Computer Graphics |

Lecture 3: Coordinate spaces,
transformations, projection & rasterization

Xiaopei LIU

School of Information Science and Technology
ShanghaiTech University

1. Coordinate space

What is a coordinate system?

e A geometric system

— Use one or more numbers, or coordinates, to uniquely
determine the position of the points

yA
7 ST (10, 0)

T S— . // :

1, :

(=2.1) r:

\ GG Hee M -T-1 I

= (0,0) 06 / !

| | |] |

LY BN B A B >
H -1 ’

1, ’ y

(—1.5 —.25)- -3 (p

Coordinate spaces

e Why we need coordinate space?
— It tells you where a point in space locates

e Types of coordinate spaces in graphics
— Local coordinate space

— World coordinate space

— View coordinate space

— Clip (including projection) coordinate space
— Screen (device) coordinate space

Coordinate spaces

e Local(object) coordinate space

— Local coordinate space is the coordinate space that is
local to your object

— e

Coordinate spaces

e World coordinate space
— Areference coordinate system that is always fixed

— Local coordinate can be placed arbitrarily in world
coordinate

Coordinate spaces

e View coordinate space
— Camera space or eye space

— Transform world-space coordinates to coordinates that
are in front of the user's view (still 3D)

— e E——— E— — _..._E"._q.

Coordinate spaces

e Clip coordinate space
— Expect the coordinates to be within a specific range
— Any coordinate that falls outside this range is clipped
— Projection is done (3D to 2D)

R
]

Coordinate spaces

e Screen coordinate space
— The space for display

— The resulting coordinates are then sent to the rasterizer to
turn the continuous representation into fragments/pixels

X

Coordinate spaces

e The global picture

— Space transformations using matrices
* " 7.

o > \ J
1. LOCAL SPACE 2. WORLD SPACE

F 4
x MODEL MATRIX VIEW MATRIX

\ & =) ~ =3

{ i
. - VIEWPORT TRANSFORM .

PROJECTION MATRIX

\ k J g

3. VIEW SPACE 4. CLIP SPACE 5. SCREEN SPACE

10

2. Model transformations

Geometric model transformations

e A function whose domain and range are point sets

— Typical transformations /’\
e Translation Rotation ‘ Turn!
e Rotation
e Scaling

Reflection

e Reflection

* Projective

L EtC . Translation Slide!

Translation

e Move every point in a space by the same distance
In a given direction

e It leaves the distance between any two points
unchanged after the transformation

x' =z cosf —ysinh
Yy = zsinf + ycos 6.

z'| |cosf —sinf||x
Yy | sin® cos6 Yy

Scaling

e A separate scale factor for each axis direction
— Isotropic/uniform: scale factor is the same for all axis

directions

— Anisotropic: scale factor is different for different axis
directions

6 &

7 ff _x‘

0 v, O

) III." / \M\x v T 0 0 p T
5 f'f h\\‘-

I f.-' \) py
- s | : ______F___H—F""‘:‘ 0 O ‘vz pz

Syp

rvﬁ pﬂ:
Uy Py
VD>

15

All in matrix form?

e How can we represent these basic transforms with
the same matrix operation?
— Extend the transformation matrix by one dimension
e Translation in 3D

1 0 0 wv, Pz Pz 1 Vg
0O 1 0
Ivp = K R =p+vV
0 0 1 w, o P, + U,
0 0 0 1]JL1] i 1 i

16

All in matrix form?

e How can we represent these basic transforms with
the same matrix operations?

— Extend the transformation matrix by one dimension
e Rotation in 3D along x-dimension

(1 0 0 01rp,T
0 cosf —sind 0
0 sin@ cosé 0 p:
0 0 o0 1 JL1l

17

All in matrix form?

e How can we represent these basic transforms with
the same matrix operations?

— Extend the transformation matrix by one dimension

e Scalingin3D
v, 0 0 0] [P Ve Da |
S.p — vy, 0 Of]|py _ | vypy
0 0 Uz 0 pz UZPZ
0 0 0 1]|p1_ 1

18

All in matrix form?

e How can we represent these basic transforms with
the same matrix operations?

— Combine all transformations together to form the final
transformation

1 0 0 0]

v, 0 0 O 1 0 0 v,
T _ O v, 0 O[O cosé —siné O 0 1 0 v,
0 0 v, O 0 sin® cos® () 0 0 1 w,

0 o0 O 1Jp0 O O 1JLO0 O O 1

Scaling Rotation (x) Translation

19

Homogenous coordinates

e Given a coordinate frame
— Ambiguity between the representations of a point p=[p,,
p,, P.l" and avectorv=[v,, v, v,]'
— We can write any point as the inner product [s,, s, s,, 1][v,,
V,, Vs, Pl

V=[Vx’ vy’ Vz’ O]T p:[px’ pya pz’ 1]T

I/

— We can write any vector as the inner product [s,, s',, s',,

.
O][V,, ¥y, V3, Pol

— These four vectors of three s, values and a zero or one are
called the homogeneous coordinates of the point and vector

20

Homogeneous coordinates

* In general, homogeneous points obey the identity

X) Z
(xn ,}’Ta Z, lU) . (_: ia _)
wow w

— Homogenous coordinates can be used to see

e How a transformation matrix can describe how points
and vectors in one frame can be mapped to another
frame

— For more information

e https://www.tomdalling.com/blog/modern-opengl/explaining-
homogenous-coordinates-and-projective-geometry/

21

Coordinate transformation

e Identity transformation

— This transformation is represented by the identity matrix
— It maps each point and each vector to itself

o O O =
S O = O
o = O O
—_—0 O O

Coordinate transformation

e Translation transformation
— When applied to a point p, it translates p’s coordinates
— Translation only affects points, leaving vectors unchanged

Coordinate transformation

e Translation transformation

— Inhomogeneous matrix form, the translation
transformation is

(1 0 0 Ax)

| o 1 0 Ay

T(Ax, Ay, Az) = 0 0 1 As
\0 0 0 1/

Coordinate transformation

e Translation transformation

— When we consider the operation of a translation matrix on

a point
X X+ Ax

A

y y y+Ay
Z
|

> > >

z z+ Az

0
0
| —
0 1

0
l
0
0

o O O

1

— When we consider the operation of a translation matrix on
a vector: unchanged as expected

1 0 0 Ax X X
0 1 0 Ay yi|i |y
0 0 1 Az z | |z
0O 0 0 1 0 0 25

Coordinate transformation

e Scaling transformation

— Take a point or vector and multiply its components by
scale factorsinx, y, and z

— Differentiate between uniform scaling and non-uniform
scaling

S(x,y,z)=

O O = O
o N O O
_—O O O

S O O =

Coordinate transformation

e Rotation transformation
— Rotation about x-coordinate

e Rotation by an angle 0 about the x axis leaves the x
coordinate unchanged

¥

1 0 0 0
0 cosf®@ —sinf@ O

R .(0) = ,
x(©) 0 sind cos6 0
0 0 0 1

27
Positive angle follows the left-hand-side rule from y to z

Coordinate transformation

e Rotation transformation
— Rotation about y- and z-axes

cos 0 0 smné 0 cos® —sinfd 0 O

0 1 0 0 sin & cos f 0 0

y(®) —sinf® 0 cosf@ O :(0) 0 0 1 0
0 0 0 1 0 0 0 1

— An arbitrary rotation can be decomposed into rotations
about x-, y- and z-axes

R()=R,(O)R, ()R, (6)

Coordinate transformation

e Rotation about an arbitrary axis

— Consider a normalized direction vector a that gives the
axis to rotate around by angle 8 and a vector v to be
rotated, how to calculate the rotated vector v'?

29

Coordinate transformation

e Rotation about an arbitrary axis
— How to compute efficiently?

=2

Project v onto a

V.=a|v|cose =a(v-a)

Compute basis v,
Vi=V —V,

Compute basis v,
Vv, = (Vy X a)

Use planar rotation formula

/ .
V =V.+Vyc0s0 +Vv,s1n o,

Coordinate transformation

e Object transformation

— Can be decomposed into a series of translations, rotations
and scalings

— All these transformations are ordered series, and based on
the previous transformation results

— Forexample

3. View transformation

View transformation

e Whatis a view transformation?

— Transform the world coordinates into the view
(camera/eye) coordinates

| ",
.\ —> ¢
S sl

33

View transformation

e How to compute the view transform?
— Translation + rotation from world coordinate system
— World coordinate system forms an identity matrix

— Thus, view matrix is formed by camera coordinate system
+ camera translation in world coordinates

e View transformation matrix

’ R T/\ I = RTB
y View vector - v

M, =T RT
X
X

34

View transformation

e How to compute the view matrix?

— The Gram-Schmidt orthogonalization process

y
View vector
/ \m Translation + Rotation
z
Up vector ot Up vector _ Up vector
T JieW \e View vector
4 T

A T y View vector
S = =\

X
Cross product of

Cross product of
view and up vectors

view and x vectors 35

Model-view transformation

e In practice, we will combine the model
transformation and view transformation

— Model transformation: determine the final coordinates in
world coordinate system

— View transformation: transform the final world
coordinates to view (camera) coordinates

— Computation:
e M=M MmodeI=Mview (---Smodel Rmodel Tmodel)

view

36

3. Projection

A perspective camera

e Specify a perspective camera system

iz Look vector

i | Far clip plane

Near clip plane

38

Perspective projection

e Clipping & projection
— Alarge frustum that defines the clipping space

— All the coordinates inside this frustum is projected along
perspective projection line to the projection plane

— Farther objects are smaller

GETS oasmno;—o%

AR L

r\pov

39

Orthogonal projection

e Clipping & projection
— A cube-like frustum that defines the clipping space

— All the coordinates inside this frustum is projected along
the parallel lines to the projection plane

— Object sizes do not depend on the distance to the
projection plane FAR PLANE

N
. EAR PLANE |
height ;

1

Widgt— @

YW GETS DISCARDED

Constructing perspective projection

e A 3D pointin eye space is projected onto
the near plane (projection plane)

+Z

‘ (0,0,0) -n

+X

Top view of frustum

—n-Tr. Nn-I,
I - =
p z{ _z{
N Ye N
Up = - 41
z{' _z{'

Perspective projection representation

* Look at the perspective projection again

— T N T, —M Y M- Ye

d Ze —Ze d Ze —Ze

 Represented as homogeneous coordinates

:,f ; 'y T -'-.'-f"'- lip
I_ . II.II. — _'?Lflu_. ofectron © I_ s Ill_||'-_._'. —_— ”- I -I'-l|'f”|- .'-I-.
il II.':. ., Zypd o .'.I._Jl'fl'-l". fip

Perspective projection representation

e Normalized device coordinate (NDC)

— Range normalization
e x-coordinate: [l, r]to[-1, 1]
e y-coordinate: [b, t] to [-1, 1]
e z-coordinate: [n, f]to [-1, 1]

[e B

43

|:1|'1|_1}

Perspective projection representation

e Mapping to normalized device coordinates
X, 1-(-1) .
T, = Ty + B
+1-§ Tn F'—lf Tp+_
T4 X, _;,_1+"' BUDSECUIGILE. 4] 0L Te:a
L4 g=1— 2r :r'-!'_ 2r
e | r—{ r—I
Mapping from Xp 10 Xy r—1—92r —r—1 ,._I_.,r
- r—1 =1 r=1l
2z, T+l
el pel
_1={=l) ;
yn__f'?b—'yp‘f'j
2t
= 3 substitute (£, 1) for (y,.y
| r‘—b+'] I

2t t—b 2t
Pl = T e B
t=b-2t —t-b t+b
~ t=b ~ t=b E—=b
2y, t+b 44

il = B #b

Mapping from ¥p 10 ¥n

e Substitute x

Perspective projection representation

and y, with eye space coordinates

b = 2yp Y,
Tot—b t—b 2,
o 1t Ye
T T t4b
 t—b t—b
. 2n-y. t+b
T (t=b)(—z) t—b
2n
F—p Y t+b
N —Ze ot —b
2n t+b
t—b t_p

45

Perspective projection representation

 The projection matrix becomes
(z\ (2 0 =0\ [z,

UYe 0 % b UYe

t t—b

\w./ N0 0 -1 0/ \w
e Finding z is a little different from others

— z,in eye space is always projected to -n on the near plane

(.1‘(.\ [2 0 =0 \ [\
Ye 0 % %ﬁ 0 Ye 1z. + Bw.
- Zn = 2efWe = = (
ze 0 0 A B||= e
\we) \o 0 -1 o) \uw

46

Perspective projection representation

e Establishing relations for Aand B

— In eye space
_ Aze+ B
S

Zn

— To find the coefficients, A and B, we use the (z,, z,)
relation: (-n, -1) and (-f, 1)

(—An+B {
n —An+ B=-n (1)
_> .).
~Af+B —-Af+B=Ff
.

1

47

Perspective projection representation

e Final projection matrix
— Perspective projection for a projection frustum
— http://www.songho.ca/opengl/gl_projectionmatrix.html

2n r4l
(2% 0 0
2n t+b
0 t—b t—b 0
—(f+4+n) —2fn
O 0 f—n —1n

48

Orthogonal projection representation

e Similarly, we can obtain the homogeneous
representation for orthogonal projection

— http://www.songho.ca/opengl/gl_projectionmatrix.html

2 r4-l
(7= 0 0 ==

t+b

0 t—b 0 T t—b

-2 4n

0 0 f-n f-n

49

Foreshortening

e The visual effect or optical illusion from
perspective projection
— Cause an object or distance to appear shorter than it
actually is

Vanishing points

e Vanishing points
— An abstract point on the image plane

— 2D projections of a set of parallel lines in 3D space appear
to converge

e One-, two- & three-point perspective

Pl

i N

o

~—

Vanishing points

e An example of two-point perspective

Vanishing Point WVanishing Point

4. Transformations in OpenGL

Transformations in OpenGL

e Select transformation matrix
— Select model-view matrix in OpenGL

glMatrixMode(GL_MODELVIEW);

— Select projection matrix in OpenGL

glMatrixMode(GL_PROJECTION),

54

Transformations in OpenGL

e Object transformations
— Initial setting: model-view matrix is an identity matrix
— Translation

e glTranslatef(): multiply translation matrix to the
existing model-view matrix

— Rotation

e glRotatef(): multiply rotation matrix to the existing
model-view matrix
— Scaling

e glScalef(): multiply scaling matrix to the existing
model-view matrix

55

Coordinate transformation in OpenGL

e Maintaining transformation matrices in a stack

— Suppose we want to transform two objects, with different
transformations

— Object1:R R, T,

— Object 2: R,,T,,R,.T,,
— Stack implementation (glPushMatrix/glPopMatrix)

Pop from matrix stack Pop from matrix stack

* *
R1 ,2R1,1 T1,1 R2,2 T2,2 R2,1 T2,1
* *

Start drawing object 1
(load identity matrix)

*

Start drawing object 1
(load identity matrix)

Push into matrix stack

*

Push into matrix stack

56

Coordinate transformation in OpenGL

e Setting up 3D projection in OpenGL
— Orthogonal projection

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

glOrtho(left,right,bottom,top,zNear,zFar);

glMatrixMode(GL_MODELVIEW);
— Perspective projection

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluPerspective(fovy, aspect, zNear, zFar);

glMatrixMode(GL_MODELVIEW); 57

Coordinate transformation in OpenGL

e The whole transformation

Model transformation Projection
(glTranslatef(...), View transformation transformation

glRotatef(...), (gluLookAt(...)) (glOrtho(...),
glScalef(...)) gluPerspective(...))

J \

J

| |

glMatrixMode(GL_MODELVIEW); gIMatrixMode(GL_PROJECTION);

58

Coordinate transformation in OpenGL

e Customized transformation
— You can always multiply your own matrix in OpenGL

glMultMatrix (...);

e Provide customized model-view and projection transformations

— Steps

e 1. Select corresponding matrix mode

glMatrixMode (...);
e 2. Multiply your own transformation matrix

glMultMatrix (...);

59

Virtual camera in OpenGL

e Constructing virtual camera

— Compute the camera coordinates

Up vector
T JieW View vector

A T y View vector
o= =

X

e Up vector Up vector

Cross product of

Cross product of
view and up vectors

view and x vectors

— OpenGL camera function

e gluLookAt(GLdouble eyeX, GLdouble eyeY, GLdouble e
yeZ, GLdouble centerX, GLdouble centerY, GLdouble ce
nterZ, GLdouble upX, GLdouble upY, GLdouble up2);

60

Navigating in virtual world

e Euler angles
— Pitch: rotation around X axis
— Yaw : rotation around Y axis

— Roll : rotation around Z axis

Navigating in virtual world

e Camera translation

— Set/translate the eye position Up vector Center point to look at
e Enable “pitch” \L
— Change the center point vertically Eye postion

e Enable “roll”
— Rotate up vector about the view direction

e Enable “yaw”
— Change the center point horizontally

Vertex shader

e Set customized vertex attributes in parallel

— vertex position/color/normal/texture coordinates etc.

e Perform customized transformation and projection
— Build-in variables for default transformation/projection

— Can support customized transformation and projection
very freely (even nonlinear)

63

5. Rasterization

Rasterization

e Converting continuous representations into
discrete pixels (fragments)

Input: Output:
projected position of triangle vertices: Py, Py, P; set of pixels “covered” by the triangle

65

Line rasterization

e The process of converting continuous lines into
the representation by discrete pixels
— Determine which pixels are closest to the continuous line
— Determine the color of the pixels

66

Line rasterization

e Bresenham's line algorithm

— An algorithm that determines the rasterized points that
form a close approximation to a straight line between two
end points

67

Line rasterization

e Bresenham'’s line algorithm
— Line equation
y=mx+b
Y= (Ay):c+b

(Az)
(Az)y
0

(Ay)z + (Az)b
(Ay)z — (Az)y + (Az)b

— Let the last equation be a function of xand y:
f(z,y) =0= Az + By+C

e A=Ay
eB=—-Azx
oC = (Az)b

68

Line rasterization

e Bresenham's line algorithm
— Positive and negative half-planes

f(x)=y=.5x+1

0

\'4

f(x,y

Y

ive
-plane

Pos
Hal

Hh = O]
(—r

Negative |
0 |Halfi-plane

fi (%], y) <D0
Yy f(xX,y)=x-2y+2

69

Line rasterization

e Bresenham's line algorithm

— Starting from (x,,y,), determine the next point to be (x_+1,
Y,) Or (X,+1, Y +1)

— Intuition: the point should be chosen based upon which is
closer to the line at x _+1

f(x)=y=.5x+1

i N

—~

Evaluate the line function at the midpoint

flzo +1,y0 +1/2)

f<=0: select (x,*+1, ;)
otherwise

>0: select (xy+1, yo+1)
Yy f(x,y)=x—-2y+2 70

Line rasterization

e Colorinterpolation
— Linear interpolation based on x or y value, or distance

Point-inside-polygon test

e Point-in-triangle test
— Compute triangle edge equation from projected positions

of vertices
triangle vertices P,
Pi=(X.Y)) / ° elefofe e alele oo
e (o | o | 0| 0| o o\\ o | o | @
de = Xi+1 - Xi
dYi =Y, - Vi o o | o | o | o . \ e | o
o o | o | o 0}/- . 0\\ °* | o
Ei(x.y) =(x-X)dYi -(y-Y)dX: o | o | o | @ / o | o | o \ °
:A;'x + ny + C,‘ /
L -/ o | o | o | @ -\ [
Ei(x, y) = 0 : point on edge o o | e (/o e | e | o| o] @ \
> () : outside edge . | o el ol o! ol ol o ’A
< (0 :inside edge — P
e | o }/- o[o _o—F o | o | o
. A""’-ﬂ-’-:— e | o | o o| o | @ 72
Po

Point-inside-polygon test

e Test for whether a point is inside edge PoP1

e |
&

P
Pi=(X¢ X)) i a0 R A I e Y

& [] [] & L] [] .\& [] & []
dXi = Xi+1 - Xi
dE - YH_}] E [a [] [] L] [] \ i []

/ N
Eix,y) =(x-X)dY: -(y Y)dX: Pele e s / e | o | @ \ @
=A;X+BI}J+C; & L] [] ./. [L] [e L]
Ei(x,y) = 0 : point on edge | IR RS 2 (A (B I R '\
> () : outside edge o | o o | o | o | 0| 0| o _J)
< 0 :inside edge / _'_'__./ P;
o o Jo [o | o s e | o | o
S

Point-inside-polygon test

e Test for whether a point is inside edge P1P2

P;
P; = (Xi. }{,) & % . ° & & s ° @ &
® L] [] & [] ® L] \ ® & e
dXi = Xi+1 - Xi
d},f - YH_! : K @ L] [L] L] L]] L]
® 5 & ® .)/l] -\\ ®]
Ei(x,y) =(x-Xi)dY: - (y-Yi) dX: Beiie e s / s | w| e \ .
=A;x—|—ij+Cf /
: ™ @ & I/ & ® & @ l\ &
Ei(x,y) = O : point on edge el 7 S B i | il | | (e \(
> () : outside edge ° | o o | o o | o o o _A
e i " / P1
< 0 :1nside edge / =
L ® @ ':-‘_':"__‘-' L] L L]
L /"‘";-] L] L] L] ® I74

Point-inside-polygon test

e Test for whether a point is inside edge P2Po

Pi={X; ¥;) e | o o o o | e o o o

A
@ ® - & [] L L] [] &
dXi = Xi+1 - Xi /\
dK - YH_I) E e @ @ @ @ L] \ L

/ \ 2

Eix,y) =(x-X)dYi -(y-Y)dXi| ¢« | @ | o | o / e | o o \
=Aix+Biv+ (G /

* o | o | o -/ e | o | o | o | @

Ei(x,y) = 0 : point on edge IR [P A LS P

> () : outside edge e | o e o | o 0o o @

Ps

=5 | 7 = S P P e

< 0 :1nside edge

o | ool o e|le]| w] e o,

Point-inside-polygon test

P>
Sample point 5 = (sx, sv) isinside the e (o o | o | o | o o | | @ 6@
triangle if it is inside all three edges. ‘\
e (o | o | o 0o o fa\eo| e o
\
inside(sx, sy) = I - . \ ®1*
E{J (SJ:, 5}?) <0&& ® ® ® # -/- ® -\ o °®
\
Ei(sx,sy) <0 && / \
&] ® ® e L L ®
Ea (sx, 5y) < 0; /

e o | |]] [

Note: actual implementation of / ——— P,
e /o

inside(sx,sy) involves < checks based on
the triangle coverage edge rules (see i e el alal sl els
beginning of lecture) Po

Sample points inside triangle are highlighted red.

76

Scanline algorithm

e Incremental triangle traversal

P
Pi= (X Y)) s |e|[o|[o|[o|[e|e] o o]s
N, o (o [o | o | o @ e | o | o
dYi=Yi. - Y R T T A o | o
o o [o | o | @ \ °* | o
Ej(,l‘,}‘) =(I-X;) dY;‘ -{}‘-Y,‘) dX;'
=Aix+Biy+ Ci o o | o | o Wﬁ \ °
Ei(x,y) =0 : point on edge il B g

> () : outside edge o | o

< () :inside edge
® | o
Efficient incremental update: i | 2 Af
dEj (.I‘+f,}‘) = Hi (I.}') + dY; = Ei (I.}’) + Ai &y—
dEi(xy+1) = Ei(xy) - dXi = E:(xy) + Bi | ® P, il Il I M) I el

Scan line algorithm

e Modern approach: tiled triangle traversal
] 3 P,
Traverse triangle in blocks e« | ol o lumillal o . i o ! o | o
Test all samples in block against triangle in parallel ° e | o ° ° ® .\\ ° ® ™
ﬁ dvantages: L] ® L L] L] L 4 \ L] L]
- Simplicity of wide parallel execution overcomes e | o | o | 0| @ / e | o .\ o | o
cost of extra point-in-triangle tests (most / \
triangles cover many samples, especially when .| % | | / | .. \ .
super-sampling coverage) s | &l ol / == .\ -
- (Can skip sample testing work: entire block not o | o | o |/o|o!| o a| 0| @ \
in triangle (“early out”), entire block entirely
within triangle (“early in”) e By EAB AR __:.-—cm“,.!3 P,
. . & ® / ® e [} ____...---'I"' [] L] L]
- Additional advantaged related to accelerating b
occlusion computations (not discussed today) ® A"‘f e | o ® ° ° ® ™
Po

78
All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests

Color interpolation

e How to fill the color of the pixels inside the
triangle region?

— Linearly interpolate two colors
along two edges

— Linearly interpolate the final
color based on the interpolated
two colors

79

Color interpolation

e How to fill the color of the pixels inside the
triangle region?

— Use barycentric interpolation (another approach)

Barycentric Interpolation

A
percentred = —L =4

2 _ /1 “barycentric

A
B A
percent A 2 coordinates”
A3
A

percent blue =

Value at p:
(A, +Ax,+Ax,)/4

8o

Fragment/pixel shader

e Set customized color for each rasterized

fragment/pixel

— The process is done after the automatic rasterization

— Can transfer interpolated properties from vertex shader

varying vecd vColor;
void main(wvoid)
1

vColor-= gl Color;

gl Position = gl ModelViewProjectionMatrix * gl Vertex;
3
4

vertex shader

varying vecd vColor;
void main (void) \ .
color interpolated from the vertex

1
: gl_FragColor = vColor; automatically after the rasterization

fragment shader

void main() {

Py

81

Aliasing In rasterization

e Comparison between continuous and rasterized
signals

Reason for aliasing

 Represent a signal as a superposition of frequencies

He \./\/-\/\/\/—\

fix) = fi(x) + 0.75 fa(x) + 0.5 f4(x) \’\/\l\uﬂ \’\}[\’.\Uﬂ\’\j/\’\

83

Reason for aliasing

e Sampling: taking measurements of a signal

X0 x1 X2 X3 x4 8,

Reason for aliasing

e Reconstruction:

— Given a set of samples, how can we attempt to
reconstruct the original signal f(x)?

* Piecewise constant approximation

Sfx) m

85

X0 x1 x2 X3 x4

Reason for aliasing

e Reconstruction:

— Given a set of samples, how can we attempt to
reconstruct the original signal f(x)?

e Piecewise linear approximation

f(x) (\

f‘recon (x) v .'u"

X0 x1 X2 X3 x4

86

Reason for aliasing

e How can we represent the signal more accurately?
— Sample the signal more densely

X0 x1 x2 X3 x4 x5 X6 x7 X8

- - 8
------ = reconstruction via nearest ’

- = === = reconstruction via linear interpolation

Reason for aliasing

e Under-sampling high-frequency signals results in
aliasing

Low-frequency signal: sampled
Ji(x) / adequately for accurate
T " _CITTETT _ reconstruction

«— High-frequency signal is
insufficiently sampled:
reconstruction appears to be

from a low frequency signal

B
-

X

“Aliasing”: high frequencies in the original signal masquerade as 88
low frequencies after reconstruction (due to undersampling)

Antialiasing techniques

e Super-sampling
— Example: stratified sampling using four samples per pixel

@ & ® o
& ° ® o 9 =
o
& ® ® o
= @ o o 9
@ ® m
° ° ® 9 |lg
@ e @ o
& ® ® & o o
® & @
e ® P ©
® ® & o
® ® @
° ® ®
@ ® ® o
o » ™ o
® o ®
@ ® ® o
& & 8
® ® » o
® ® ®

89

Antialiasing techniques

e Super-sampling
— Resample to display’s resolution (box filter)

o | o o\o

o | o o \\

® o o o

o o o 0\ ®

o o o o \ |
\

Antialiasing techniques

e Supersampling
— Displayed result (note anti-aliased edges)

Antialiasing in OpenGL

e Multi-sampling
— Render in higher resolution and down sample by averaging

Antialiasing in OpenGL

e Enable multi-sample antialiasing in GLFW
— Create a window with multi-sample support
— Call glfwWindowHint before creating the window

glfwWindowHint(GLFW_SAMPLES, 4),

— Enable multi-sampling in OpenGL

glEnable(GL_MULTISAMPLE);

93

Next Lecture:

Geometric representations & triangulations

94

