
Xiaopei LIU

School of Information Science and Technology

ShanghaiTech University

Computer Graphics I

Lecture 3: Coordinate spaces,

transformations, projection & rasterization

1

1. Coordinate space

2

• A geometric system

– Use one or more numbers, or coordinates, to uniquely

determine the position of the points

What is a coordinate system?

3

• Why we need coordinate space?

– It tells you where a point in space locates

• Types of coordinate spaces in graphics

– Local coordinate space

– World coordinate space

– View coordinate space

– Clip (including projection) coordinate space

– Screen (device) coordinate space

Coordinate spaces

4

• Local(object) coordinate space

– Local coordinate space is the coordinate space that is

local to your object

Coordinate spaces

5

• World coordinate space

– A reference coordinate system that is always fixed

– Local coordinate can be placed arbitrarily in world

coordinate

Coordinate spaces

6

• View coordinate space

– Camera space or eye space

– Transform world-space coordinates to coordinates that

are in front of the user's view (still 3D)

Coordinate spaces

7

• Clip coordinate space

– Expect the coordinates to be within a specific range

– Any coordinate that falls outside this range is clipped

– Projection is done (3D to 2D)

Coordinate spaces

8

• Screen coordinate space

– The space for display

– The resulting coordinates are then sent to the rasterizer to

turn the continuous representation into fragments/pixels

Coordinate spaces

9

• The global picture

– Space transformations using matrices

Coordinate spaces

10

2. Model transformations

11

• A function whose domain and range are point sets

– Typical transformations

• Translation

• Rotation

• Scaling

• Reflection

• Projective

• etc.

Geometric model transformations

12

• Move every point in a space by the same distance

in a given direction

Translation

13

• It leaves the distance between any two points

unchanged after the transformation

Rotation

14

• A separate scale factor for each axis direction

– Isotropic/uniform: scale factor is the same for all axis

directions

– Anisotropic: scale factor is different for different axis

directions

Scaling

15

• How can we represent these basic transforms with

the same matrix operation?

– Extend the transformation matrix by one dimension

• Translation in 3D

All in matrix form?

16

• How can we represent these basic transforms with

the same matrix operations?

– Extend the transformation matrix by one dimension

• Rotation in 3D along x-dimension

All in matrix form?

17

• How can we represent these basic transforms with

the same matrix operations?

– Extend the transformation matrix by one dimension

• Scaling in 3D

All in matrix form?

18

• How can we represent these basic transforms with

the same matrix operations?

– Combine all transformations together to form the final

transformation

All in matrix form?

19

Scaling Rotation (x) Translation

• Given a coordinate frame

– Ambiguity between the representations of a point p=[px,

py, pz]T and a vector v=[vx, vy, vz]T

– We can write any point as the inner product [s1, s2, s3, 1][v1 ,

v2 , v3 , po]T

– We can write any vector as the inner product [s’1, s’2, s’3,

0][v1 , v2 , v3 , po]T

– These four vectors of three si values and a zero or one are

called the homogeneous coordinates of the point and vector

Homogenous coordinates

20

v=[vx, vy, vz, 0] T p=[px, py, pz, 1] T

• In general, homogeneous points obey the identity

– Homogenous coordinates can be used to see

• How a transformation matrix can describe how points

and vectors in one frame can be mapped to another

frame

– For more information
• https://www.tomdalling.com/blog/modern-opengl/explaining-

homogenous-coordinates-and-projective-geometry/

Homogeneous coordinates

21

• Identity transformation

– This transformation is represented by the identity matrix

– It maps each point and each vector to itself

Coordinate transformation

22

• Translation transformation

– When applied to a point p, it translates p’s coordinates

– Translation only affects points, leaving vectors unchanged

Coordinate transformation

23

• Translation transformation

– In homogeneous matrix form, the translation

transformation is

Coordinate transformation

24

• Translation transformation

– When we consider the operation of a translation matrix on

a point

– When we consider the operation of a translation matrix on

a vector: unchanged as expected

Coordinate transformation

25

• Scaling transformation

– Take a point or vector and multiply its components by

scale factors in x, y, and z

– Differentiate between uniform scaling and non-uniform

scaling

Coordinate transformation

26

• Rotation transformation

– Rotation about x-coordinate

• Rotation by an angle θ about the x axis leaves the x

coordinate unchanged

Coordinate transformation

27

Positive angle follows the left-hand-side rule from y to z

• Rotation transformation

– Rotation about y- and z-axes

– An arbitrary rotation can be decomposed into rotations

about x-, y- and z-axes

Coordinate transformation

28

• Rotation about an arbitrary axis

– Consider a normalized direction vector a that gives the

axis to rotate around by angle θ and a vector v to be

rotated, how to calculate the rotated vector v’?

Coordinate transformation

29

• Rotation about an arbitrary axis

– How to compute efficiently?

Coordinate transformation

Project v onto a

Compute basis v1

Compute basis v2

Use planar rotation formula

30

• Object transformation

– Can be decomposed into a series of translations, rotations

and scalings

– All these transformations are ordered series, and based on

the previous transformation results

– For example

Coordinate transformation

31

M=… S4T3R3S2T2S1R2R1T1

3. View transformation

32

• What is a view transformation?

– Transform the world coordinates into the view

(camera/eye) coordinates

View transformation

33

• How to compute the view transform?

– Translation + rotation from world coordinate system

– World coordinate system forms an identity matrix

– Thus, view matrix is formed by camera coordinate system

+ camera translation in world coordinates

• View transformation matrix

View transformation

34

z

View vector

x

y
� = ����

�� = �
�	
�

R, T

• How to compute the view matrix?
– The Gram-Schmidt orthogonalization process

View transformation

View vector

Up vector

x

y

Cross product of

view and x vectors

View vector

x

y

35

Up vector
View vector

Up vector

x

Cross product of

view and up vectors

z

Translation + Rotation

• In practice, we will combine the model

transformation and view transformation

– Model transformation: determine the final coordinates in

world coordinate system

– View transformation: transform the final world

coordinates to view (camera) coordinates

– Computation:

• M=Mview Mmodel=Mview (…Smodel Rmodel Tmodel)

Model-view transformation

36

3. Projection

37

• Specify a perspective camera system

A perspective camera

38

• Clipping & projection

– A large frustum that defines the clipping space

– All the coordinates inside this frustum is projected along

perspective projection line to the projection plane

– Farther objects are smaller

Perspective projection

39

• Clipping & projection

– A cube-like frustum that defines the clipping space

– All the coordinates inside this frustum is projected along

the parallel lines to the projection plane

– Object sizes do not depend on the distance to the

projection plane

Orthogonal projection

40

• A 3D point in eye space is projected onto

the near plane (projection plane)

Constructing perspective projection

Top view of frustum Side view of frustum

41

• Look at the perspective projection again

• Represented as homogeneous coordinates

Perspective projection representation

42

• Normalized device coordinate (NDC)

– Range normalization

• x-coordinate: [l, r] to [-1, 1]

• y-coordinate: [b, t] to [-1, 1]

• z-coordinate: [n, f] to [-1, 1]

Perspective projection representation

43

• Mapping to normalized device coordinates

Perspective projection representation

44

• Substitute xp and yp with eye space coordinates

Perspective projection representation

45

• The projection matrix becomes

• Finding zn is a little different from others

– ze in eye space is always projected to -n on the near plane

Perspective projection representation

46

• Establishing relations for A and B

– In eye space

– To find the coefficients, A and B, we use the (ze, zn)

relation: (-n, -1) and (-f, 1)

Perspective projection representation

47

• Final projection matrix

– Perspective projection for a projection frustum

– http://www.songho.ca/opengl/gl_projectionmatrix.html

Perspective projection representation

48

• Similarly, we can obtain the homogeneous

representation for orthogonal projection

– http://www.songho.ca/opengl/gl_projectionmatrix.html

Orthogonal projection representation

49

• The visual effect or optical illusion from

perspective projection

– Cause an object or distance to appear shorter than it

actually is

Foreshortening

50

• Vanishing points

– An abstract point on the image plane

– 2D projections of a set of parallel lines in 3D space appear

to converge

• One- , two- & three-point perspective

Vanishing points

51

• An example of two-point perspective

Vanishing points

52

4. Transformations in OpenGL

53

• Select transformation matrix

– Select model-view matrix in OpenGL

– Select projection matrix in OpenGL

Transformations in OpenGL

54

glMatrixMode(GL_MODELVIEW);

glMatrixMode(GL_PROJECTION);

• Object transformations

– Initial setting: model-view matrix is an identity matrix

– Translation

• glTranslatef(): multiply translation matrix to the

existing model-view matrix

– Rotation

• glRotatef(): multiply rotation matrix to the existing

model-view matrix

– Scaling

• glScalef(): multiply scaling matrix to the existing

model-view matrix

Transformations in OpenGL

55

• Maintaining transformation matrices in a stack

– Suppose we want to transform two objects, with different

transformations

– Object 1: R1,2R1,1 T1,1

– Object 2: R2,2 T2,2 R2,1 T2,1

– Stack implementation (glPushMatrix/glPopMatrix)

Coordinate transformation in OpenGL

56

Push into matrix stack

Start drawing object 1

(load identity matrix)

R1,2R1,1T1,1

Pop from matrix stack

Push into matrix stack

R2,2 T2,2 R2,1T2,1

Pop from matrix stack

Start drawing object 1

(load identity matrix)

Coordinate transformation in OpenGL

57

• Setting up 3D projection in OpenGL

– Orthogonal projection

– Perspective projection

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

glOrtho(left,right,bottom,top,zNear,zFar);

glMatrixMode(GL_MODELVIEW);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluPerspective(fovy, aspect, zNear, zFar);

glMatrixMode(GL_MODELVIEW);

• The whole transformation

Coordinate transformation in OpenGL

58

Model transformation

（glTranslatef(…),
glRotatef(…),

glScalef(…))

View transformation

（gluLookAt(…))

Projection

transformation

（glOrtho(…),
gluPerspective(…))

glMatrixMode(GL_MODELVIEW); glMatrixMode(GL_PROJECTION);

• Customized transformation

– You can always multiply your own matrix in OpenGL

• Provide customized model-view and projection transformations

– Steps

• 1. Select corresponding matrix mode

• 2. Multiply your own transformation matrix

Coordinate transformation in OpenGL

59

glMultMatrix (…);

glMatrixMode (…);

glMultMatrix (…);

• Constructing virtual camera

– Compute the camera coordinates

– OpenGL camera function

• gluLookAt(GLdouble eyeX, GLdouble eyeY, GLdouble e

yeZ, GLdouble centerX, GLdouble centerY, GLdouble ce

nterZ, GLdouble upX, GLdouble upY, GLdouble upZ);

Virtual camera in OpenGL

View vector

Up vector

x

y

Cross product of

view and x vectors

60

Up vector
View vector

Up vector

x

Cross product of

view and up vectors

• Euler angles

– Pitch: rotation around X axis

– Yaw : rotation around Y axis

– Roll : rotation around Z axis

Navigating in virtual world

61

• Camera translation

– Set/translate the eye position

• Enable “pitch”

– Change the center point vertically

• Enable “roll”

– Rotate up vector about the view direction

• Enable “yaw”

– Change the center point horizontally

Navigating in virtual world

62

Eye position

Up vector

x

Center point to look at

• Set customized vertex attributes in parallel

– vertex position/color/normal/texture coordinates etc.

• Perform customized transformation and projection

– Build-in variables for default transformation/projection

– Can support customized transformation and projection

very freely (even nonlinear)

Vertex shader

63

5. Rasterization

64

• Converting continuous representations into

discrete pixels (fragments)

Rasterization

65

• The process of converting continuous lines into

the representation by discrete pixels

– Determine which pixels are closest to the continuous line

– Determine the color of the pixels

Line rasterization

66

• Bresenham's line algorithm

– An algorithm that determines the rasterized points that

form a close approximation to a straight line between two

end points

Line rasterization

67

• Bresenham's line algorithm

– Line equation

– Let the last equation be a function of x and y:

Line rasterization

68

• Bresenham's line algorithm

– Positive and negative half-planes

Line rasterization

69

• Bresenham's line algorithm

– Starting from (x0,y0), determine the next point to be (x0+1,

y0) or (x0+1, y0+1)

– Intuition: the point should be chosen based upon which is

closer to the line at x0+1

Line rasterization

70

Evaluate the line function at the midpoint

f<=0: select (x0+1, y0)

otherwise

f>0: select (x0+1, y0+1)

• Color interpolation

– Linear interpolation based on x or y value, or distance

Line rasterization

71

• Point-in-triangle test

– Compute triangle edge equation from projected positions

of vertices

Point-inside-polygon test

72

triangle vertices

• Test for whether a point is inside edge P0P1

Point-inside-polygon test

73

• Test for whether a point is inside edge P1P2

Point-inside-polygon test

74

• Test for whether a point is inside edge P2P0

Point-inside-polygon test

75

Point-inside-polygon test

76

• Incremental triangle traversal

Scanline algorithm

77

• Modern approach: tiled triangle traversal

Scan line algorithm

78

• How to fill the color of the pixels inside the

triangle region?

– Linearly interpolate two colors

along two edges

– Linearly interpolate the final

color based on the interpolated

two colors

Color interpolation

79

• How to fill the color of the pixels inside the

triangle region?

– Use barycentric interpolation (another approach)

Color interpolation

80

• Set customized color for each rasterized

fragment/pixel

– The process is done after the automatic rasterization

– Can transfer interpolated properties from vertex shader

Fragment/pixel shader

81

vertex shader

fragment shader

color interpolated from the vertex

automatically after the rasterization

• Comparison between continuous and rasterized

signals

Aliasing in rasterization

82

• Represent a signal as a superposition of frequencies

Reason for aliasing

83

• Sampling: taking measurements of a signal

Reason for aliasing

84

• Reconstruction:

– Given a set of samples, how can we attempt to

reconstruct the original signal f(x)?

• Piecewise constant approximation

Reason for aliasing

85

• Reconstruction:

– Given a set of samples, how can we attempt to

reconstruct the original signal f(x)?

• Piecewise linear approximation

Reason for aliasing

86

• How can we represent the signal more accurately?

– Sample the signal more densely

Reason for aliasing

87

• Under-sampling high-frequency signals results in

aliasing

Reason for aliasing

88

• Super-sampling

– Example: stratified sampling using four samples per pixel

Antialiasing techniques

89

• Super-sampling

– Resample to display’s resolution (box filter)

Antialiasing techniques

90

• Supersampling

– Displayed result (note anti-aliased edges)

Antialiasing techniques

91

• Multi-sampling

– Render in higher resolution and down sample by averaging

Antialiasing in OpenGL

92

• Enable multi-sample antialiasing in GLFW

– Create a window with multi-sample support

– Call glfwWindowHint before creating the window

– Enable multi-sampling in OpenGL

Antialiasing in OpenGL

93

glfwWindowHint(GLFW_SAMPLES, 4);

glEnable(GL_MULTISAMPLE);

94

Next Lecture :

Geometric representations & triangulations

