## **Computer Graphics I**

# Lecture 4: Geometric representation & triangulation

Xiaopei LIU

School of Information Science and Technology ShanghaiTech University

### What is geometry?

The 9.5. Let  $\triangle ABC$  be inscribed in a semicircle with diameter

 $\bar{A}$   $\bar{C}$ .

Then  $\angle ABC$  angle.



#### Proof:

#### Statement

- 1. Draw radius OB. Then  $OB = OC = O_2$
- 2.  $m\angle OBC = m\angle BCA$  $m\angle OBA = m\angle BAC$
- 3.  $m\angle ABC = m\angle OBA +$
- 4.  $m\angle ABC + m\angle BC = 180$
- 5.  $m\angle ABC + m \angle OBA = 180$
- 6. 2 m 180
- 7. m = 90
- & LABC is a right angle

#### Given

- sceles Triangle Theorem
- 3. Anga Postulate
- 4. The sum des of a triangle is 180
- 5. Substitution (Im-
- 6. Substitution (line 3)
- 7. Division Property of Equality
- 8. Definition of Right Angle

### What is geometry?

- 1. The study of shapes, sizes, patterns, and positions
- 2. The study of spaces where some quantities (lengths, angles, etc.) can be *measured*







### How can we describe geometry?

#### **IMPLICIT**

$$x^2 + y^2 = 1$$

#### LINGUISTIC

#### "unit circle"

#### **EXPLICIT**





#### **TOMOGRAPHIC**



**DYNAMIC** 



#### **CURVATURE**

$$\kappa = 1$$

#### SYMMETRIC



#### DISCRETE

















No "best" choice—geometry is hard!

"I hate meshes.
I cannot believe how hard this is.
Geometry is hard."

—David Baraff
Senior Research Scientist
Pixar Animation Studios

### Many ways to digitally encode geometry

Many ways to digitally encode geometry

#### EXPLICIT

- point cloud
- polygon mesh
- subdivision, NURBS
- L-systems
- ...

#### IMPLICIT

- level set
- algebraic surface
- ...
- Each choice best suited to a different task/type of geometry



### 1. Different geometric representations

### "Implicit" representations of geometry

- Points aren't known directly, but satisfy some relationship
- E.g., unit sphere is all points x such that  $x^2+y^2+z^2=1$
- More generally, f(x,y,z) = 0



### Many implicit representations in graphics



#### Prons. & cons. of implicit surfaces

I'm thinking of an implicit surface f(x,y,z)=o.
 Find any point on it.

My function was f(x,y,z) = -1.23 (a plane): (a special case)



Implicit surfaces make some tasks hard (like sampling).

### Prons. & cons. of implicit surfaces

I have a new surface f(x,y,z) = x² + y² + z² - 1.
 I want to see if a point is inside it.

How about the point (3/4, 1/2, 1/4)?



17

### "Explicit" representations of geometry

- All points are given directly
- **E.g., points on sphere are**  $(\cos(u)\sin(v),\sin(u)\sin(v),\cos(v)),$  for  $0 \le u < 2\pi$  and  $0 \le v \le \pi$
- More generally:  $f: \mathbb{R}^2 \to \mathbb{R}^3; (u,v) \mapsto (x,y,z)$



■ (Might have a bunch of these maps, e.g., one per triangle.)

### Many explicit representations in graphics

triangle meshes

polygon meshes

subdivision surfaces

NURBS

point clouds







19

(Will see some of these a bit later.)

### Prons. & cons. of explicit surfaces

Sampling an explicit surface



Explicit surfaces make some tasks easy (like sampling).

### Prons. & cons. of explicit surfaces

• Check if this point is inside the torus

My surface is  $f(u,v) = (2+\cos(u))\cos(v)$ ,  $2+\cos(u))\sin(v)$ ,  $\sin(u)$ )

How about the point  $(1,\sqrt{3},5/4)$ ?  $(1,\sqrt{3},5/4)$ 

#### Conclusion

 Some representations work better than others depends on the task!

 Different representations will also be better suited to different types of geometry.

 Let's take a look at some common representations used in computer graphics.

- Algebraic surfaces (implicit)
  - Surface is zero set of a polynomial in x, y, z ("algebraic variety")





$$x^2 + y^2 + z^2 = 1$$



$$x^{2}+y^{2}+z^{2}=1$$
  $(R-\sqrt{x^{2}+y^{2}})^{2}+z^{2}=r^{2}$   $(x^{2}+\frac{9y^{2}}{4}+z^{2}-1)^{3}=$ 

$$(x^2 + \frac{9y^2}{4} + z^2 - 1)^3 =$$

What about more complicated shapes?

$$x^2z^3 + \frac{9y^2z^3}{80}$$





Very hard to come up with polynomials!

- Constructive solid geometry (implicit)
  - Build more complicated shapes via Boolean operations
  - Basic operations:



■ Then chain together expressions:  $(X \cap Y) \setminus (U \cup V \cup W)$ 

- **Blobby surfaces (implicit)** 
  - Instead of Booleans, gradually blend surfaces together:



Easier to understand in 2D:

$$\phi_p(x) \coloneqq e^{-|x-p|^2}$$
 (Gaussian centered at p)

$$f := \phi_p + \phi_q$$

 $f:=\phi_p+\phi_q$  (Sum of Gaussians centered at different points)



- Level set methods (implicit)
  - Implicit surfaces have some nice features (e.g., merging/splitting)
  - But, hard to describe complex shapes in closed form
  - Alternative: store a grid of values approximating function



- Surface is found where interpolated values equal zero
- Provides much more explicit control over shape (like a texture)

- Level sets from medical data (CT, MRI, etc.)
  - Level sets encode, e.g., constant tissue density



- Level sets in physical simulation
  - Level set encodes distance to air-liquid boundary



- Fractals (implicit)
  - No precise definition; exhibit self-similarity, detail at all scales
  - New "language" for describing natural phenomena
  - Hard to control shape!







• Iterated function systems



Implicit representations - pros & cons

#### Pros:

- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)

#### ■ Cons:

- expensive to find all points in the shape (e.g., for drawing)
- very difficult to model complex shapes

Point cloud (explicit)

■ Easiest representation: list of points (x,y,z)

Often augmented with normals

Easily represent any kind of geometry

Useful for LARGE datasets (>>1 point/pixel)

Difficult to draw in undersampled regions

Hard to do processing / simulation



- Polygon mesh (explicit)
  - Store vertices and polygons (most often triangles or quads)
  - Easier to do processing/simulation, adaptive sampling
  - More complicated data structures
  - Perhaps most common representation in graphics



- Triangle mesh (explicit)
  - Store vertices as triples of coordinates (x,y,z)
  - Store triangles as triples of indices (i,j,k)
  - **■** E.g., tetrahedron:

|   | VERTICES |    |    | TRIANGLES |   |   |
|---|----------|----|----|-----------|---|---|
|   | x        | Y  | Z  | i         | j | k |
| : | -1       | -1 | -1 | 0         | 2 | 1 |
| : | 1        | -1 | 1  | 0         | 3 | 2 |
| : | 1        | 1  | -1 | 3         | 0 | 1 |
| : | -1       | 1  | 1  | 3         | 1 | 2 |



34

■ Can think of triangle as *affine* map from plane into space:



- Bernstein basis
  - Why limit ourselves to just affine functions?
  - More flexibility by using higher-order polynomials
  - Instead of usual basis  $(1, x, x^2, x^3, ...)$ , use Bernstein basis:



- Bézier curves (explicit)
  - A Bézier curve is a curve expressed in the Bernstein basis:

$$\gamma(s) := \sum_{k=0}^n B_{n,k}(s) p_k^{\text{control points}}$$

- For n=1, just get a line segment!
- For n=3, get "cubic Bézier":
- **■** Important features:
  - 1. interpolates endpoints
  - 2. tangent to end segments
  - 3. contained in convex hull (nice for rasterization)



- Higher-order Bézier curves?
  - What if we want a more interesting curve?
  - High-degree Bernstein polynomials don't interpolate well:



- B-Spline curves (Explicit)
  - Instead, use many low-order Bézier curve (B-spline)
  - Widely-used technique in software (Illustrator, Inkscape, etc.)



**■** Formally, piecewise Bézier curve:

B-spline 
$$\gamma(u) := \gamma_i \left( \frac{u - u_i}{u_{i+1} - u_i} \right), \qquad u_i \le u < u_{i+1}$$

Location of u<sub>i</sub> parameters are called "knots"

- Rational B-splines (explicit)
  - B-Splines can't exactly represent *conics*—not even the circle!

■ Solution: interpolate in homogeneous coordinates, then project back to the plane:  $w_{\uparrow}$ 



- NURBS (explicit)
  - (N)on-(U)niform (R)ational (B)-(S)pline
    - knots at arbitrary locations (non-uniform)
    - expressed in homogeneous coordinates (rational)
    - piecewise polynomial curve (B-Spline)
  - Homogeneous coordinate w controls "strength" of a vertex:



- NURBS Surface (explicit)
  - Much more common than using NURBS for curves
  - Use tensor product of scalar NURBS curves to get a patch:

$$S(u,v) := N_i(u)N_j(v)p_{ij}$$

Multiple NURBS patches form a surface





- Pros: easy to evaluate, exact conics, high degree of continuity
- Cons: Hard to piece together patches, hard to edit (many DOFs)

- Subdivision (explicit)
  - Alternative starting point for B-spline curves: *subdivision*
  - Start with control curve
  - Insert new vertex at each edge midpoint
  - Update vertex positions according to fixed rule
  - For careful choice of averaging rule, yields smooth curve
    - Average with "next" neighbor (Chaikin): quadratic B-spline
    - Lane-Riesenfeld: B-spline curve of any degree



- Subdivision Surfaces (Explicit)
  - Start with coarse polygon mesh ("control cage")
  - Subdivide each element
  - Update vertices via local averaging
  - Many possible rule:
    - Catmull-Clark (quads)
    - Loop (triangles)
    - ...
  - Common issues:
    - interpolating or approximating?
    - continuity at vertices?
  - Easier than NURBS for modeling; harder to guarantee continuity





## 2. Geometric surface

## Tangent vector of a surface

• How to evaluate the surface tangent?



### Surface normal

- How to evaluate the surface normal?
  - A normal is a vector orthogonal to all tangents

$$N \cdot df(X) = 0 \ \forall X$$



## Surface normal

Which direction does the normal point?

$$|N| = 1$$

$$N \cdot df(X) = 0 \ \forall X$$



47

## Curvature

• Curvature is the rate of *change in normal* 



## Curvature

• Standard definition: radius of curvature



# 3. Mesh representation

## Discretizing geometric representations

- Converting continuous surface representation into an assembly of discrete primitive elements
  - Triangles/quadrilaterals
  - A certain organization of primitive elements



### Mesh

- Representation of shapes with a collection of geometrical primitives
  - Triangles/quadrilaterals
  - Vertices, faces, normals, collectivity (topology)



## Mesh organization

#### Polygon mesh

- A collection of vertices, edges and faces
  - Define the shape of a polyhedral object in 3D computer graphics and solid modeling
  - The faces usually consist of triangles, quadrilaterals, or other simple convex polygons



## Mesh organization

• Vertex-vertex representation

#### **Vertex-Vertex Meshes (VV)**

| Vertex List |         |                |
|-------------|---------|----------------|
| v0          | 0,0,0   | v1 v5 v4 v3 v9 |
| v1          | 1,0,0   | v2 v6 v5 v0 v9 |
| v2          | 1,1,0   | v3 v7 v6 v1 v9 |
| v3          | 0,1,0   | v2 v6 v7 v4 v9 |
| v4          | 0,0,1   | v5 v0 v3 v7 v8 |
| v5          | 1,0,1   | v6 v1 v0 v4 v8 |
| v6          | 1,1,1   | v7 v2 v1 v5 v8 |
| v7          | 0,1,1   | v4 v3 v2 v6 v8 |
| v8          | .5,.5,1 | v4 v5 v6 v7    |
| v9          | .5,.5,0 | v0 v1 v2 v3    |



## Mesh organization

Face-vertex representation

#### Face-Vertex Meshes



#### • Using vertex array:

- Vertex position
- Vertex color
- Vertex normal
- Vertex texture coordinates

#### • Using index array:

- Face index: triangle elements, quadrilateral elements, etc.

### Traditional way of drawing geometries

```
glBegin(GL TRIANGLES); // draw a cube with 12
triangles
// front face =========
glVertex3fv(v0); // v0-v1-v2
glVertex3fv(v1);
glVertex3fv(v2);
glVertex3fv(v2); // v2-v3-v0
glVertex3fv(v3);
glVertex3fv(v0);
// right face =========
glVertex3fv(v0); // v0-v3-v4
glVertex3fv(v3);
glVertex3fv(v4);
glVertex3fv(v4); // v4-v5-v0
glVertex3fv(v5);
glVertex3fv(v0);
// draw other 4 faces
glEnd();
```



- Using vertex array
  - Transmit vertex array to GPU at once
  - Activate vertex array

```
glEnableClientState(GL_VERTEX_ARRAY);
```

Specify vertex data

```
glVertexPointer(3, GL_FLOAT, 0, vertices);
glColorPointer(3, GL_FLOAT, 0, colors);
glNormalPointer(3, GL_FLOAT, 0, normals);
```

Draw meshes based on face list index

```
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_BYTE, indices);
```

Deactivate vertex array

```
glDisableClientState(GL VERTEX ARRAY);
```

- An example code in OpenGL
  - http://www.songho.ca/opengl/gl\_vertexarray.html

```
GLfloat vertices[] = {...};  // 8 of vertex coords
GLubyte indices[] = \{0,1,2, 2,3,0, // 36 \text{ of indices}\}
                     0,3,4, 4,5,0,
                     0.5.6. 6.1.0.
                     1,6,7, 7,2,1,
                     7,4,3, 3,2,7,
                     4,7,6, 6,5,4};
// activate and specify pointer to vertex array
glEnableClientState(GL VERTEX ARRAY);
glVertexPointer(3, GL FLOAT, 0, vertices);
// draw a cube
glDrawElements(GL TRIANGLES, 36, GL UNSIGNED BYTE, indices);
// deactivate vertex arrays after drawing
glDisableClientState(GL VERTEX ARRAY);
```

# 4. Triangulation

## Triangulation

#### What is triangulation

 In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to it from known points



# Triangulation

- More examples
  - Triangulations of 3D surfaces



## Why we need triangulation?

#### Interpolation

- Interpolate interior continuous values
- Surface approximation
- Solving partial differential equations

#### Representing objects based on sample points

No topology among sample points

#### Surface reconstruction

Fitting triangular meshes from dense/sparse points

## Why we need triangulation?

- FEM mesh illustration
  - For CAD/CAE, simulation
  - Mostly triangulated mesh



#### Delaunay triangulation for a point-set P:

- A triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P)
- Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation



#### Property for Delaunay triangulation

- Every triangle in a Delaunay triangulation has an empty open circumdisk
- Every point set has a Delaunay triangulation
- The Delaunay triangulation is unique if and only if no four or more points lie on a common empty circle



#### Flipping

 If two triangles do not meet the Delaunay condition, switching the connection produces two triangles with Delaunay condition







- How to make a Delaunay triangulation
  - Incremental construction
    - Incrementally create a triangulation by point insertion
    - Select a convex quadrilateral
    - Perform flipping
    - Scan until there is no non-Delaunay triangulation left

- How to make a Delaunay triangulation
  - Incremental construction



• Incremental Delaunay



- Incremental Delaunay
  - Find triangles in conflict



- Incremental Delaunay
  - Delete triangles in conflict



# Delaunay triangulation

- Incremental Delaunay
  - Triangulate the hole



- A Voronoi diagram is
  - a partitioning of a plane into regions based on distance to points
  - for each seed there is a corresponding region consisting of all points closer to that seed than to any other

 These regions are called Voronoi cells

#### Definition

- Let  $\Omega$  be a connected region in  $R^2$ , Let  $\mathbf{S} = \{\mathbf{s_1}, \mathbf{s_2}, \dots, \mathbf{s_n}\}$  be a set of n points in  $\Omega$
- We use ||p q|| to denote the Euclidean distance between two points p and q
- For  $s_i \in S$ , we define: R(S;  $s_i$ ) = { $p \in \Omega : ||p s_i|| < ||p s_j||$ ,  $s_j \in \Omega$ ,  $s_j != s_i$ }
- In other words, R(S; s<sub>i</sub>) is the set of points nearer to s<sub>i</sub> than to any other point in S
- The region  $\Omega$  is partitioned into R(**S**;  $\mathbf{s}_1$ ), R(**S**;  $\mathbf{s}_2$ ), . . . , R(**S**;  $\mathbf{s}_n$ ) and their boundaries
- This partition is called the Voronoi diagram of S, denoted by V(S)

#### Voronoi region

-  $R(S; s_i)$  is called the Voronoi region of  $s_i$ 

#### Voronoi edge

 The line segments shared by the boundaries of two Voronoi regions are called Voronoi edges

#### Voronoi vertex

 The points shared by the boundaries of three or more Voronoi regions



- How to compute Voronoi Diagram?
  - Half-space partition
  - For example, 2 points and 3 points partition



- How to compute Voronoi Diagram?
  - The Voronoi region associated to point  $p_i$  is the intersection of the half-spaces defined by the perpendicular bisectors



- Why we need Voronoi diagram?
  - Voronoi diagram of a set of points is <u>dual</u> to its Delaunay triangulation
  - Connecting the centers of the circumcircles produces the Voronoi diagram

















## **Constrained Delaunay triangulation**

- A constrained Delaunay triangulation is a generalization of the Delaunay triangulation
  - Force certain required segments into the triangulation
  - Often a constrained Delaunay triangulation contains edges that do not satisfy the Delaunay condition

## **Constrained Delaunay triangulation**

#### Chew's second algorithm

 A Delaunay refinement algorithm for creating quality constrained
 Delaunay triangulations

 Chew's second algorithm has been adopted as a two-dimensional mesh generator due to practical advantages in certain cases



## Triangulation toolbox

#### Triangle (CMU)

- A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator
- https://www.cs.cmu.edu/~quake/triangle.html



### **CGAL**

### Computational geometric algorithms library

- A software project that provides easy access to efficient and reliable geometric algorithms in the form of a C++ library
- https://www.cgal.org/



#### **Next Lecture:**

Geometric modeling 1