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What is geometry?
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What is geometry?

e 1. The study of shapes, sizes, patterns, and
positions

e 2. The study of spaces where some quantities
(lengths, angles, etc.) can be measured




How can we describe geometry?
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The best way to encode geometry on computer?

e Examples of geometry
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The best way to encode geometry on computer?

* No "“best” choice—geometry is hard!

“I hate meshes.
| cannot believe how hard this is.
Geometry is hard.”

—David Baraff

Senior Research Scientist
Pixar Animation Studios




Many ways to digitally encode geometry

e Many ways to digitally encode geometry

m EXPLICIT

point cloud
polygon mesh
subdivision, NURBS
L-systems

m IMPLICIT
- level set
- algebraic surface

12

m Each choice best suited to a different task/type of geometry



1. Different geometric representations




“Implicit” representations of geometry

m Points aren’t known directly, but satisfy some relationship
m E.g., unit sphere is all points x such that x2+y2+2z2=1

m More generally, f(x,y,z) =0
f(x,y)
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Many implicit representations in graphics

algebraic surfaces
constructive solid geometry
level set methods
blobby surfaces
fractals

(Will see some of these a bit later.)




Prons. & cons. of implicit surfaces

e I'm thinking of an implicit surface f(x,y, z)=o.
Find any point on it.

My function was f(x,y,z) =-1.23 (aplane):  (a special case)
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Implicit surfaces make some tasks hard (like sampling).



Prons. & cons. of implicit surfaces

e | have a new surface f(x,y,z) = x2 + y2 + z2 -1,
| want to see if a point is inside it.

How about the point (3/4,1/2,1/4)?
9/16 + 4/16 + 1/16 = 7/8 1y
7/8<1
YES.

- (3/4,1/2,1/4)
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Implicit surfaces make other tasks easy (like inside/outside tests).



“Explicit” representations of geometry

All points are given directly

m E.g., pointsonsphere are (cos(u) sin(v), sin(u) sin(v), cos(v)),
for0<u<2rand 0<ov <

m More generally: f : R* — R?; (u,v) — (z,y, 2)

v

m (Might have a bunch of these maps, e.g., one per triangle.) 5



Many explicit representations in graphics

triangle meshes

polygon meshes
subdivision surfaces

NURBS
point clouds



Prons. & cons. of explicit surfaces

e Sampling an explicit surface

My surfaceisf(u,v)=(1.23,u,v).

Just plug in any values (u,v)!

/

Z

B

Explicit surfaces make some tasks easy (like sampling).



Prons. & cons. of explicit surfaces

e Check if this pointis inside the torus

My surface is f(u,v) = ( 2+cos(u))cos(v), 2+cos(u))sin(v), sin(u) )
How about the point (1,4/3,5/4)?4 y

...NO!

Explicit surfaces make other tasks hard (like inside/outside tests).



Conclusion

e Some representations work better than others—
depends on the task!

e Different representations will also be better suited
to different types of geometry.

e Let's take alook at some common
representations used in computer graphics.



Different representations

e Algebraic surfaces (implicit)

m Surfaceis zero set of a polynomial in X, y, z (“algebraic variety”)

OOV

o+’ 2i =1 — T2 y?) 42t = ;;2+qi+z ~-1)° =
What about more compllcated shapes? 2273 +

23

N Very hard to come up with polynomlals'



Different representations

e Constructive solid geometry (implicit)

m Build more complicated shapes via Boolean operations

m Basic operations:
- UNION

DIFFERENCE

m Then chain together expressions: @ (XAY)\ (UUVUW)
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Different representations

e Blobby surfaces (implicit)
m Instead of Booleans, gradually blend surfaces together:
c28800000ec
De
m Easier tounderstand in 2D: Ced

e K
(;Ef)p('l“) = 5 |z—p| (Gaussian centered at p) |

f — qf)p -+ C,bg (Sum of Gaussians centered at different points) f

&



Different representations

e Level set methods (implicit)

m Implicit surfaces have some nice features (e.g., merging/splitting)

m But, hard to describe complex shapes in closed form
m Alternative: store a grid of values approximating function
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m Surface is found where interpolated values equal zero
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m Provides much more explicit control over shape (like a texture)



Different representations

e |evel sets from medical data (CT, MRI, etc.)
— Level sets encode, e.qg., constant tissue density




Different representations

e Level sets in physical simulation
— Level set encodes distance to air-liquid boundary




Different representations

e Fractals (implicit)

m No precise definition; exhibit self-similarity, detail at all scales
m New “language” for describing natural phenomena
m Hard to control shape!

29



Different representations

e Iterated function systems

30




Different representations

e Implicit representations - pros & cons

Pros:

- description can be very compact (e.g., a polynomial)
easy to determine if a point is in our shape (just plug it in!)

other queries may also be easy (e.g., distance to surface)
for simple shapes, exact description/no sampling error
easy to handle changes in topology (e.g., fluid)

Cons:

- expensive to find all points in the shape (e.g., for drawing)
- Verydifficult to model complex shapes



Different representations

e Point cloud (explicit)

m Easiest representation: list of points (x,y,z)

m Often augmented with normals

m Easily represent any kind of geometry
m Useful for LARGE datasets (>>1 point/pixel)
m Difficult to draw in undersampled regions

m Hard to do processing / simulation

Co3




Different representations

* Polygon mesh (explicit)

m Store vertices and polygons (most often triangles or quads)
m Easier to do processing/simulation, adaptive sampling

m More complicated data structures

|

Perhaps most common representation in graphics

33



Different representations

 Triangle mesh (explicit)
m Store vertices as triples of coordinates (x,y,z)
m Store triangles as triples of indices (i,j,k)
m E.g.,tetrahedron:  VERTICES TRIANGLES

2
X y = i j k
0: -1 -1 -1 0 2 1 0
12 1=l 1 0 3 2
2z 1 1 =1 F 0 1
3: -1 1 1 F 1. 2

m (Can think of triangle as affine map from plane into space:

v £(u,v) :

P

a = . -
b

34

f(u,v) =a + u(b-a) + v(c-a)




Different representations

Bernstein basis

m Why limit ourselves to just affine functions?
m More flexibility by using higher-order polynomials

m Instead of usual basis (1, x, X2, X3, ...), use Bernstein basis:
degree  0=<x<1 “n choose k"

BY 4 (F) = (”) zF(1 — )" "

35

|
1
2



Different representations

e Bezier curves (explicit)

m ABezier curve s a curve expressed in the Bernstein basis:

- V'
'7(3) = Z Bn,k(s)pk
k=0

control points

P1

m Forn=1,just getaline segment!
m Forn=3, get“cubic Bezier”:
m [Important features: e
1. interpolates endpoints
2. tangent to end segments

3. contained in convex hull (nice for rasterization)

P2

36

P3



Different representations

e Higher-order Bézier curves?

m Whatif we want a more interesting curve?
m High-degree Bernstein polynomials don’t interpolate well:

37

Very hard to control!



Different representations

e B-Spline curves (Explicit)

m [nstead, use many low-order Bézier curve (B-spline)
m Widely-used technique in software (lllustrator, Inkscape, etc.)

C

m Formally, piecewise Bezier curve:
B-spline

\ U — Uj
v(u) = — ], Ui < U< Uiyl
/ Ujp1 — Uqg
Beézier 38

m Location of u; parameters are called “knots”



Different representations

e Rational B-splines (explicit)

m B-Splines can't exactly represent conics—not even the circle!

m Solution: interpolate in homogeneous coordinates, then
project back to the plane: v

39

Result is called a rational B-spline.



Different Representations

e NURBS (explicit)

m (N)on-(U)niform (R)ational (B)-(S)pline
- knots at arbitrary locations (non-uniform)
- expressed in homogeneous coordinates (rational)
- piecewise polynomial curve (B-Spline)

m Homogeneous coordinate w controls “strength” of a vertex:

A
/ N\w=2.5
[{f N
i L\
/ e S ;\‘ oy 2
_.P"’ff' !,f’{f ?\%’M
® /i:;" ;::’f | 3
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Different representations

e NURBS Surface (explicit)

m Much more common than using NURBS for curves
m Use tensor product of scalar NURBS curves to get a patch:

S(u,v) := Ni(u)N;(v)p;;
m Multiple NURBS patches form a surface

m Pros: easy to evaluate, exact conics, high degree of continuity
m Cons: Hard to piece together patches, hard to edit (many DOFs)



Different representations

e Subdivision (explicit)

Alternative starting point for B-spline curves: subdivision
Start with control curve

Insert new vertex at each edge midpoint

Update vertex positions according to fixed rule

For careful choice of averaging rule, yields smooth curve

- Average with “next” neighbor (Chaikin): quadratic B-spline

- Lane-Riesenfeld: B-spline curve of any degree




Different representations

e Subdivision Surfaces (Explicit)

Start with coarse polygon mesh (“control cage”)
Subdivide each element

Update vertices via local averaging
Many possible rule:

- (Catmull-Clark (quads)

- Loop (triangles)

Common issues:

- interpolating or approximating?
- continuity at vertices?

Easier than NURBS for modeling; harder to guarantee continuity



2. Geometric surface

44



Tangent vector of a surface

e How to evaluate the surface tangent?

45




Surface normal

e How to evaluate the surface normal?
— A normal is a vector orthogonal to all tangents

N
N-df(X)=0 VX




Surface normal

e Which direction does the normal point?

IN|=1
N-df(X)=0 VX

47

orientable nonorientable



Curvature

e Curvature is the rate of change in normal

48



Curvature

e Standard definition: radius of curvature

49



3. Mesh representation




Discretizing geometric representations

e Converting continuous surface representation into
an assembly of discrete primitive elements
— Triangles/quadrilaterals
— A certain organization of primitive elements

51



Mesh

e Representation of shapes with a collection of
geometrical primitives
— Triangles/quadrilaterals
— Vertices, faces, normals, collectivity (topology)

52



Mesh organization

 Polygon mesh
— A collection of vertices, edges and faces

e Define the shape of a polyhedral object in 3D computer
graphics and solid modeling

e The faces usually consist of triangles, quadrilaterals, or
other simple convex polygons

vl

//M@@@

vertices edges faces surfaces

.
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Mesh organization

e Vertex-vertex representation

vO
vl
v2
v3
vd
vd
vb
v7
v8
vo

Vertex-Vertex Meshes (VV)

Vertex List

10,00
11,0,0
11,1,0
10,1,0
10,01
11,0,1
11,1,1
10,1,1
5,5,
' 5,.5,0

vivSvdv3ivo

v2vbe vSv0O v

v3v7vevlvo
v2ve v7v4 v9

vSvOv3v7 v8

vbvl vOv4 v8
vZv2vliv5v8

viv3v2ve v8

vd vS v v7

vOvlv2v3

vo
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Mesh organization

e Face-vertex representation

o
fn
f2
f3
4
f5
6

f8

o

fo
f11
f12
f3
f14
f15

Face-Vertex Meshes

Face List
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Draw meshes in OpenGL

e Using vertex array:
— Vertex position
— Vertex color
— Vertex normal
— Vertex texture coordinates

e Using index array:
— Face index: triangle elements, quadrilateral elements, etc.

56



Draw meshes in OpenGL

e Traditional way of drawing geometries

glBegin (GL TRIANGLES) ;

glVertex3fv (vO0) ;
glVertex3fv (vl);

glVertex3fv (v2);

v
v

glVertex3fv(v2); ;
glVertex3fv(v3); é v0

glVertex3fv (v0); vi

glVertex3fv (v0) ; ;
glVertex3fv (v3); V7
glVertex3fv (v4) ; A B v

glVertex3fv (v4);
glVertex3fv (v));
glVertex3fv (v0);

v2

v3

glEnd () ; >



Draw meshes in OpenGL

e Using vertex array

— Transmit vertex array to GPU at once

— Activate vertex array
glEnableClientState(GL_VERTEX_ARRAY);

— Specify vertex data

glVertexPointer(3, GL_FLOAT, 0, vertices);
glColorPointer(3, GL_FLOAT, 0, colors);
glNormalPointer(3, GL_FLOAT, 0, normals);

— Draw meshes based on face list index
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_ BYTE, indices);
— Deactivate vertex array

glDisableClientState(GL_VERTEX_ARRAY); 58



Draw meshes in OpenGL

e An example code in OpenGL

— http://www.songho.ca/opengl/gl vertexarray.html

GLfloat vertices[] = {...};

GLubyte indices[] = {90,1,2, 2,3,0,
9,3,4, 4,5,0,
9,5,6, 6,1,6,
1,6,7, 7,2,1,
7,4,3, 3,2,7,
4,7,6, 6,5,4};

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, @, vertices);

glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED BYTE,

glDisableClientState(GL_VERTEX_ARRAY);

indices);

59



4. Triangulation




Triangulation

e What is triangulation

— In trigonometry and geometry, triangulation is the

process of determining the location of a point by
forming triangles to it from known points
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Triangulation

e More examples
— Triangulations of 3D surfaces
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Why we need triangulation?

e Interpolation

— Interpolate interior continuous values
— Surface approximation
— Solving partial differential equations

 Representing objects based on sample points
— No topology among sample points

e Surface reconstruction

— Fitting triangular meshes from dense/sparse points

63
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Delaunay triangulation

e Delaunay triangulation for a point-set P:

— A triangulation DT(P) such that no pointin P is inside
the circumcircle of any triangle in DT(P)

— Delaunay triangulations maximize the minimum angle
of all the angles of the triangles in the triangulation

65



Delaunay triangulation

e Property for Delaunay triangulation

— Every triangle in a Delaunay triangulation has an empty
open circumdisk

— Every point set has a Delaunay triangulation

— The Delaunay triangulation is unique if and only if no four
or more points lie on a common empty circle

66




Delaunay triangulation

e Flipping
— If two triangles do not meet the Delaunay condition,
switching the connection produces two triangles with
Delaunay condition

67



Delaunay triangulation

e How to make a Delaunay triangulation
— Incremental construction
 Incrementally create a triangulation by point insertion
e Select a convex quadrilateral
e Perform flipping
e Scan until there is no non-Delaunay triangulation left

68



Delaunay triangulation

e How to make a Delaunay triangulation
— Incremental construction




Delaunay triangulation

e Incremental Delaunay







Delaunay triangulation

e Incremental Delaunay
— Delete triangles in conflict




Delaunay triangulation

e Incremental Delaunay
— Triangulate the hole

73



Voronoi diagram

e A Voronoidiagram is

— a partitioning of a plane into regions based on
distance to points

— for each seed there is a corresponding region
consisting of all points closer to that seed than to any
other

 These regions are called
Voronoi cells




Voronoi diagram

e Definition

Let Q be a connected regioninR? , LetS={s s, ...,s }bea
set of n pointsin Q

We use ||p - q|| to denote the Euclidean distance between two
points pandq

Fors; €S, we define: R(S;s) ={p € Q:|[p-si|<|lp-sl, s;€Q,
S| =5}

In other words, R(S; s,) is the set of points nearer to s, than to
any other pointin S

The region Q is partitioned into R(S; s.), R(S; s,), . . ., R(S; s,)
and their boundaries

This partition is called the Voronoi diagram of S, denoted by
V(S)

75



Voronol diagram

e Voronoi region
— R(S; s)) is called the Voronoi region of s.
e Voronoi edge

— The line segments shared by the boundaries of two
Voronoiregions are called Voronoi edges

e VVoronoi vertex

— The points shared by the boundaries of three or more
Voronoi regions

Voronoi edge

Voronoi region

Voronoi vertex

76



Voronoli diagram

e How to compute Voronoi Diagram?
— Half-space partition
— For example, 2 points and 3 points partition
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Voronoi diagram

e How to compute Voronoi Diagram?

— The Voronoi region associated to point pi is the
intersection of the half-spaces defined by the
perpendicular bisectors
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Voronoi diagram

e Why we need Voronoi diagram?

— Voronoi diagram of a set of points is dual to
its Delaunay triangulation

— Connecting the centers of the circumcircles produces
the Voronoi diagram

79



Voronoi diagram

e From Voronoi diagram to Delaunay triangulation




Voronoi diagram

e From Voronoi diagram to Delaunay triangulation




Voronoi diagram

e From Voronoi diagram to Delaunay triangulation




Voronoi diagram

e From Voronoi diagram to Delaunay triangulation
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Voronoi diagram

e From Voronoi diagram to Delaunay triangulation

84



Voronoi diagram

e From Voronoi diagram to Delaunay triangulation

85



Constrained Delaunay triangulation

e A constrained Delaunay triangulation is a
generalization of the Delaunay triangulation

— Force certain required segments into the
triangulation

— Often a constrained Delaunay triangulation contains
edges that do not satisfy the Delaunay condition

86



Constrained Delaunay triangulation

e Chew's second algorithm

— A Delaunay refinement algorithm for
creating quality constrained
Delaunay triangulations

— Chew's second algorithm has been
adopted as a two-dimensional mesh

generator due to practical
advantages in certain cases
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Triangulation toolbox

e Triangle (CMU)

— A Two-Dimensional Quality Mesh Generator and
Delaunay Triangulator

— https://www.cs.cmu.edu/~quake/triangle.html

iangle

Jonathan Richard Shewchuk

B Computer Science Division

= g University of California at Berkeley
T Berkeley, California 94720-1776

jrs@cs.berkeley.edu

A Two-Dimensional Cuality Mesh Generator and Delaunay Triangulator.
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CGAL

e Computational geometric algorithms library

— A software project that provides easy access to efficient
and reliable geometric algorithms in the form of a C++
library

— https://www.cgal.org/




Next Lecture:

Geometric modeling 1



