual silicon implementation.

Simulation

Figure 4 represents the traditional simulation process. The VHDL or Verilog, which describes the design
function, is read into the simulator tool along with a set of input vectors created by the designer. The
simulator generates output vectors that are captured and evaluated against a set of expected values. If
the output values match the expected values, then the simulation passes; if the output values differ, then
the simulation is said to fail and the design needs to be corrected. Most simulators generate output in two
forms: numerically, as 0’s and 1’s in a file for comparison purposes, and graphically, as waveforms that
depict the transition of signals from 0 to 1 and vice-versa.

Note that the simulation at this level is technology-independent. There is usually little or no technology-
specific information delivered by an ASIC vendor to support simulation at this phase. Exceptions include
high-level behavioral models for large macros such as RAMs, ROMs, or complex cores.

HDL
Description
(Verilog or

VHDL)

Vectors

Simulator

Input

Waveforms

Signal A

Signal B

Signal C

(Stimulus) Vectors
Output

Simulation
Simulation

Expected

Output
Vectors

Actual
Simulation

Pass

Fail ?

Simulation Test Bench
Page 6 Initial Publication 5/98

Figure 4. Traditional Simulation Process

ASIC Products Application Note
ASIC Design Methodology Primer

Technology Optimization

Technology optimization takes a technology-independent description of a design, and maps it to a library
of logic circuits provided by an ASIC vendor, thereby making the design technology-dependent. This
phase seeks not just a correct mapping, but the most efficient one in terms of the customer requirements.
The optimization process is divided into subprocesses: logic synthesis; test insertion; clock planning and
insertion; and floorplanning.

Logic Synthesis

Logic synthesis is the basic step that transforms the HDL representation of a design into technology-spe-
cific logic circuits. An ASIC vendor provides the logic circuits in a form called a “synthesis library”. As the
synthesis tool breaks down high-level HDL statements into more primitive functions, it searches this li-
brary to find a match between the functions required and those provided in the library. When a match is
found, the synthesis tool copies the function into the design (instantiates the circuit) and gives it a unique
name (cell instance name). This process continues until all statements are broken down and mapped
(synthesized) to logic circuits. There are potentially hundreds, or even thousands, of different combina-
tions of logic circuits that can implement the same logical function. The combination chosen by a synthe-
sis tool is determined by the synthesis constraints provided by the designer. These constraints define the
design’s performance, power, and area targets. A design driven primarily by performance criteria may
use larger, faster circuits than one driven to minimize area or power consumption. Synthesis has matured
over the past 5–8 years in the merchant market and is used in virtually all ASIC design starts today.

The inputs to the logic synthesis process are the HDL design description (VHDL or Verilog), the design
constraints, and the synthesis library provided by the ASIC vendor. The output of the synthesis process
is a list of circuit instances interconnected in a manner that implements the logical function of the design.
This list of interconnected circuit instances is called a netlist and can be written in several different for-
mats or languages. The dominant netlist languages are VHDL, Verilog, and Electronic Design Inter-
change Format (EDIF). The interconnected circuits may also be graphically represented as schematics.

Figure 5. Logic Synthesis Process

HDL

Logic
SynthesisDesign

Constraints
(Timing,
Power,
Area)

Technology-
Independent

(Verilog, VHDL,

Netlist
Description

Description
(Verilog or

VHDL)

Input

Technology-
Dependent

Output

EDIF)

ASIC
Vendor

Synthesis
Library
Initial Publication 5/98 Page 7

The most popular synthesis tool in the external market, accounting for about 85% of the total synthesis

ASIC Products Application Note
ASIC Design Methodology Primer

seats, is Design Compiler™ by Synopsys. At IBM, IBM’s BooleDozer™ is the tool of choice, accounting for
approximately 90% of the internal synthesis seats.

Sample Synthesis Workflow

The next four figures depict the synthesis process. Figure 6 provides an overview of the process and in-
dexes the three figures which follow it.

Figure 6. Synthesis Process with Various Possible Outputs

HDL
in VHDL

synthesis

Input Output

netlist
in VHDL

netlist
in Verilog

e.g. Design Compiler™ or
BooleDozer™

netlist
in EDIF

netlist
schematic view

(see figure 7)

(see figure 6)

(see figure 8)

(see figure 8)

(see figure 9)
Page 8 Initial Publication 5/98

ASIC Products Application Note
ASIC Design Methodology Primer

The HDL design description (in VHDL) shown below in Figure 7 is a technology-independent description
of a counter function called refctr . Take note of the statements in the dotted box that assign the value of
a signal s_load to a signal s_ref_ctr_out based on the status of CLK .

Figure 7. Technology-Independent VHDL Source

entity refctr is
port (COUNT: in std_ulogic_vector(5 downto 0);

....

architecture refctr_rtl of refctr is

signal s_ref_ctr_out
signal s_load

s_next_ctr_val
s_counter_input
s_counter_output
s_reset

begin

s_reset(0) <= RESET;

....

process(CLK)
begin

if (CLK = ‘1’) and (not CLK’stable) then
s_counter_output <= s_counter_input and not s_reset;
s_ref_ctr_out <= s_load;

end if;
end process;

....
end refctr_rtl;

CLK: in std_ulogic;
RESET: out std_ulogic);

: std_ulogic;

: std_ulogic_vector(5 downto 0);
: std_ulogic_vector(5 downto 0);
: std_ulogic_vector(5 downto 0);
: std_ulogic_vector(5 downto 0);

: std_ulogic;
Initial Publication 5/98 Page 9

ASIC Products Application Note
ASIC Design Methodology Primer

Schematic View of refctr

Figure 8 depicts a post-synthesis schematic view of a section of refctr . Notice that the design was
mapped to specific logic circuit functions, such as INVERT_A, NOR3_4 and D_F_LPH0001_4. These
names correspond to circuit names found in the IBM ASIC CMOS 5S Databook, SA14-2203-03. Each
circuit has a unique name, such as U87 for one instance of NOR3_4, and U88 for another instance of
NOR3_4. The instance names U87 and U88 were generated by the synthesis tool as it mapped the HDL
function into logic circuits such as NOR3_4.

Signals generated by the synthesis tool as it mapped the HDL to logic circuits appear with names such
as n275 and n276. Signal names explicitly named in the HDL, such as sload and CLK, are retained. No-
tice that sload and CLK feed into a circuit that generates the signal s_ref_ctr_out, as described in the tech-
nology-independent source on the previous page (Figure 7).

Figure 8. Netlist Schematic View of refctr

INVERT_A

NOR3_4

U68

U88

A Z

Z
A
B
C

NOR3_4

U87

Z
A
B
C

s_ref_ctr_out_reg

U89

Z
D

E

Z
A

B

sload

n275

n276
n277

CLK

AND2_8

s_ref_ctr_out
D_F_LPH0001_4
Page 10 Initial Publication 5/98

ASIC Products Application Note
ASIC Design Methodology Primer

Netlist Gate-Level View of refctr (VHDL, Verilog)

Figure 9 contains the post-synthesis netlist of refctr , output in both VHDL and Verilog. The circuits de-
scribed, along with net names and instance names are exactly the same. The difference is in the syntax
of the description.

Figure 9. Gate-Level Netlist View of refctr - VHDL/Verilog

VHDL Verilog

entity refctr is
...

architecture SYN_refctr_rtl of refctr is

...

component INVERT_A

port(Z : out std_logic; A : in std_logic);

end component;

component NOR3_4

port(Z : out std_logic; A, B, C : in std_logic);

end component;

component AND2_8

port(Z : out std_logic; A, B : in std_logic);

component D_F_LPH0001_4

port(L2 : out std_logic; D, E : in std_logic);

end component;

begin

U68 : INVERT_A port map (Z => s_load, A => n265);

U87 : NOR3_4 port map (Z => n275, A => COUNT(3),

B => COUNT(4), C => COUNT(0));

U88 : NOR3_4 port map (Z => n276, A => COUNTb(5),

B => COUNT(2), C => COUNT(1));

s_ref_ctr_out_reg : D_F_LPH0001_4 port map (L2 =>

s_ref_ctr_out, D => s_load, E => CLK);

end SYN_refctr_rtl;

end component;

module refctr (COUNT, CLK, RESET, REF);

...

INVERT_A U68 (.Z(s_load), .A(n265));

NOR_4 U87 (.Z(n275), .A(COUNT[3]),

.B(COUNT[4]), .C(COUNT[0]));

NOR3_4 U88 (.Z(n276), .A(COUNT[5]),

.B(COUNT[2]),.C(COUNT[1]));

AND2_8 U89 (.Z(n277),.A(n275),

.B(n276));

D_F_LPH0001_4 s_ref_ctr_out_reg(

.L2(s_ref_ctr_out), .D(s_load), .E(CLK));

...

endmodule;
...
Initial Publication 5/98 Page 11

ASIC Products Application Note
ASIC Design Methodology Primer

Netlist Gate-Level View of refctr (EDIF)

The EDIF version of the netlist also contains the exact same information as the schematic, VDHL and
Verilog versions in terms of the circuits and their connectivity. The difference is, again, syntactical. EDIF
is also more verbose than either VHDL or Verilog, and the data volume of an EDIF netlist is a drawback;
nonetheless, EDIF is an industry standard and is accepted by almost every electronic design automation
(EDA) tool on the market.

Figure 10. Gate-Level Netlist View of refctr - EDIF

Test Insertion

Test insertion, the step following logic synthesis, consists of inserting structures into the design to enable
a complete and efficient manufacturing test. The IBM ASIC methodology requires that the test structures
be inserted in a manner that is compliant with IBM’s full-scan design-for-test (DFT) methodology. IBM is
a recognized industry leader in DFT, and its incorporation into IBM ASIC flow is an important market dif-
ferentiator. Compliance with the methodology offers customers significant advantages, such as high-qual-
ity test coverage (greater than 99% on average) and automatically-generated test patterns.

EDIF

...

(contents

(instance U68

EDIF (continued)

(net s_load

)

(cell refctr (cellType GENERIC)
(joined (portRef A (instanceRef U74))

(portRef D (instanceRef s_ref_ctr_out_reg))
(portRef Z (instanceRef U68))

)
(viewRef Netlist_representation

(cellRef INVERT_A(libraryRef IBMCMOS5S_SC))
)

)
(instance U87

(viewRef Netlist_representation
(cellRef NOR3_4(libraryRef IBMCMOS5S_SC))

)
)

(instance U88
(viewRef Netlist_representation

(cellRef NOR3_4(libraryRef IBMCMOS5S_SC))
)

)

(instance U89
(viewRef Netlist_representation

(cellRef AND2_8 (libraryRef IBMCMOS5S_SC))
)

)

(instance s_ref_ctr_out_reg
(viewRef Netlist_representation

(cellRef D_F_LPH0001_4
(libraryRef IBMCMOS5S_SC))

)

)

(net CLK
(joined (portRef CLK)(portRef E (instanceRef

(s_ref_ctr_out_reg))
(portRef E (instanceRef s_counter_output_.....

...
(net s_ref_ctr_out

(joined (portRef D0 (instanceRef U90))
(portRef L2 (instanceRef s_ref_ctr_out_reg))

)
)

(net 275
(joined (portRef A (instanceRef U89)) (portRef Z

(instanceRef U87)))
)

(net 276
(joined (portRef B (instanceRef U89)) (portRef Z

(instanceRef U88)))
)

(net 277
(joined (portRef SD instanceRef u90)) (portRef Z

(instanceRef U89)))
)

)))))
Page 12 Initial Publication 5/98

ASIC Products Application Note
ASIC Design Methodology Primer

The design output by the logic synthesis phase is not automatically compliant with IBM’s full-scan DFT.
The sequential storage elements that the synthesis tool can select automatically from an ASIC vendor’s
library is limited to a flip-flop element that is not scan-based. The test insertion process replaces the non-
scannable flip-flop with a scannable element from the IBM ASIC library, and then generates and con-
nects the appropriate scan and test clocks. Figure 11 below depicts this insertion process.

Figure 11. Test Insertion

Clock Planning and Insertion

The last phase of the technology optimization process is the planning and insertion of the clock network .
Every ASIC design has at least one clock; many of the large and more complex ASIC designs have mul-
tiple clocks, in some cases, twenty or more. The manner in which the clock network is propagated
throughout the design to the clocked circuits (such as latches, flip-flops and other logic circuits that need
to be synchronized with the clock signal), can vary from vendor to vendor, and involves trade-offs
amongst various design parameters:

- die area;

- delay through the clock network to the clocked circuits (latency);

- the variation in clock arrival time at the various clocked elements (skew); and,

- the power generated by the clock network as it switches.

The clocking methodology must comply with the DFT requirements in order to maintain the testability of
the design.

IBM uses a clock tree or repowering tree method to propagate a clock signal to the hundreds, thou-
sands, or tens of thousands of logic circuits that receive that clock signal. Before clock tree insertion, a
design is said to have idealized clocks , meaning that all logic circuits receiving a given clock signal are
driven in parallel from a single clock driver circuit. However, there are significant barriers to actually im-
plementing a single circuit directly driving thousands of other circuits; these barriers include: routability;

Output
Full
Scan
Latch

Clock
System Clock

Scan Clock

Master Clock

Slave Clock Data
Logic

Flip
Flop

Clock

Data

System Clock

Input 1

Input N

Output

Input 1

Input N

Logic

Scan
Output

Scan Data
Initial Publication 5/98 Page 13

required circuit drive strength; management of clock latency and skew; and others. IBM’s ClockPro tool
allows a customer to input information on the characteristics and constraints for each clock network on
the die. ClockPro automatically generates multiple valid clock trees, or levels of repowering circuitry, for

ASIC Products Application Note
ASIC Design Methodology Primer

each clock network, and generates for each such clock tree, the corresponding information on its cell ar-
ea, latency, and fanout. This information allows the customer to select the optimum repowering network
for each clock. The information from ClockPro can then be automatically added to the customer’s design
by IBM’s BooleDozer-Lite tool.

Another important task accomplished during clock insertion is the introduction of clock splitter circuits
into the design. The clock splitter, placed at the last stage of the repowering tree before the latches, gen-
erates the true and complement (master and slave) clock phases required for area-efficiency and high
performance. The splitter also includes clock control logic required for DFT compliance, and can drive the
optimum number of latches as chosen by the customer via the Clockpro™ tool. Figure 12 represents in-
sertion process, including the clock splitter circuitry.

Figure 12. Clock Planning and Insertion

Floorplanning

Floorplanning is the process of placing groups of circuits on a die, and analyzing the effect of that place-
ment in terms of design performance and routability. The need for floorplanning arose as circuits became
smaller and the length of the wires that interconnect those circuits began to dominate design performance
trade-offs. This is often referred to as one of the “deep-submicron” (>0.5 micron) design paradigms where
interconnect delay dominates the delay through the individual circuits or gates. Integrating floorplanning
into the prelayout portion of the methodology allows the designer to consider the physical implementation

Flip-flop or Latch

System Clock

Clock Driver

Clock Splitter

Master and Slave
Clocks

Full Scan Latch

Repowering Tree

After Clock Insertion

System Clock

Before Clock Insertion
Page 14 Initial Publication 5/98

of the design during the logic design process. Trade-offs on design partitioning, I/O assignment, and mac-
ro location assignments can be made early on, avoiding costly design iterations between layout and syn-
thesis.

ASIC Products Application Note
ASIC Design Methodology Primer

By physically placing groups of logic on a die, more accurate estimates can be made of the wire lengths
within the logic groups (shorter, faster nets) and the wires that interconnect the groups (longer, slower
nets). More accurate estimation of wire lengths that interconnects the logic on chip translates into more
accurate wire delay predictions, which greatly affects the overall design timing. The wire length estimates
from floorplanning can be passed back to the synthesis tool and used to further optimize the selection
of logic gates chosen to implement a function. The floorplan grouping information can also be passed
directly to the ASIC vendor’s detailed place and route tools. This can improve the turn-around-time
through the design center for the layout of the die. Floorplanning also helps to monitor the actual size of
a design which eliminates the discovery during the layout phase that a design has outgrown its target die
size.

Figure 13. Prelayout Floorplanning

Design Verification

The design verification performed at this point in the design process ensures, through automated check-
ing, that the design (1) is functionally correct, and (2) meets physical constraints in terms of performance,
testability, power, and technology-specific electrical checks.

Functional Verification

Designs, as we have seen, are functionally verified before synthesis using simulation. Now, after synthe-
sis, the design is resimulated to ensure that its function has not been corrupted by the synthesis pro-
cess. As synthesis tools have matured, the likelihood of introducing functional errors during synthesis
has been drastically reduced. Nonetheless, it is still advisable to verify the technology-mapped version
of the design.

The traditional verification method is to resimulate the gate-level version of the design. The process is
straight-forward. The gate-level version of a design should produce the exact same functional results as
the pre-synthesis version of the design, given the same set of stimulus (input vectors). Unfortunately, as
designs exceed 100,000 gates, the elapsed time required to rerun simulation vectors becomes prohibi-
tive. Designs of up to one million gates can take weeks or more of simulation time to complete functional

Floorplanning

Synthesis

Layout Process

Design Entry
and Analysis

Wire length estimates
based on logic grouping

Size, location, and
content of logic groupings

Design Verification
Initial Publication 5/98 Page 15

verification. Because of the inefficiency of this method for large designs, formal verification , also re-
ferred to as Boolean equivalency checking , is recommended as an alternative.

ASIC Products Application Note
ASIC Design Methodology Primer

Figure 14 illustrates the traditional verification process of repeating simulation after synthesis. The simu-
lation inputs include a gate-level, technology-dependent version of the design, and the ASIC vendor sim-
ulation library. The simulation library contains a model for each circuit in the library that describes the
circuit function (invert, AND, etc.).

Figure 14. Gate-Level Simulation

Formal Verification

Formal verification achieves the same purpose as gate-level simulation, which is to guarantee that the
function of the design was not altered or corrupted by the synthesis process. The method, however, is
very different. A formal verification tool breaks a design down into a set of Boolean or logical expressions.
This process is repeated on a second version of a design, and the logical expressions are compared for
equivalence. The comparison of the two designs is exhaustive, and not driven by evaluating different de-
sign states created by input vectors. There are no input or output vectors required.

This method of design verification, while relatively new to the merchant market, has been used success-
fully within IBM for many years. Verification of a 500,000 gate design through formal verification can occur
in approximately three hours, as compared to the hundreds of hours required by simulation. Robust tools
are becoming available in the merchant market; IBM ASICs supports Chrysalis Symbolic Design, Inc.’s
Design VERIFYer.® Comparisons can be done against both technology-dependent and technology-inde-
pendent versions of a design.

In addition, formal verification is also extremely useful for comparing two technology-dependent versions
of a design for equivalence. A recommended use is to compare the post-test insertion version of the de-
sign against the netlist from logic synthesis, or the post-layout version of a design against the prelayout
version. A technology file from the ASIC vendor is required to help the formal verification tool understand
the function of technology-dependent features such as master/slave clocks used for DFT support. Figure
15 shows some of the ways in which formal verification can be applied.

Gate-Level

Vectors

Simulator

Input

Waveforms

Signal A

Signal B

Signal C

(Stimulus)

Simulation

Pass

Fail ?

Simulation Test Bench

Description
(Verilog or

VHDL)

Expected
Simulation

Output
Vectors

Actual
Simulation

Output
Vectors

ASIC
Vendor

Simulation
Library
Page 16 Initial Publication 5/98

ASIC Products Application Note
ASIC Design Methodology Primer

Figure 15. Formal Verification

Testability Verification

The purpose of this step to ensure that the design, as implemented by a specific set of circuits, can be
tested on the manufacturing floor. The traditional method for testability verification is also based on gate-
level simulation. A subset of the functional test patterns (input vectors) is applied to the actual silicon on
the manufacturing testers. Those parts that yield the expected values for the vectors applied are said to
pass and are shipped to the customer as good die; those that do not pass, are said to fail. Then the ASIC
vendor and the customer determine where the problem is on the die, and how to correct it.

This test verification method suffers from the same problems as functional verification based on gate-
level simulation; namely, the time required to develop and run an exhaustive functional pattern set is pro-
hibitive for large designs. The quality of the test coverage also becomes a problem with functional pattern
testing because defects in areas of the die not tested by the pattern set can go undetected. As stated
before, the IBM ASIC design methodology is based on a full-scan design-for-test (DFT) methodology.
IBM provides the customer with the TestBench™ suite of test tools, which includes the Test Structure Ver-
ification (TSV) program.

TSV analyzes the gate-level version of a design for compliance with test requirements. Designs that are
compliant require no further action on the part of the customer to support manufacturing test. Test pat-
terns are generated by IBM as part of the normal ASIC processing. A design must comply with all TSV
requirements to pass IBM’s sign-off requirements. TSV noncompliances are noted as errors or warnings.
Errors can affect the ability to generate the manufacturing pattern and must be fixed by the customer.
Warnings will not affect test pattern generation, but may affect overall test coverage, and therefore are
also communicated to the customer. The resulting test coverage achieved on a DFT-compliant design
can be very high (99.5%); most designs achieve 99% coverage or greater.

IBM’s world-leading test methodology is one of the primary differentiators between IBM and other ASIC
suppliers. TSV analyzes the testability of the entire design, and solves the problem of failure to detect
manufacturing defects because of the lack of appropriate patterns. This method, which facilitates the au-
tomatic generation of test patterns, overcomes the difficulty of creating high-quality, high-coverage tests

HDL
Description
(Verilog or

VHDL)

Technology-
Independent

Gate-Level
Netlist

Technology-
Dependent

EDIF)

File

Gate-Level
Netlist

(Verilog, VHDL

Technology-
Dependent

EDIF)

(Post-synthesis) (Post-test Insertion)

RTL-to-Gate Gate-to-Gate
ASIC
Vendor

Technology

Yes/No

(Verilog, VHDL

(Pre-synthesis)

Compare?Compare?

Yes/No
Initial Publication 5/98 Page 17

for large designs; TSV has been proven many times on designs with more than 500,000 gates. By re-
lieving the customer of the time-consuming task of generating manufacturing test vectors, many custom-

ASIC Products Application Note
ASIC Design Methodology Primer

ers find significant savings in time-to-market. IBM’s TSV program provides an integrated test verification
methodology that can handle the self-test circuitry provided on all IBM ASIC RAMs and ROMs, the isola-
tion required for embedded core functions, and boundary scan requirements.

Timing Verification

The purpose of timing verification is to determine if a design, once mapped to a specific technology library
of circuits, meets the specified performance target. Once again, the traditional method is based on gate-
level simulation, and once again run-time and design coverage issues make this method impractical for
large designs. IBM ASICs advocates the use of static timing analysis for timing verification and requires
the use of its EinsTimer™ static timing analyzer for timing sign-off. IBM is the first ASIC vendor to support
static timing analysis for sign-off, and delivers the EinsTimer static timing analysis tool as part of the ASIC
design kit. This tool has been proven to handle extremely large (over 1 million gate) designs with complex
timing characteristics such as multiple clock domains and clock gating.

Static timing analysis allows all paths on a die (under best- and worst-case conditions) to be examined in
a single timing run. This method, while relatively new to the merchant market, has been practiced suc-
cessfully within IBM for over 15 years. The move away from timing simulation toward static timing analysis
is the industry trend, with news of other ASIC vendors supporting static timing becoming more common.
Static timing on a large design (example 860,000 gates) can be achieved in two to three hours as com-
pared to the many days or weeks required to get equivalent coverage (if possible) using delay simulation.

To yield meaningful information about a design using static timing, careful attention must be given to the
development of the timing assertions (those files that define expected arrival times, clock phase rela-
tionships, false paths, etc.) that drive the analysis tool. While development of a meaningful assertion set
requires an up-front designer investment, once completed, these assertions are used to drive the layout
process and allow for timing correction without customer intervention. This translates into another signif-
icant time-to-market advantage, and is an important differentiator for IBM in the ASIC marketplace.

Power Estimation

Verifying the amount of power a design consumes and dissipates is the purpose of power estimation. The
traditional method has been primarily pen and paper calculations using technology information provided
by the ASIC vendor and switching information supplied by the customer. This method is inadequate in
terms of scope and accuracy for today’s power-conscious designs. As a result, many new power estima-
tion tools are under development and are just beginning to enter the merchant market.

Prelayout Technology Checks

A final set of technology- and library-specific design verification checks is usually provided by the ASIC
vendor. These checks verify a variety of ASIC vendor requirements; examples include, verifying all input
pins on each circuit in the design are used (connected to another circuit); verifying all circuits that com-
municate to tester equipment are located in the required I/O slots, etc. To perform these checks, IBM pro-
vides the CMOSChks tool as part of the ASIC design kit. Passing these checks without error is one of the
prelayout sign-off requirements. Customers can find and resolve errors in the design before the design
enters the layout process. The earlier these types of errors are discovered, the faster they can be correct-
ed without adverse impact on the turn-around-time for layout.

Layout
Page 18 Initial Publication 5/98

The last major section on ASIC design methodology examines the physical implementation of the design
in silicon. This process is traditionally performed by the ASIC vendor at ASIC design centers . These de-

ASIC Products Application Note
ASIC Design Methodology Primer

sign centers may be located at the actual silicon foundry site or at satellite locations.

The layout process entails the physical placement of the logic circuits on a die (placing), and the inter-
connection of those circuits using wire (routing). Most ASIC vendors support two to three different layers
of wiring on a die; some are beginning to claim the capability of up to five in future technologies. IBM
ASICs has successfully executed five levels of wiring in production since 1993. IBM’s leading-edge inter-
connect technology is a significant differentiator in the ASIC market place. More levels of wiring translate
into the ability to interconnect more circuits on a given die, allowing for denser, more integrated designs.

Traditionally, designs were placed and routed by the ASIC vendor, and then retimed to see if the original
performance target was achieved. If the performance target was missed, the customer had to change
the logic. This often meant resynthesizing blocks of logic and then repeating the design verification and
place and route steps. Multiple iterations through this process to achieve timing closure could add weeks
or even months on top of the original schedule. With floorplanning, earlier analysis can be done by the
customer, and the design reoptimized before entering the layout process.

Floorplanning can be considered part of the layout process, part of the technology optimization process,
or both, and can be performed by either the customer or the ASIC vendor. Floorplanning straddles the
traditional front-end (that is, the logic design process) and the back-end (the physical design process),
and helps to yield optimum results from both. Because early, pre-layout, floorplanning is an essential in-
gredient to successfully designing deep-submicron ASICs, floorplanning has already been discussed in
the Technology Optimization section on page 7.

The layout process proper involves two additional steps:

• Place and Route , the process of determining the placement and interconnect of each circuit on a
die

• Back-annotation, the process of extracting timing information from one design step for analysis in
an earlier step, such as using post-layout delay information in simulation

Place and Route

While floorplanning deals primarily with the placement and interconnect analysis of groups or clusters of
logic, place and route deals with the placement and interconnect of each circuit on a die. On today’s large
die, containing over 1 million logic gates, this is comparable to solving a jigsaw puzzle with hundreds of
thousands of pieces. From the customer’s perspective, the end result must not only fit in the area allo-
cated, but must also meet the performance targets, and all this must be achieved on schedule. In addi-
tion, the ASIC vendor has more criteria for success in terms of technology constraints (for example, no
electromigration) and testability (that is, test-related circuits are in the correct locations).

In addition to support for floorplanning, the IBM place and route methodology has the significant advan-
tage of being timing-driven ; that is, the placement algorithms in the IBM tools take the performance con-
straints of the design into account as the circuits are placed. Most layout tools place circuits in the most
efficient manner from an area standpoint. Adjustments to that placement to improve timing are largely a
manual process, and may require the customer to change the actual logic. The IBM layout tools are driv-
en by the same timing assertion files developed by the customer for static timing sign-off with the
EinsTimer static timing analysis tool. The placement tools work to create a layout that has the most effi-
cient area utilization and meets the timing assertions. If after placement, nets remain that do not meet
the specified timing, a series of automated placement optimization routines are run, varying the drive
strength of logic circuits and relocating clock driver cells, until timing closure is achieved.
Initial Publication 5/98 Page 19

Because the assertions completely describe the performance targets of the design, the optimization can
be performed without intervention from the customer and without requiring resynthesis of the design.

ASIC Products Application Note
ASIC Design Methodology Primer

This is a significant methodology differentiator for IBM ASICs and translates into real time-to-market sav-
ings for the customer. This method can handle a range of design sizes from 50,000 to over 2 million gates,
and it accommodates a variety of placement approaches:

- a flat approach , placing all circuits on the die simultaneously

- a partitioned approach , placing circuits using the grouping and preplacement information from
floorplanning

- a hierarchical approach , individually placing routing sections of the die and interconnecting
these sections with global wires

The ability to use up to five levels of metal allows the place and route system to achieve the most area-
efficient (dense) placements, utilizing circuit area on the die that other layout systems cannot.

Figure 16 below depicts the flow during IBM place and route, and highlights the fact that timing-driven
design allows timing closure to occur at the ASIC vendor rather than having to return this task to customer
for solution.

Figure 16. Place and Route Flow Diagram

Timing Back-Annotation

Timing back-annotation is the process of extracting timing information from one design step for analysis
in an earlier step. For example, the classic use of back-annotation is the use of post-layout delay informa-
tion in simulation. Because once a design is placed and routed, the actual distance between logic circuits
on the die is known, the corresponding wire delay can be calculated with great accuracy. This delay infor-
mation is then extracted from the layout and is written in a form that the simulator can understand. The

Floorplanning

Timing
Assertions

Optimize
Placement

Optimize
Routing

No

No

Yes

IBM
Layout

Process

Customer

ASIC Vendor

Yes

Technology
Optimization

Design Verification

Timing-Driven Placement

Timing for
Customer
Sign-off

Routing

Timing
Closure?

Timing
Closure?

Back-Annotate
Page 20 Initial Publication 5/98

industry standard for this type of delay information is the Standard Delay File (SDF).

The SDF can be read into a simulator for post-layout gate-level timing verification. This process is orders

ASIC Products Application Note
ASIC Design Methodology Primer

of magnitude slower that gate-level simulation without timing, and impractical for today’s large designs.
Therefore, IBM takes an alternative approach utilizing the EinsTimer static timing analyzer for both pre-
layout and post-layout timing sign-off.

In this second approach, the post-layout wire delays (also known as parasitics) are extracted from the
placed and routed design and then written out as RC and CAP files (resistance and capacitance values
associated with the individual wire segments). The RC and CAP information is then read into EinsTimer
for the postlayout timing analysis. IBM supports the creation and use of the SDF format for customers
who chose to do this type of analysis, but does not support delay simulation for timing sign-off.

Figure 17. Timing Back-Annotation Process

SDF
No

Back-Annotate
Timing for
Customer
Sign-off

Technology
Optimization

Design Verification Timing
Assertions

Floorplanning

RC and CAP Layout Process

Static Timing

Customer

ASIC Vendor

Meets
Timing?
Initial Publication 5/98 Page 21

ASIC Products Application Note
ASIC Design Methodology Primer

Summary of Steps: The ASIC Methodology Flow

The flow chart in Figure 18 is a graphical summary of the IBM ASIC Design Methodology. The highlighted
boxes represent the sign-off points that the design must go through as it progresses to silicon. The first
sign-off point is the Initial Design Review . At this checkpoint IBM and the customer meet to agree on
roles and responsibilities (for example, who will do floorplanning), as well as to document all the technical
characteristics about a design. This review makes possible the development of accurate schedules, die
sizes, and resource demands.

When logic and design verification is completed, the designer and the ASIC Design Center take the de-
sign through the Release-to-Layout (RTL) sign-off procedure. Final netlist and assertion files are identi-
fied, time- and date-stamped, and rerun through the key sign-off tools (TSV tool for testability; EinsTimer
for timing; and CMOSChks for wiring).

To exit the RTL sign-off, the design is required to time without any negative slacks (that is, all nets must
meet timing assertions), as well as without any transition or capacitance violations. This is essential to
enabling the timing-driven-layout and placement-based optimization routines to achieve timing closure
with minimum intervention by the logic designer. The design must also be free of TSV errors, which pre-
vent automatic generation of test patterns. Designs with warnings are allowed to proceed to layout if the
customer agrees to accept the lower test coverage that results from the flag-triggering condition.

A final suite of checking programs is run after layout to ensure all technology-specific requirements are
met by the design layout, and that final timing is achieved. At this point, test patterns are automatically
generated and shipped to manufacturing with the final design.

Initial Design Review

Design Entry

Simulation

Logic and Test
Synthesis

Release to Layout

Timing-Driven Layout

Static Timing Analysis

Timing
Assertions

Static Timing
Analysis

Floorplanning

Gate-Level
Simulation

Formal
Verification

SDF

Release to
Manufacturing

Automatic Test
Pattern Generation

RC, CAP

= Sign-off Tool

TSV

= Sign-off Document

Prelayout
Technology

Checks

Post-layout
Technology Checks
Page 22 Initial Publication 5/98

Figure 18. ASIC Methodology Flow

ASIC Products Application Note
ASIC Design Methodology Primer

Design Challenges and Strategies

The last two years have seen a steady rise in the number of ASICs in the 400,000 gate range and above.
In 1995, the one-million-gate ASIC became a reality. With the complexity inherent in such large designs
came the problem of prohibitively long development and verification times. Older methods of verifying
ASIC timing and testability through gate-level simulation are not practicable given today’s time-to-market
requirements. Increasingly the layout, or back-end, portion of the methodology has been driven not by
gate delay, but by wire delay. To overcome this difficulty front-end timing requirements must be tightly
coupled with the layout implementation; this helps to minimize costly iterations through the design and
layout process. In order to implement such design strategies, alternative verification strategies are need-
ed. IBM is leading the industry in defining and successfully executing an alternative verification and sign-
off strategy based on test structure verification and static timing analysis. IBM’s rigorous design verifica-
tion and checking in the Release-to-Layout and Release-to-Manufacturing procedures along with timing-
driven placement and placement-based optimization tools help solve these design challenges.

Summary

IBM’s ASIC methodology eliminates the need for lengthy gate-level timing simulation by utilizing static
timing analysis. By using design-for-test methodologies and utilizing IBM’s test structure verification
tools, designers can avoid discovering test coverage problems late in the design cycle. Automatic test
pattern generation saves valuable time by eliminating the need to generate the functional patterns man-
ually. Taken together, IBM’s ASIC methodology results in shorter design cycles that get the customer’s
silicon to market faster.
Initial Publication 5/98 Page 23

	Abstract
	Introduction
	Basic Terminology
	ASIC Vendor Selection Criteria
	Design Views

	Basic Methodology Walkthrough
	Design Entry
	Design Entry Examples
	Sample High-Level Hardware Description Language (HDL)
	Sample Schematic

	Design Analysis
	Simulation

	Technology Optimization
	Logic Synthesis

	Sample Synthesis Workflow
	Schematic View of refctr
	Netlist Gate-Level View of refctr (VHDL, Verilog)
	Netlist Gate-Level View of refctr (EDIF)
	Test Insertion
	Clock Planning and Insertion
	Floorplanning

	Design Verification
	Functional Verification
	Formal Verification
	Testability Verification
	Timing Verification
	Power Estimation
	Prelayout Technology Checks

	Layout
	Place and Route
	Timing Back-Annotation

	Summary of Steps: The ASIC Methodology Flow

	Design Challenges and Strategies
	Summary

