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Abstract—Index tracking, a classical passive investment strat-
egy in finance, attempts to reproduce the performance of a
specific market index by holding only a subset of the constituent
assets in the index. To realize this, various portfolio optimization
methods have been developed. In the literature, all the existing
works focus on single-period optimization (SPO) for index
tracking portfolio design. However, in the financial markets,
such SPO methods may lead to frequent portfolio rebalances,
resulting in high transaction costs. In this paper, a novel multi-
period optimization (MPO) approach to index tracking portfolio
design is proposed, which is able to account for transaction costs
and holding costs. The MPO for index tracking is formulated
as a nonconvex optimization problem and solved successively
by dealing with a second-order cone programming subproblem
based on the successive convex optimization procedure. Numeri-
cal simulations showcase that the proposed MPO method is able
to achieve comparative tracking performance with lower costs
compared to the classical SPO method.

Index Terms—Multi-period portfolio, index tracking, asset
selection, successive convex approximation.

I. INTRODUCTION

In the financial industry, investment strategies can be cate-
gorized as active management and passive management [1].
Active fund managers attempt to find those “diamond in
the rough” assets based on their expertise and judgment to
construct a portfolio whose values are going to outperform the
markets. While the passive fund managers aim at achieving
similar performance with the market benchmarks (i.e., the
financial indices). Passive management has aroused much
interest in recent years since historical data has shown that
most actively managed funds failed to outperform the markets
[2], while the passively managed funds can make decent
profits when the market rises (which is true in the long run
historically) and can mitigate the idiosyncratic risks associated
with various companies. A straightforward way of passive
investment is to hold the same proportion of asset shares as
the index, leading to the so-called full replication strategy.
However, such a strategy may involve too many illiquid
assets which will translate into high risk. Besides, when the
index is revised, portfolio rebalancing may cause excessive
transaction costs [3]. Therefore, passive fund managers attempt
to reproduce the performance of an index by holding only a
subset of the assets in an index, leading to the index tracking
portfolio (ITP) design problem [4].

The target of the ITP design problem is to minimize the
tracking error while achieving a “sparse” portfolio, which
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can be realized either by introducing extra binary variables
to limit the portfolio size directly [5], [6], [7] or by penal-
izing the cardinality into the portfolio design objectives [8].
For example, in [5], the tracking error is modeled from a
regression-based point of view and extra binary variables are
introduced to limit the portfolio size. In [4], the empirical
tracking error measured by the mean squared error is adopted
and the sparsity is promoted with a nonconvex approximation
of the cardinality function (i.e., the `0-“norm” [9]). However,
all the existing works focus on the single-period optimization
(SPO) for ITP design, that is, the portfolios to be invested
in multiple periods are optimized independently, making such
myopic strategies sub-optimal, say, causing high transaction
costs [10]. Similar problems exist in many other portfolio
management problems, to mitigate which, the multi-period
optimization (MPO) method has been brought up [11], [12].

MPO strategies for portfolio design have received lots of
popularity as it not only can account for transaction costs
over multiple periods but also can handle the conflicting return
estimates on different time scales [12]. In [13], the MPO
strategy is adopted to fulfill the objective of minimizing a
cumulative risk measure over the investment horizon, in the
meantime satisfying portfolio diversity constraints at each
period and achieving a desired amount of terminal wealth. The
MPO method has also been applied in other portfolio design
problems such as the mean-variance portfolio design [14] and
the robust semi-variance downside risk portfolio design [15].
Besides, the MPO scheme recently was adopted into the risk
parity portfolio design [16].

In this paper, we attempt to take advantage of the MPO
method to address the aforementioned issues in the financial
index tracking portfolio design problems. To the best of our
knowledge, this is the first work that introduces the MPO
scheme into the ITP design. To realize asset selection, i.e.,
selecting only a subset of assets in an index, a nonconvex con-
straint that promotes sparsity is also introduced into the prob-
lem. The successive convex approximation (SCA) algorithm
[17] is used to solve the resulting nonconvex optimization
problem, where the inner convex approximation subproblem is
solved as a second-order cone program (SOCP). In the end, the
benefits of introducing MPO into ITP design are demonstrated
through numerical simulations on the market data.

II. INDEX TRACKING PORTFOLIO

Given an index composed of n assets, we denote at time
τ the return of the index as rind,τ and returns of the index
constituents plus the cash return (denoted as the (n+1)th asset)
as rτ = [r1,τ , . . . , rn,τ , rn+1,τ ]

T. Given the portfolio weights
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Figure 1. The H-period multi-period optimization scheme.

wτ = [w1,τ , . . . , wn,τ , wn+1,τ ]
T satisfying 1Twτ = 1, the

return of the ITP at time τ is defined as rTτwτ . In this paper,
short-selling is not allowed for the index constituent assets
(i.e., wi,τ ≥ 0 for i = 1, . . . , n).

The return tracking error of the designed ITP w.r.t. the index
at time τ can be chosen as one of the following commonly
used forms:

gTE(wτ ) =


|rind,τ − rTτwτ | = gATE(wτ )

|rind,τ − rTτwτ |2 = gSTE(wτ )

(rind,τ − rTτwτ )+ = gDTE(wτ )

(rind,τ − rTτwτ )
2
+ = gSDTE(wτ ),

where gATE(wτ ), gSTE(wτ ), gDTE(wτ ), and gSDTE(wτ )
represent the absolute tracking error (ATE), the squared track-
ing error (STE), the downside tracking error (DTE), and the
squared downside tracking error (SDTE), respectively, and
(x)+ , max{x, 0}.

In the markets, inevitable transaction costs, or trading costs,
are involved along with any trading actions. Hence, frequent
rebalancing of the portfolio is not desired in practice as it will
lead to high trading costs. To take such costs into account, a
trading cost function for the constituent asset i between time
τ − 1 and time τ is modeled as follows [12]:

φtrade(di,τ ) = ai|di,τ |+ biσi,τ
|di,τ |3/2

(Vi,τ/Bτ )1/2
+ cidi,τ , (1)

where ai, bi, ci are predefined parameters, dτ = wτ −wτ−1
denote the trading actions at time τ , σi,τ is the price volatility
at time τ , Vi,τ represents the total market volume of asset i
at time τ , and Bτ represents the net portfolio value at time τ .
Holding costs are associated with storing unsold inventory. In
this paper, we only consider the holding costs generated from
loans [12], which is defined as

φhold(wn+1,τ ) = s(−wn+1,τ )+, (2)

where s is the given shorting cost rate.
To obtain sparse portfolios (i.e., wi,τ = 0 for some i), we

consider adding the following nonconvex constraint [18], [19]
into the design problem to limit the number of active assets
in the portfolio:

n∑
i=1

wi,τ
η + wi,τ

≤ κ,

where η > 0 is a given small constant and κ > 0 controls the
maximal number of assets to be selected.

Assuming that no external cash can be put into or taken out
of the portfolio during the investment, the portfolio rebalance
from period τ −1 to period τ should satisfy the self-financing
constraint expressed as

1Tdτ +

n+1∑
i=1

φtrade(di,τ ) + φhold(wn+1,τ ) = 0.

In practice, trading costs and holding costs are extremely small
and neglectable compared to the total portfolio value. It is
reasonable to simplify this constraint as 1Tdτ = 0 [12].

A. Single-Period Optimization for ITP Design

By considering both the tracking performance and the
exceeding returns, we get the following objective function

f(wτ ) = gTE(wτ )− γreturnrTτwτ ,

where gTE(wτ ) generally denotes any tracking error function
whose specification can be chosen according to the practice
condition, and γreturn ≥ 0 is a predefined parameter trading
off the tracking errors and the exceeding returns. Finally, the
SPO model for ITP design (SPO-ITP) is given as follows:

minimize
wτ ,dτ

f(wτ )

+ γtrade

n+1∑
i=1

φtrade(di,τ ) + γholdφhold(wn+1,τ )

subject to wi,τ ≥ 0, for i = 1, . . . n
n∑
i=1

wi,τ
η + wi,τ

≤ κ

dτ = wτ −wτ−1

1Tdτ = 0,
(SPO-ITP)

where γtrade ≥ 0 and γhold ≥ 0 are predefined constants.

Remark 1. In Problem (SPO-ITP), the prediction of values of
the returns at time τ , i.e., rind,τ and rτ , is an important task
in ITP design [20]. However, it is not the focus of this paper
and we will assume them to be perfectly known in this paper.

B. Multi-Period Optimization for ITP Design

Under the SPO paradigm, portfolios over multiple periods
will be optimized independently, which ignores the potential
influence induced by current portfolios on the future ones.
Therefore, there is a chance that the portfolio constructed
based on the current condition may perform unfavorably in
the future and we have to suffer from the inevitable loss
or alleviate the loss by frequently rebalancing the portfolios,
which brings in high transaction costs. To overcome such
limitations in SPO methods, an MPO model for the ITP design
(MPO-ITP) is proposed in this paper. Under the MPO scheme,
the current portfolio is determined by solving an optimization
problem that minimizes the cumulative tracking error over H
periods with H > 1, where the transaction costs and holding
costs are also included. The process of a sequence of portfolios
constructed under the MPO scheme is shown in Figure 1,
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minimize
{wτ}, {dτ}

t+H∑
τ=t+1

f(wτ ) + γtrade

n+1∑
i=1

(
ai|di,τ |+

biσi,τ
(Vi,τ/Bτ )1/2

|di,τ |3/2 + cidi,τ

)
+ γholds(−wn+1,τ )+

subject to wi,τ ≥ 0, for i = 1, . . . n, ∀τ
n∑
i=1

w
(0)
i,τ

η + w
(0)
i,τ

+
ε

(η + w
(0)
i,τ )

2
(wi,τ − w(0)

i,τ ) ≤ κ, ∀τ

dτ = wτ −wτ−1, ∀τ
1Tdτ = 0, ∀τ

(3)

where wτ is determined by solving an optimization problem
based on the information of the next H periods.

Specifically, the H-period MPO-ITP problem is modeled as

minimize
{wτ}, {dτ}

t+H∑
τ=t+1

f(wτ )

+ γtrade

n+1∑
i=1

φtrade(di,τ ) + γholdφhold(wn+1,τ )

subject to wi,τ ≥ 0, for i = 1, . . . n, ∀τ
n∑
i=1

wi,τ
η + wτ,i

≤ κ, ∀τ

dτ = wτ −wτ−1, ∀τ
1Tdτ = 0, ∀τ.

(MPO-ITP)
Problem (MPO-ITP) reduces to Problem (SPO-ITP) if H = 1.
The MPO-ITP problem is nonconvex owing to the nonconvex
sparsity promoting constraint. In this paper, an efficient algo-
rithm based on the SCA algorithm [17] will be developed for
problem solving.

III. SOLVING THE MPO-ITP PROBLEM VIA SCA

In this section, to solve the nonconvex MPO-ITP problem,
we develop an SCA-based algorithm, which solves a sequence
of convex surrogate problems iteratively. To realize efficient
resolution, the convex inner approximation problem is further
transformed into an SOCP to be solved by standard SOCP
solvers like MOSEK [21].

A. Convexification of the Sparsity Promoting Constraint

We introduce the following useful lemma.

Lemma 2. [22], [23] Function
∑n
i=1

wi,τ
η+wi,τ

is concave when
wi,τ ≥ 0, i= 1, . . . , n, in which case a linear upperbound can
be constructed at w(0)

i,τ , i=1, . . . , n, as follows:

n∑
i=1

wi,τ
η + wi,τ

≤
n∑
i=1

w
(0)
i,τ

η + w
(0)
i,τ

+
η

(η + w
(0)
i,τ )

2
(wi,τ − w(0)

i,τ ),

where the equality is attained when wi,τ = w
(0)
i,τ for all i.

By substituting the trading cost function φtrade(di,τ ) and
the holding cost function φhold(wn+1,τ ) into (MPO-ITP) and
leveraging on Lemma 2, Problem (MPO-ITP) can be solved
by iteratively solving Problem (3), which is convex and can be
readily solved via the general-purpose solvers like CVX [24].

B. An SOCP Reformulation of Problem (3)

In this section, we will transform Problem (3) into a
standard SOCP to evoke a more efficient resolution procedure.
To achieve this, we first introduce the following two results.

Lemma 3. The minimization of gTE(wτ ) over wτ can be
equivalently formulated into the following standard SOCP:

minimize
wτ , vτ , hτ

hτ

subject to hτ ∈ Hτ ,

where

Hτ ,



{
|rind,τ − rTτwτ | ≤ hτ

}
, for gATE(wτ ){

rind,τ − rTτwτ ≤ vτ , v2τ ≤ hτ
}
, for gSTE(wτ ){

rind,τ − rTτwτ ≤ hτ , 0 ≤ hτ
}
, for gDTE(wτ ){

rind,τ − rTτwτ ≤ vτ , 0 ≤ vτ , v2τ ≤ hτ
}
,

for gSDTE(wτ ).

Lemma 4. The minimization of |di,τ |3/2 over di,τ can be
equivalently formulated into the following standard SOCP:

minimize
di,τ , qi,τ , pi,τ , yi,τ

yi,τ

subject to |di,τ | ≤ qi,τ∥∥∥ 2qi,τ
pi,τ − yi,τ

∥∥∥
2
≤ pi,τ + yi,τ∥∥∥ 2pi,τ

qi,τ − 1

∥∥∥
2
≤ qi,τ + 1

0 ≤ pi,τ
0 ≤ yi,τ .

(4)

Proof: The proof is given in Appendix A.
Based on Lemma 3 and Lemma 4, Problem (3) can be

reformulated into a standard SOCP as given in Problem
(SOCP) to be solved in the kth iteration, by iteratively solving
which we can obtain a solution for Problem (MPO-ITP). The
overall algorithm is outlined in Algorithm 1.

IV. NUMERICAL SIMULATIONS

To validate the performance of our proposed model, the
following experiment is designed. We collect market data of
S&P 500 from YAHOO! Finance for one year from April
1st, 2020 to March 31st, 2021. We calculate the historical
returns of the S&P 500 index and the n = 503 assets as the
predictions for rind,τ and rτ , and choose fSDTE(wτ ) as the
tracking error measure. The data from April 1st, 2020 to April
30th, 2020 is chosen as the training set which is used to tune
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minimize
X

t+H∑
τ=t+1

hτ − γreturnrTτwτ + γtrade

n+1∑
i=1

[aiqi,τ +
biσi,τ

(Vi,τ/Bτ )1/2
yi,τ + cidi,τ ] + γholdslτ , F (X )

subject to X ∈ X(k)

(SOCP)

with X , {wτ , dτ , vτ , hτ , {qi,τ}, {pi,τ}, {yi,τ}, lτ} where lτ is an auxiliary variable and the following defined constraint

wi,τ ≥ 0, for i = 1, . . . n, ∀τ
n∑
i=1

w
(k)
i,τ

η + w
(k)
i,τ

+
η

(η + w
(k)
i,τ )

2
(wi,τ − w(k)

i,τ ) ≤ κ, ∀τ

dτ = wτ −wτ−1, 1Tdτ = 0, ∀τ
hτ ∈ Hτ , ∀τ
|di,τ | ≤ qi,τ , ∀i, ∀τ∥∥∥ 2qi,τ
pi,τ − yi,τ

∥∥∥
2
≤ pi,τ + yi,τ ,

∥∥∥ 2pi,τ
qi,τ − 1

∥∥∥
2
≤ qi,τ + 1, ∀i, ∀τ

0 ≤ pi,τ , 0 ≤ yi,τ , ∀i, ∀τ
− wn+1,τ ≤ lτ , 0 ≤ lτ , ∀i, ∀τ



, X(k)

Algorithm 1 The SCA Algorithm for MPO-ITP Design.
Require: H , rind,τ , rτ , {σi,τ}, {Vi,τ}, (τ = t+1, . . . , t+H),
{ai}, {bi}, {ci}, Bτ , s, γreturn, γtrade, γhold, η, κ, and ε

1: Set k = 0, and w(0).
2: repeat
3: X (k+1) = arg min

X∈X(k)
F (X ) (i.e., solving an SOCP)

4: k ← k + 1

5: until convergence

parameters by cross validation, and the data from May 1st,
2020 to March 31st, 2021 is chosen as the test set. For the
trading cost function, we approximate the daily volatility with
σi,τ = | log popeni,τ − log pclosei,τ |, where popeni,τ and pclosei,τ denote
the open price and close price of asset i at time τ , and choose
ai = 0.05%, bi = 1, ci = 0 for all i and τ . For the holding
cost function, s = 0.01% is set as the shorting cost rate.
For hyperparameters, we set H = 5, γtrade = 5, γhold = 5,
γreturn = 0.001, η = 10−4, and κ = 30. We assign the initial
portfolio value as B0 = 1, 000, 000 (in dollars) and the initial
portfolio weights as w0 = [0, . . . , 0, 1]T. To solve the inner
SOCP problems, we use MOSEK [21] and in each iteration,
the algorithm will stopped when ‖w(new)−w(old)‖1 ≤ ε, where
we set ε = 10−6.

The experiment is designed to compare the performance
of the proposed MPO method and the classical SPO method.
For each trading day, we optimize the trading strategies for
the next H trading days, with only the next trading day
executed, and we continuously optimize the portfolios for
eleven months to test the cumulative performance of the
strategies. The cumulative costs (including both trading costs
and holding costs) of SPO and MPO are shown in Figure 2,
which demonstrates that the MPO method can lead to lower
costs compared to the SPO counterpart over the eleven-month
period. Next, the index return and the cumulative returns of
SPO and MPO are depicted in Figure 3. It shows that both
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Figure 2. The cumulative cost comparison between MPO and SPO.

Table I
RUNNING TIME COMPARISON FOR MPO-ITP DESIGNS BY SOLVING

PROBLEM (3) AND PROBLEM (SOCP) IN SECONDS (S)

(H , κ) (1, 15) (1, 30) (5, 15) (5, 30) (10, 15) (10, 30)
CVX 10.19s 7.52s 85.34s 55.3s 146.35s 99.19s

MOSEK 4.13s 4.01s 22.10s 19.22s 90.34s 49.96s

SPO and MPO can outperform the index with MPO achieving
slightly higher return performance than SPO.

We further compare the running time of the SCA algorithm
with the inner problems solved either by CVX or by the
MOSEK solver. Comparison results with different parameters
of H and κ are shown in Table I. As expected, solving the
inner convex problems directly via MOSEK can make the
algorithm more efficient and scalable than solving it via CVX.

V. CONCLUSIONS

In this paper, a multi-period optimization model for index
tracking portfolio design has been proposed. The resulting
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Figure 3. The cumulative return comparison between MPO, SPO, and S&P
500 index.

nonconvex portfolio design problem is tackled via successive
convex approximation method, with which the problem can
be addressed by successively solving an SOCP subproblem.
Numerical simulations demonstrate that the proposed multi-
period method achieves comparable tracking performance with
lower costs compared to the single-period method, showing
that the proposed method is more favorable for practical
financial index tracking targets.

APPENDIX A
PROOF OF LEMMA 4

Proof: We first have the following equivalent transforms:

minimize
di,τ

|di,τ |3/2 ⇔
minimize
di,τ , qi,τ

q
3/2
i,τ

subject to |di,τ | ≤ qi,τ

⇔

minimize
di,τ , qi,τ , yi,τ

yi,τ

subject to |di,τ | ≤ qi,τ
q
3/2
i,τ ≤ yi,τ

⇔

minimize
di,τ , qi,τ , yi,τ

yi,τ

subject to |di,τ | ≤ qi,τ
q2i,τ ≤ yi,τq

1/2
i,τ

0 ≤ yi,τ

⇐⇒

minimize
di,τ , qi,τ , pi,τ , yi,τ

yi,τ

subject to |di,τ | ≤ qi,τ
q2i,τ ≤ yi,τpi,τ
p2i,τ ≤ qi,τ
0 ≤ pi,τ
0 ≤ yi,τ .

Based on the result that the rotated scalar Lorentz cone {w2 ≤
uv, u ≥ 0, v ≥ 0)} can be written as a standard SOCP
constraint ∥∥∥ 2w

u− v

∥∥∥
2
≤ u+ v. (5)

We obtain

q2i,τ ≤ yi,τpi,τ ⇔
∥∥∥ 2qi,τ
pi,τ − yi,τ

∥∥∥
2
≤ pi,τ + yi,τ ,

and
p2i,τ ≤ qi,τ ⇔

∥∥∥ 2pi,τ
qi,τ − 1

∥∥∥
2
≤ qi,τ + 1,

which completes the proof.
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