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• A branch of applied mathematics and 

computational geometry

– study methods and algorithms for the mathematical 

description of shapes

– central to computer-aided design and manufacturing 

(CAD/CAM)

– widely used in many applied technical fields such 

as civil and mechanical engineering, architecture, geology 

and medical image processing

– an important area in computer graphics

What is geometric modeling?
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1. Modeling for simple geometries
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• Created by a combination of triangles

Tetrahedron and cubes
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• How to create a plane

– a large quadrilateral

– or a set of tessellated triangles

– How to create? 

• sample in 2D; translate and rotate to the desired state

Plane
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• Representation of circles by parametric equations

– meshing in polar coordinates for x, y samples

– sample in Z direction uniformly or staggered

Cylinder
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Sphere

• Analytical equations

– Cartesian coordinates:

– spherical coordinate parameterization:
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Sphere mesh

• Quadrilateral mesh

– meshing in spherical coordinates

– uniformly subdivide θ and φ

8



Ellipsoid

• Analytical equations

– Cartesian coordinates

– spherical coordinate parameterization:
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Ellipsoid mesh

• Quadrilateral mesh

– meshing in spherical coordinates

– uniformly subdivide θ and φ
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• How to represent and meshing?

– general cone equation

– meshing in polar coordinates 

for x, y samples:

– a=z/h, z in [0,h], h is the cone height

Cone
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• Parametric form of a curve

– tangent vector

– normal vector

Tangent plane and normal computation
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• Parametric form of a surface

– tangent vector

– normal vector

Tangent plane and normal computation
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2. Free-form geometric modeling
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Free-form surface modeling

• Surfaces which do not have fixed shapes

– unlike regular surfaces such as planes , cylinders, spheres, 

and conic surfaces, etc.
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2.1. Polynomial interpolation
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Polynomial interpolation

• Given a set of n + 1 data points (xi, yi) where no 

two xi are the same, one is looking for a 

polynomial p of degree at most n with the 

property
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Polynomial interpolation

• Suppose that the interpolation polynomial is in 

the form：

The condition number of the Vandermonde matrix may be large
18



Polynomial interpolation

• Lagrange polynomials
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• Degree of a monomial

– the sum of powers of all terms

– the degree of xaybzc is a+b+c

• Highest degree of its monomials (individual 

terms) with non-zero coefficients

– the degree of polynomial

is 

for example: degree 5 polynomial for  

Degree of a polynomial

p(x,y)=w1x
a1yb1+ w2x

a2yb2+ …+ wnx
anybn

max{a1+b1, a2+b2,…, an+bn}
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• Hermite interpolation matches an unknown 

function both in observed value, and the observed 

value of its first m derivatives

– the resulting polynomial may have degree at most 

n(m+1)-1

Hermite interpolation
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Polynomial interpolation

• Basis functions

– An element of a particular basis for a function space

– Each element is independent of other elements (think 

about the basis vector)

– Basis function is also called blending function in numerical 

analysis and approximation theory

– Every continuous function in the function space can be 

represented as a linear combination of the basis functions

– Function space: the space of functions that can be 

generated by basis functions with linear blending
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Polynomial interpolation

• Runge phenomena

– a problem of oscillation in between the interpolation points

– when using polynomial interpolation with high degree
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2.2. Spline interpolation
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• A spline is a special function defined piecewise by 

polynomials of low degree

– avoid Runge's phenomenon for more sample points

– originally, high-degree polynomials should be used

Spline
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• Piecewise linear spline

– the interpolation function is piecewise defined by linear 

functions (lines)

Spline
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• Piecewise quadratic spline

– the interpolation function is piecewise defined by 

quadratic polynomials

Spline
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• Piecewise cubic spline

– The interpolation function is piecewise defined by cubic 

polynomials

Spline
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• A cubic polynomial

– specified by 4 coefficients

– twice continuously differentiable

– has the flexibility to satisfy general types of boundary 

conditions

– while the spline may agree with f(x) at the nodes, we 

cannot guarantee that the derivatives of the spline agree 

with the derivatives of f

Cubic spline interpolation
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• Given a function f (x) defined on [a, b] and a set of 

nodes

• A cubic spline interpolant, S, for f is a piecewise 

cubic polynomial, Sj on [xj ; xj+1] for j = 0, 1, … , n -1

Cubic spline interpolation
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• The cubic spline interpolant will have the 

following properties:

Cubic spline interpolation

31



• Example

Cubic spline interpolation
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• This will require two cubics:

– Since there are 8 coefficients, we must derive 8 equations 

to solve.

– The splines must agree with the function (the y-

coordinates) at the nodes (the x-coordinates)

Cubic spline interpolation
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• The first and second derivatives of the cubics must 

agree at their shared node x = 7:

• The final two equations come from the natural 

boundary conditions:

Cubic spline interpolation
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• Solving a linear equation system

– all eight linear equations together form the system

– note that the system is generally sparse

Cubic spline interpolation

35



• The natural cubic spline can be expressed as:

Cubic spline interpolation
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• We can verify the continuity of the first and 

second derivatives from the following graphs

Cubic spline interpolation

First derivative Second derivative
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• General construction process

Cubic spline interpolation
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• Redefinition of equations

Cubic spline interpolation
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• First derivative relations

– The continuity of the first derivative at the nodal points 

produces n more equations

Cubic spline interpolation
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• Equations derived so far

Cubic spline interpolation
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• Second derivative relations

– The continuity of the second derivative at the nodal points 

produces n more equations

Cubic spline interpolation
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• Summary of equations

Cubic spline interpolation
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• Substitution

Cubic spline interpolation
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• Substitution

Cubic spline interpolation
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• Substitution

Cubic spline interpolation
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• In matrix form, the system of n + 1 equations has 

the form Ac = y where

Cubic spline interpolation

Note: A is a tridiagonal matrix
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• Solve the linear equation system

Cubic spline interpolation

We solve this linear system of equations using a common algorithm for handling 

tridiagonal systems

Note that such a process is not quite computationally efficient if the number of 

sample points is large!!
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2.3. Approximating polynomials
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• The polynomials are generated by control points

– the  curve does not necessarily pass through control 

points

– control points are used to control the shape of the curve

Polynomial approximation
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2.3.1. Bézier curve
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Bernstein polynomial

• Bernstein polynomial

– the n + 1 Bernstein basis polynomials of degree n are 

defined as:

– A linear combination of Bernstein basis polynomials:
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Bernstein polynomial

• The first a few Bernstein basis polynomials are:

• Approximating continuous functions

– let ƒ be a continuous function on the interval [0, 1]
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Bézier curve

• A Bézier curve is a parametric curve

– used to model smooth curves that can be scaled 

indefinitely

Control points
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Bézier curve

• The mathematical basis for Bézier curves —

the Bernstein polynomial

– known since 1912

– its applicability to graphics was not realized for another 

half century

– Bézier curves were widely publicized in 1962 by 

the French engineer Pierre Bézier, who used them to 

design automobile bodies at Renault
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Bézier curve

• Linear Bézier curves

• Quadratic Bézier curves
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Bézier curve

• Cubic Bézier curves

• General definition

– recursive definition
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Bézier curve

• General definition

– explicit definition

• Representation using Bernstein polynomial
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Bézier curve

• The basis functions on the range t in [0,1] for cubic 

Bézier curves

blue: y0 = (1 − t)3

green: y1 = 3(1 − t)2 t

red: y2 = 3(1 − t) t2

cyan: y3 = t3
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Bézier curve

• Evaluation

– de Casteljau's algorithm

• recurrence relation

• Linear curves
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Bézier curve

• Quadratic curves
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Bézier curve

• Higher-order curves

– cubic Bézier curve

62



Bézier curve

• Higher-order curves

– fourth-order curves
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Bézier curve

• Higher-order curves

– For fifth-order curves
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• Computing the tangent vector

– the tangent can be directly obtained from the evaluation 

process by de Casteljau's algorithm

Bézier curve

t = vR0R1/||vR0R1||
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• Convex hull

– All Bézier curves always lie inside the convex hull

– Convex hull edges tangential to the curve at end points

Bézier curve
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• Meshing in parameter space

– Sample in parameter space and connect sample points by 

line segments

Meshing a Bézier curve

0 1

t parameter space
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2.3.2. Bézier surface
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Bézier surface

• A Bézier surface of degree (n, m) is defined by a 

set of (n + 1)(m + 1) control points ki,j

– it maps the unit square into a smooth-continuous surface

69



Bézier surface

• A two-dimensional Bézier surface can be defined 

as a parametric surface

– a tensor product of 1D Bézier curve

evaluated over the unit square, where:
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Bézier surface

• Evaluation

– recursively apply de Casteljau's algorithm

– first, evaluate control points by de Casteljau's algorithm 

along one parameter direction

– then, evaluate the final point by de Casteljau's algorithm 

again with the evaluated control points
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• Computing the tangents and normal

– compute the tangent of two crossing Bézier curves

– then take the cross product of these two tangents to form 

the normal

Bézier surface
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Meshing a Bézier surface

• Meshing in parameter space

– gridding in u,v parameter space

u

v
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Meshing a Bézier surface

• Meshing in parameter space

– triangulation in u,v parameter space

u

v
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• Change of local control points

– affect the whole curve/surface

– change the shape of the whole curve/surface

– require re-evaluation of the whole curve/surface

Problem of Bézier curve/surface 
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2.3.3. B-spline curve
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• Definition

– regions of definition domain where the function value is 

non-zero

Support of basis functions

support region
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• Global support

– support range over the whole definition domain

– for example, Bernstein basis, Fourier basis, etc.

Support of basis functions

Bernstein basis Fourier basis
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• Local support

– support range over a relatively narrow region in the 

definition domain

– for example, B-spline basis, wavelet basis, etc.

Support of basis functions

B-spline basis wavelet basis
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B-spline curve

• Basis spline – B-spline

– a spline function that has minimal support with respect to 

a given degree
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B-spline curve

• In the computer-aided design and computer 

graphics

– linear combinations of B-spline basis functions with a set 

of control points

– a spline function is a piecewise polynomial function of 

degree <k

– the places where the pieces meet are known as knots

– the number of internal knots must be equal to, or greater 

than k-1

– the spline function has limited support
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B-spline curve

• Definition

– a B-spline of order n is a piecewise polynomial function of 

degree <n in a variable x

– Cox-de Boor recursion formula
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B-spline curve

• Recursion formula with the knots at 0, 1, 2, and 3 

gives the pieces of the uniform B-spline of degree 

2:
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• Evaluation

– de Boor algorithm

– find the support range of the current parameter

– apply recursive evaluation like in Bézier curve evaluation 

B-spline curve
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B-spline curve

• B-spline basis and curve synthesis
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B-spline curve

• Convex hull

– like Bézier curves, all B-spline curves always lie inside the 

convex hull

– convex hull is defined locally and changed with respect to 

different parts of the curve
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B-spline curve

• More complex examples
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2.3.4. B-Spline/NURBS surface
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B-spline surface

• Like Bézier surface, B-spline surface can be 

constructed with tensor-product

– meshing in u-v parameter space 
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NURBS

• Non-uniform rational B-Spline

– formulation

– NURBS is commonly used in computer-aided design 

(CAD), manufacturing (CAM), and engineering (CAE)

– part of numerous industry wide standards, such as IGES, 

STEP, ACIS, and PHIGS 
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Free-form surface triangulation

• How to create meshes for free-form surfaces?

– create mesh in u-v parameter space
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Free-form surface triangulation

• Triangulation in parameter space
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Free-form surface triangulation

• Problem with uniform meshing in parameter 

space

– large deformation will distort triangles

• Adaptive triangulation according to some criteria

– boundary, surface deformation (curvature)

– criteria estimated from the control mesh
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Free-form surface triangulation

• Construct triangle meshes with storage consistent 

to OpenGL

– Vertex position/normal array + index array

– Render with OpenGL vertex array
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Free-form surface modeling

• Design by control points
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3. Vector graphics
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Vector graphics

• Vector graphics is the use of 

polygons to represent images in 

computer graphics

– based on vectors, which lead through 

locations called control points or nodes

– ideal for printing

– unlimited zoom-in and zoom-out 

without aliasing
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Vector graphics

• Benefit of vector graphics

– compact representation

– aliasing-free display (rasterization)
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Vector graphics

• More examples

– filling based on free-form surfaces
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Image vectorization

• Create vector representation of a natural input 

image
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Image vectorization

• Diffusion curves

– create continuous curves to represent image edges

– the content of the image can be filled by Poisson equation 

solver
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Next lecture: Geometric modeling 2
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