
Xiaopei LIU

School of Information Science and Technology

ShanghaiTech University

Computer Graphics I

Lecture 4: Geometric representation &

triangulation

1

What is geometry?

2

• 1. The study of shapes, sizes, patterns, and

positions

• 2. The study of spaces where some quantities

(lengths, angles, etc.) can be measured

What is geometry?

3

How can we describe geometry?

4

• Examples of geometry

The best way to encode geometry on computer?

5

• Examples of geometry

The best way to encode geometry on computer?

6

• Examples of geometry

The best way to encode geometry on computer?

7

• Examples of geometry

The best way to encode geometry on computer?

8

• Examples of geometry

The best way to encode geometry on computer?

9

• Examples of geometry

The best way to encode geometry on computer?

10

• No “best” choice—geometry is hard!

The best way to encode geometry on computer?

11

• Many ways to digitally encode geometry

Many ways to digitally encode geometry

12

1. Different geometric representations

13

“Implicit” representations of geometry

14

Many implicit representations in graphics

15

• I’m thinking of an implicit surface f(x,y,z)=0.

Find any point on it.

Prons. & cons. of implicit surfaces

(a special case)

16

• I have a new surface f(x,y,z) = x2 + y2 + z2 – 1.

I want to see if a point is inside it.

Prons. & cons. of implicit surfaces

17

“Explicit” representations of geometry

18

Many explicit representations in graphics

19

• Sampling an explicit surface

Prons. & cons. of explicit surfaces

20

• Check if this point is inside the torus

Prons. & cons. of explicit surfaces

21

• Some representations work better than others—

depends on the task!

• Different representations will also be better suited

to different types of geometry.

• Let’s take a look at some common

representations used in computer graphics.

Conclusion

22

• Algebraic surfaces (implicit)

Different representations

23

• Constructive solid geometry (implicit)

Different representations

24

• Blobby surfaces (implicit)

Different representations

25

• Level set methods (implicit)

Different representations

26

• Level sets from medical data (CT, MRI, etc.)

– Level sets encode, e.g., constant tissue density

Different representations

27

• Level sets in physical simulation

– Level set encodes distance to air-liquid boundary

Different representations

28

• Fractals (implicit)

Different representations

29

• Iterated function systems

Different representations

30

• Implicit representations - pros & cons

Different representations

31

• Point cloud (explicit)

Different representations

32

• Polygon mesh (explicit)

Different representations

33

• Triangle mesh (explicit)

Different representations

34

• Bernstein basis

Different representations

35

• Bézier curves (explicit)

Different representations

36

• Higher-order Bézier curves?

Different representations

37

• B-Spline curves (Explicit)

Different representations

38

• Rational B-splines (explicit)

Different representations

39

• NURBS (explicit)

Different Representations

40

• NURBS Surface (explicit)

Different representations

41

• Subdivision (explicit)

Different representations

42

• Subdivision Surfaces (Explicit)

Different representations

43

2. Geometric surface

44

• How to evaluate the surface tangent?

Tangent vector of a surface

45

• How to evaluate the surface normal?

– A normal is a vector orthogonal to all tangents

Surface normal

46

• Which direction does the normal point?

Surface normal

47

• Curvature is the rate of change in normal

Curvature

48

• Standard definition: radius of curvature

Curvature

49

3. Mesh representation

50

• Converting continuous surface representation into

an assembly of discrete primitive elements

– Triangles/quadrilaterals

– A certain organization of primitive elements

Discretizing geometric representations

51

• Representation of shapes with a collection of

geometrical primitives

– Triangles/quadrilaterals

– Vertices, faces, normals, collectivity (topology)

Mesh

52

• Polygon mesh

– A collection of vertices, edges and faces

• Define the shape of a polyhedral object in 3D computer

graphics and solid modeling

• The faces usually consist of triangles, quadrilaterals, or

other simple convex polygons

Mesh organization

53

• Vertex-vertex representation

Mesh organization

54

• Face-vertex representation

Mesh organization

55

• Using vertex array:

– Vertex position

– Vertex color

– Vertex normal

– Vertex texture coordinates

• Using index array:

– Face index: triangle elements, quadrilateral elements, etc.

Draw meshes in OpenGL

56

• Traditional way of drawing geometries

Draw meshes in OpenGL

glBegin(GL_TRIANGLES); // draw a cube with 12

triangles

// front face =================

glVertex3fv(v0); // v0-v1-v2

glVertex3fv(v1);

glVertex3fv(v2);

glVertex3fv(v2); // v2-v3-v0

glVertex3fv(v3);

glVertex3fv(v0);

// right face =================

glVertex3fv(v0); // v0-v3-v4

glVertex3fv(v3);

glVertex3fv(v4);

glVertex3fv(v4); // v4-v5-v0

glVertex3fv(v5);

glVertex3fv(v0);

// draw other 4 faces

glEnd();
57

• Using vertex array
– Transmit vertex array to GPU at once

– Activate vertex array

– Specify vertex data

– Draw meshes based on face list index

– Deactivate vertex array

Draw meshes in OpenGL

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

glNormalPointer(3, GL_FLOAT, 0, normals);

…

glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_BYTE, indices);

glDisableClientState(GL_VERTEX_ARRAY); 58

• An example code in OpenGL

– http://www.songho.ca/opengl/gl_vertexarray.html

Draw meshes in OpenGL

59

4. Triangulation

60

Triangulation

• What is triangulation

– In trigonometry and geometry, triangulation is the

process of determining the location of a point by

forming triangles to it from known points

61

Triangulation

• More examples

– Triangulations of 3D surfaces

62

Why we need triangulation?

• Interpolation

– Interpolate interior continuous values

– Surface approximation

– Solving partial differential equations

• Representing objects based on sample points

– No topology among sample points

• Surface reconstruction

– Fitting triangular meshes from dense/sparse points

63

Why we need triangulation?

• FEM mesh illustration

– For CAD/CAE, simulation

– Mostly triangulated mesh

64

Delaunay triangulation

• Delaunay triangulation for a point-set P:

– A triangulation DT(P) such that no point in P is inside

the circumcircle of any triangle in DT(P)

– Delaunay triangulations maximize the minimum angle

of all the angles of the triangles in the triangulation

65

Delaunay triangulation

• Property for Delaunay triangulation

– Every triangle in a Delaunay triangulation has an empty

open circumdisk

– Every point set has a Delaunay triangulation

– The Delaunay triangulation is unique if and only if no four

or more points lie on a common empty circle

66

Delaunay triangulation

• Flipping

– If two triangles do not meet the Delaunay condition,

switching the connection produces two triangles with

Delaunay condition

67

Delaunay triangulation

• How to make a Delaunay triangulation

– Incremental construction

• Incrementally create a triangulation by point insertion

• Select a convex quadrilateral

• Perform flipping

• Scan until there is no non-Delaunay triangulation left

68

Delaunay triangulation

• How to make a Delaunay triangulation

– Incremental construction

69

Delaunay triangulation

• Incremental Delaunay

70

Delaunay triangulation

• Incremental Delaunay

– Find triangles in conflict

71

Delaunay triangulation

• Incremental Delaunay

– Delete triangles in conflict

72

Delaunay triangulation

• Incremental Delaunay

– Triangulate the hole

73

Voronoi diagram

• A Voronoi diagram is

– a partitioning of a plane into regions based on

distance to points

– for each seed there is a corresponding region

consisting of all points closer to that seed than to any

other

• These regions are called

Voronoi cells

74

Voronoi diagram

• Definition
– Let Ω be a connected region in R2，Let S = {s1, s2, . . . , sn} be a

set of n points in Ω

– We use ||p − q|| to denote the Euclidean distance between two

points p and q

– For si ∈ S, we define: R(S; si) = {p ∈Ω : ||p − si|| < ||p − sj ||, sj ∈Ω,
sj != si}

– In other words, R(S; si) is the set of points nearer to si than to

any other point in S

– The region Ω is partitioned into R(S; s1), R(S; s2), . . . , R(S; sn)

and their boundaries

– This partition is called the Voronoi diagram of S, denoted by

V(S)
75

Voronoi diagram

• Voronoi region

– R(S; si) is called the Voronoi region of si

• Voronoi edge

– The line segments shared by the boundaries of two

Voronoi regions are called Voronoi edges

• Voronoi vertex

– The points shared by the boundaries of three or more

Voronoi regions

Voronoi region

Voronoi edge

Voronoi vertex 76

Voronoi diagram

• How to compute Voronoi Diagram?

– Half-space partition

– For example, 2 points and 3 points partition

77

Voronoi diagram

• How to compute Voronoi Diagram?

– The Voronoi region associated to point �� is the
intersection of the half-spaces defined by the

perpendicular bisectors

78

Voronoi diagram

• Why we need Voronoi diagram?

– Voronoi diagram of a set of points is dual to

its Delaunay triangulation

– Connecting the centers of the circumcircles produces

the Voronoi diagram

79

Voronoi diagram

• From Voronoi diagram to Delaunay triangulation

80

Voronoi diagram

• From Voronoi diagram to Delaunay triangulation

81

Voronoi diagram

• From Voronoi diagram to Delaunay triangulation

82

Voronoi diagram

• From Voronoi diagram to Delaunay triangulation

83

Voronoi diagram

• From Voronoi diagram to Delaunay triangulation

84

Voronoi diagram

• From Voronoi diagram to Delaunay triangulation

85

Constrained Delaunay triangulation

• A constrained Delaunay triangulation is a

generalization of the Delaunay triangulation

– Force certain required segments into the

triangulation

– Often a constrained Delaunay triangulation contains

edges that do not satisfy the Delaunay condition

86

Constrained Delaunay triangulation

• Chew's second algorithm

– A Delaunay refinement algorithm for

creating quality constrained

Delaunay triangulations

– Chew's second algorithm has been

adopted as a two-dimensional mesh

generator due to practical

advantages in certain cases

87

Triangulation toolbox

• Triangle (CMU)

– A Two-Dimensional Quality Mesh Generator and

Delaunay Triangulator

– https://www.cs.cmu.edu/~quake/triangle.html

88

• Computational geometric algorithms library

– A software project that provides easy access to efficient

and reliable geometric algorithms in the form of a C++

library

– https://www.cgal.org/

CGAL

89

90

Next Lecture :

Geometric modeling 1

