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1. Coordinate space
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• A geometric system

– Use one or more numbers, or coordinates, to uniquely 

determine the position of the points

What is a coordinate system?
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• Why we need coordinate space?

– It tells you where a point in space locates

• Types of coordinate spaces in graphics

– Local coordinate space

– World coordinate space

– View coordinate space

– Clip (including projection) coordinate space

– Screen (device) coordinate space

Coordinate spaces
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• Local(object) coordinate space

– Local coordinate space is the coordinate space that is 

local to your object

Coordinate spaces
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• World coordinate space

– A reference coordinate system that is always fixed

– Local coordinate can be placed arbitrarily in world 

coordinate

Coordinate spaces
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• View coordinate space

– Camera space or eye space

– Transform world-space coordinates to coordinates that 

are in front of the user's view (still 3D)

Coordinate spaces
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• Clip coordinate space

– Expect the coordinates to be within a specific range

– Any coordinate that falls outside this range is clipped

– Projection is done (3D to 2D)

Coordinate spaces
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• Screen coordinate space

– The space for display

– The resulting coordinates are then sent to the rasterizer to 

turn the continuous representation into fragments/pixels

Coordinate spaces
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• The global picture

– Space transformations using matrices

Coordinate spaces
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2. Model transformations
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• A function whose domain and range are point sets

– Typical transformations

• Translation

• Rotation

• Scaling

• Reflection

• Projective

• etc.

Geometric model transformations
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• Move every point in a space by the same distance 

in a given direction

Translation
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• It leaves the distance between any two points 

unchanged after the transformation

Rotation
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• A separate scale factor for each axis direction

– Isotropic/uniform: scale factor is the same for all axis 

directions

– Anisotropic: scale factor is different for different axis 

directions

Scaling
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• How can we represent these basic transforms with 

the same matrix operation?

– Extend the transformation matrix by one dimension

• Translation in 3D

All in matrix form?
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• How can we represent these basic transforms with 

the same matrix operations?

– Extend the transformation matrix by one dimension

• Rotation in 3D along x-dimension

All in matrix form?
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• How can we represent these basic transforms with 

the same matrix operations?

– Extend the transformation matrix by one dimension

• Scaling in 3D

All in matrix form?
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• How can we represent these basic transforms with 

the same matrix operations?

– Combine all transformations together to form the final 

transformation

All in matrix form?
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Scaling Rotation (x) Translation



• Given a coordinate frame 

– Ambiguity between the representations of a point p=[px, 

py, pz]T and a vector v=[vx, vy, vz]T

– We can write any point as the inner product [s1, s2, s3, 1][v1 , 

v2 , v3 , po]T

– We can write any vector as the inner product [s’1, s’2, s’3, 

0][v1 , v2 , v3 , po]T

– These four vectors of three si values and a zero or one are 

called the homogeneous coordinates of the point and vector

Homogenous coordinates
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v=[vx, vy, vz, 0] T p=[px, py, pz, 1] T



• In general, homogeneous points obey the identity

– Homogenous coordinates can be used to see

• How a transformation matrix can describe how points 

and vectors in one frame can be mapped to another 

frame

– For more information
• https://www.tomdalling.com/blog/modern-opengl/explaining-

homogenous-coordinates-and-projective-geometry/

Homogeneous coordinates
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• Identity transformation

– This transformation is represented by the identity matrix

– It maps each point and each vector to itself

Coordinate transformation
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• Translation transformation

– When applied to a point p, it translates p’s coordinates

– Translation only affects points, leaving vectors unchanged

Coordinate transformation
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• Translation transformation

– In homogeneous matrix form, the translation 

transformation is

Coordinate transformation
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• Translation transformation

– When we consider the operation of a translation matrix on 

a point

– When we consider the operation of a translation matrix on 

a vector: unchanged as expected

Coordinate transformation
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• Scaling transformation

– Take a point or vector and multiply its components by 

scale factors in x, y, and z

– Differentiate between uniform scaling and non-uniform 

scaling

Coordinate transformation
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• Rotation transformation

– Rotation about x-coordinate

• Rotation by an angle θ about the x axis leaves the x 

coordinate unchanged

Coordinate transformation
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Positive angle follows the left-hand-side rule from y to z



• Rotation transformation

– Rotation about y- and z-axes

– An arbitrary rotation can be decomposed into rotations 

about x-, y- and z-axes

Coordinate transformation
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• Rotation about an arbitrary axis

– Consider a normalized direction vector a that gives the 

axis to rotate around by angle θ and a vector v to be 

rotated, how to calculate the rotated vector v’?

Coordinate transformation
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• Rotation about an arbitrary axis

– How to compute efficiently?

Coordinate transformation

Project v onto a

Compute basis v1

Compute basis v2

Use planar rotation formula
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• Object transformation

– Can be decomposed into a series of translations, rotations 

and scalings

– All these transformations are ordered series, and based on 

the previous transformation results

– For example

Coordinate transformation
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M=… S4T3R3S2T2S1R2R1T1



3. View transformation
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• What is a view transformation?

– Transform the world coordinates into the view 

(camera/eye) coordinates

View transformation
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• How to compute the view transform?

– Translation + rotation from world coordinate system

– World coordinate system forms an identity matrix

– Thus, view matrix is formed by camera coordinate system 

+  camera translation in world coordinates

• View transformation matrix

View transformation
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• How to compute the view matrix?
– The Gram-Schmidt orthogonalization process

View transformation

View vector

Up vector

x

y

Cross product of

view and x vectors

View vector

x

y
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Up vector
View vector

Up vector

x

Cross product of

view and up vectors

z

Translation + Rotation



• In practice, we will combine the model 

transformation and view transformation

– Model transformation: determine the final coordinates in 

world coordinate system

– View transformation: transform the final world 

coordinates to view (camera) coordinates

– Computation:

• M=Mview Mmodel=Mview (…Smodel Rmodel Tmodel)

Model-view transformation
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3. Projection

37



• Specify a perspective camera system

A perspective camera
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• Clipping & projection

– A large frustum that defines the clipping space

– All the coordinates inside this frustum is projected along 

perspective projection line to the projection plane 

– Farther objects are smaller

Perspective projection
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• Clipping & projection

– A cube-like frustum that defines the clipping space

– All the coordinates inside this frustum is projected along 

the parallel lines to the projection plane

– Object sizes do not depend on the distance to the 

projection plane 

Orthogonal projection
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• A 3D point in eye space is projected onto 

the near plane (projection plane)

Constructing perspective projection

Top view of frustum Side view of frustum
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• Look at the perspective projection again

• Represented as homogeneous coordinates

Perspective projection representation
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• Normalized device coordinate (NDC)

– Range normalization

• x-coordinate: [l, r] to [-1, 1]

• y-coordinate: [b, t] to [-1, 1]

• z-coordinate: [n, f] to [-1, 1]

Perspective projection representation
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• Mapping to normalized device coordinates

Perspective projection representation
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• Substitute xp and yp with eye space coordinates

Perspective projection representation
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• The projection matrix becomes

• Finding zn is a little different from others 

– ze in eye space is always projected to -n on the near plane

Perspective projection representation
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• Establishing relations for A and B

– In eye space

– To find the coefficients, A and B, we use the (ze, zn) 

relation: (-n, -1) and (-f, 1)

Perspective projection representation
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• Final projection matrix

– Perspective projection for a projection frustum

– http://www.songho.ca/opengl/gl_projectionmatrix.html

Perspective projection representation
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• Similarly, we can obtain the homogeneous 

representation for orthogonal projection

– http://www.songho.ca/opengl/gl_projectionmatrix.html

Orthogonal projection representation
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• The visual effect or optical illusion from 

perspective projection

– Cause an object or distance to appear shorter than it 

actually is

Foreshortening
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• Vanishing points

– An abstract point on the image plane

– 2D projections of a set of parallel lines in 3D space appear 

to converge

• One- , two- & three-point perspective

Vanishing points
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• An example of two-point perspective

Vanishing points

52



4. Transformations in OpenGL
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• Select transformation matrix

– Select model-view matrix in OpenGL

– Select projection matrix in OpenGL

Transformations in OpenGL
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glMatrixMode(GL_MODELVIEW);

glMatrixMode(GL_PROJECTION);



• Object transformations

– Initial setting: model-view matrix is an identity matrix

– Translation

• glTranslatef(): multiply translation matrix to the 

existing model-view matrix

– Rotation

• glRotatef(): multiply rotation matrix to the existing 

model-view matrix

– Scaling

• glScalef(): multiply scaling matrix to the existing 

model-view matrix

Transformations in OpenGL
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• Maintaining transformation matrices in a stack

– Suppose we want to transform two objects, with different 

transformations

– Object 1: R1,2R1,1 T1,1

– Object 2: R2,2 T2,2 R2,1 T2,1

– Stack implementation (glPushMatrix/glPopMatrix)

Coordinate transformation in OpenGL
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Push into matrix stack

Start drawing object 1

(load identity matrix)

R1,2R1,1T1,1

Pop from matrix stack

Push into matrix stack

R2,2 T2,2 R2,1T2,1

Pop from matrix stack

Start drawing object 1

(load identity matrix)



Coordinate transformation in OpenGL

57

• Setting up 3D projection in OpenGL

– Orthogonal projection

– Perspective projection

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

glOrtho(left,right,bottom,top,zNear,zFar);

glMatrixMode(GL_MODELVIEW);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluPerspective(fovy, aspect, zNear, zFar);

glMatrixMode(GL_MODELVIEW);



• The whole transformation

Coordinate transformation in OpenGL
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Model transformation

（glTranslatef(…), 
glRotatef(…), 

glScalef(…))

View transformation

（gluLookAt(…))

Projection 

transformation

（glOrtho(…), 
gluPerspective(…))

glMatrixMode(GL_MODELVIEW); glMatrixMode(GL_PROJECTION);



• Customized transformation

– You can always multiply your own matrix in OpenGL

• Provide customized model-view and projection transformations

– Steps

• 1. Select corresponding matrix mode

• 2. Multiply your own transformation matrix

Coordinate transformation in OpenGL
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glMultMatrix (…);

glMatrixMode (…);

glMultMatrix (…);



• Constructing virtual camera

– Compute the camera coordinates

– OpenGL camera function

• gluLookAt(GLdouble eyeX, GLdouble eyeY, GLdouble e

yeZ, GLdouble centerX, GLdouble centerY, GLdouble ce

nterZ, GLdouble upX, GLdouble upY, GLdouble upZ);

Virtual camera in OpenGL

View vector

Up vector

x

y

Cross product of

view and x vectors
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Up vector
View vector

Up vector

x

Cross product of

view and up vectors



• Euler angles

– Pitch: rotation around X axis

– Yaw : rotation around Y axis

– Roll : rotation around Z axis

Navigating in virtual world
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• Camera translation

– Set/translate the eye position

• Enable “pitch”

– Change the center point vertically

• Enable “roll”

– Rotate up vector about the view direction

• Enable “yaw”

– Change the center point horizontally

Navigating in virtual world
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Eye position

Up vector

x

Center point to look at



• Set customized vertex attributes in parallel

– vertex position/color/normal/texture coordinates etc.

• Perform customized transformation and projection

– Build-in variables for default transformation/projection

– Can support customized transformation and projection 

very freely (even nonlinear)

Vertex shader
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5. Rasterization
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• Converting continuous representations into 

discrete pixels (fragments)

Rasterization
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• The process of converting continuous lines into 

the representation by discrete pixels

– Determine which pixels are closest to the continuous line

– Determine the color of the pixels

Line rasterization
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• Bresenham's line algorithm

– An algorithm that determines the rasterized points that 

form a close approximation to a straight line between two 

end points

Line rasterization
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• Bresenham's line algorithm

– Line equation

– Let the last equation be a function of x and y:

Line rasterization
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• Bresenham's line algorithm

– Positive and negative half-planes

Line rasterization
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• Bresenham's line algorithm

– Starting from (x0,y0), determine the next point to be (x0+1, 

y0) or (x0+1, y0+1)

– Intuition: the point should be chosen based upon which is 

closer to the line at x0+1

Line rasterization
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Evaluate the line function at the midpoint

f<=0: select (x0+1, y0)

otherwise

f>0: select (x0+1, y0+1)



• Color interpolation

– Linear interpolation based on x or y value, or distance

Line rasterization
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• Point-in-triangle test

– Compute triangle edge equation from projected positions 

of vertices

Point-inside-polygon test
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triangle vertices



• Test for whether a point is inside edge P0P1 

Point-inside-polygon test

73



• Test for whether a point is inside edge P1P2 

Point-inside-polygon test
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• Test for whether a point is inside edge P2P0 

Point-inside-polygon test
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Point-inside-polygon test
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• Incremental triangle traversal

Scanline algorithm
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• Modern approach: tiled triangle traversal

Scan line algorithm

78



• How to fill the color of the pixels inside the 

triangle region?

– Linearly interpolate two colors 

along two edges

– Linearly interpolate the final 

color based on the interpolated

two colors

Color interpolation
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• How to fill the color of the pixels inside the 

triangle region?

– Use barycentric interpolation (another approach)

Color interpolation
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• Set customized color for each rasterized 

fragment/pixel

– The process is done after the automatic rasterization

– Can transfer interpolated properties from vertex shader

Fragment/pixel shader

81

vertex shader

fragment shader

color interpolated from the vertex 

automatically after the rasterization



• Comparison between continuous and rasterized

signals

Aliasing in rasterization
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• Represent a signal as a superposition of frequencies

Reason for aliasing
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• Sampling: taking measurements of a signal

Reason for aliasing

84



• Reconstruction: 

– Given a set of samples, how can we attempt to 

reconstruct the original signal f(x)?

• Piecewise constant approximation

Reason for aliasing
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• Reconstruction: 

– Given a set of samples, how can we attempt to 

reconstruct the original signal f(x)?

• Piecewise linear approximation

Reason for aliasing
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• How can we represent the signal more accurately?

– Sample the signal more densely

Reason for aliasing
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• Under-sampling high-frequency signals results in 

aliasing

Reason for aliasing

88



• Super-sampling

– Example: stratified sampling using four samples per pixel

Antialiasing techniques
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• Super-sampling

– Resample to display’s resolution (box filter)

Antialiasing techniques
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• Supersampling

– Displayed result (note anti-aliased edges)

Antialiasing techniques
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• Multi-sampling

– Render in higher resolution and down sample by averaging

Antialiasing in OpenGL
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• Enable multi-sample antialiasing in GLFW

– Create a window with multi-sample support

– Call glfwWindowHint before creating the window

– Enable multi-sampling in OpenGL

Antialiasing in OpenGL
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glfwWindowHint(GLFW_SAMPLES, 4);

glEnable(GL_MULTISAMPLE);
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Next Lecture : 

Geometric representations & triangulations


