Computer Graphics |

Lecture 5:
Geometric modeling 1

Xiaopei LIU

School of Information Science and Technology
ShanghaiTech University



What is geometric modeling?

e A branch of applied mathematics and
computational geometry

study methods and algorithms for the mathematical
description of shapes

central to computer-aided design and manufacturing
(CAD/CAM)

widely used in many applied technical fields such
as civil and mechanical engineering, architecture, geology
and medical image processing

an important area in computer graphics



1. Modeling for simple geometries




Tetrahedron and cubes

e Created by a combination of triangles
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e How to create a plane
— alarge quadrilateral
— or a set of tessellated triangles
— How to create?
e sample in 2D; translate and rotate to the desired state




Cylinder

e Representation of circles by parametric equations
— meshing in polar coordinates for x, y samples

r = acos(t)
y = asin(t)

— sample in Z direction uniformly or staggered




e Analytical equations

— Cartesian coordinates:

(@ —20)® + (y —w0)* + (2 — 20)* = r*

— spherical coordinate parameterization:

x =29 +rcosf siny
Yy =1+ rsinf sinp
Z=2)+rcosp

(0<0<2rand 0 < p <)



Sphere mesh

e Quadrilateral mesh
— meshing in spherical coordinates

— uniformly subdivide 0 and ¢
Z
Z=rcosd [~~-.__
¢ '
| y = r-singsin®
: y
i \“%E

X = r-sinpcoso

X



Analytical equations
— Cartesian coordinates

— spherical coordinate parameterization:

z = a cos(u) cos(v),
y = b cos(u) sin(v),
z = ¢ sin(u),

where

™ ™
—— <u< —, —nm<ov<m.
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Ellipsoid mesh

e Quadrilateral mesh
— meshing in spherical coordinates

X = r-singcoso

— uniformly subdivide 0 and ¢
:
Z=rcosf [~~~
o
y = r-singsin®
: y
0 '6‘/,,9

X
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Cone

* How to represent and meshing?

- general Cone equation x=rcos(t),5.'=.r.-s.;?lr?.(T),z=r
z* Y 9 R
— +5 =z L

— meshing in polar coordinates
forx, y samples:

r = acos(t)
y = asin(t)

— a=z/h, zin[o,h], his the cone height
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Tangent plane and normal computation

e Parametric form of a curve

x =X(u), y =Y(u), z=17(u)

— ta ngent vector

,_[ox av oz
~|ou’ou’ ou

— normal vector




Tangent plane and normal computation

e Parametric form of a surface

x =X, v), y =Y(u,v), z=7Zu,v) - \

— ta ngent vector

. _[ox ov oz} _fox or oz
Yo lou' ou’ du v lov ov’ dv

— normal vector [ N i

n=t,xt, e
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2. Free-form geometric modeling




Free-form surface modeling

e Surfaces which do not have fixed shapes

— unlike regular surfaces such as planes, cylinders, spheres,
and conic surfaces, etc.




2.1. Polynomial interpolation




Polynomial interpolation

e Given a set of n + 1 data points (x, y)) where no
two x; are the same, one is looking for a
polynomial p of degree at most n with the

property

p(x;) = yi, t=0,...,n.




Polynomial interpolation

e Suppose that the interpolation polynomialis in
the form :

p(x) = ana" + ap_12" 1 4+ - agz® + a1z + ag

p(z;) = yi forall: € {0,1,...,n}

N n—1 n—2 =

b ot ozt . oz 1| | ana Y1
n n—1 n—2 1 a

T, T, T, ce. I |1 L G L Yn

The condition number of the Vandermonde matrix may be large .



Polynomial interpolation

e Lagrange polynomials

(z—z1)(x—22) - (T —2) (z—zo)(x—22) -+ (& — ) (z—xzo)(x—2x1) - (& —xp1)

(20 — 1) (0 — @3) -+ (0 — x) (21 — 20) (21 — D) -+~ (T2 — Zp) U (@ — 20) (@0 — 1) (Tn — Tn1)

1 (x) l2(x) 3(x) la(x) ===== L(x)

,,,,,,,
Srmeos—el




Degree of a polynomial

e Degree of a monomial
— the sum of powers of all terms
— the degree of x?y"z¢is a+b+c

e Highest degree of its monomials (individual
terms) with non-zero coefficients

— the degree of polynomial
p(x,y)=w1xa1yb1+ W2Xa2yb2+ o+ ananybn

IS
max{a1+b1, a2+b2,..., an+bn}

for example: degree 5 polynomial for 7z°y® + 4z — 9



Hermite interpolation

e Hermite interpolation matches an unknown
function both in observed value, and the observed
value of its first m derivatives

($Uayﬂ):r (ml‘}yl)! I (mn—layn—l)a
(mﬂayi]): (331:3}1): R (mn—lay;L_1)}
(330; yém) ): (1151 3 ygmj): R (mn—la ygi)l)

— the resulting polynomial may have degree at most
n(m+1)-1



Polynomial interpolation

e Basis functions
— An element of a particular basis for a function space

Each element is independent of other elements (think
about the basis vector)

Basis function is also called blending function in numerical
analysis and approximation theory

Every continuous function in the function space can be
represented as a linear combination of the basis functions

f(x)= Z @,¢,(X)

Function space: the space of functions that can be
generated by basis functions with linear blending

22



Polynomial interpolation

* Runge phenomena
— a problem of oscillation in between the interpolation points
— when using polynomial interpolation with high degree

N T

J e
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2.2. Spline interpolation
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— Spline

e Asplineis a special function defined piecewise by
polynomials of low degree

— avoid Runge's phenomenon for more sample points

— originally, high-degree polynomials should be used
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e Piecewise linear spline

— the interpolation function is piecewise defined by linear
functions (lines)

1 —




e Piecewise quadratic spline
— the interpolation function is piecewise defined by

quadratic polynomials




e Piecewise cubic spline

— The interpolation function is piecewise defined by cubic
polynomials

28




Cubic spline interpolation

e A cubic polynomial

p(x) = a+ bx + cx? + dx®

— specified by 4 coefficients
— twice continuously differentiable

— has the flexibility to satisfy general types of boundary
conditions

— while the spline may agree with f(x) at the nodes, we
cannot guarantee that the derivatives of the spline agree
with the derivatives of f



Cubic spline interpolation

e Given a function f (x) defined on [a, b] and a set of

nodes
a=Xg < X{ < Xo<---<Xp=Db.

e A cubicspline interpolant, S, forfis a piecewise
cubic polynomial, S; on [x;; x;,,1forj=0,1, ..., n-1

J+1

.

ao + bo(x — Xo) + co(x — X0)* + do(x — x0)* If xo < x < Xy
ay + by (x — xq) + ¢1(x —x1)% + i (x — x1)° if xq <x < xp

ap+ bi(x = %)+ g(x = )2 4-dilx — x)° if xi < x < Xjy

an—1+ bp_1(x — Xn_1) + Cn—1(x — Xn_1)% + dn_1(x — xn—1)° f xn_1 < x < xp

b
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Cubic spline interpolation

 The cubic spline interpolant will have the
following properties:

o S(x;) =f(x;)forj=0.1..
@ Si(X+1) = S+ (Jq+1)f0rj:01 ..... n—2.
@ Si(Xj11) =S5 1(Xje1)forj=0,1,..., n—2.

@ S'(Xjr1) =S/ 4(Xjr1)forj=0,1,....,n—-2.

@ One of the following boundary conditions (BCs) is satisfied:

e S"(x0) = S"(x,) = 0 (free or natural BCs).
@ S'(Xxo) =TF"(Xo) and S'(x,) = F'(x,) (clamped BCs).



Cubic spline interpolation

e Example

Construct a piecewise cubic spline interpolant for the curve
passing through

1(5.9), (7.2), (9.4)},
with natural boundary conditions.

y
6~

50 ®
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Cubic spline interpolation

e This will require two cubics:

SU(X) — dg + b{]()( —5) + cy(x — 5)2 + dg()( — 5)3
Si(X)=ay +by(Xx =7)+ci(x =72+ dy(x —7)°

— Since there are 8 coefficients, we must derive 8 equations
to solve.

— The splines must agree with the function (the y-
coordinates) at the nodes (the x-coordinates)
5 = 50(5) = a
2 = 50(7)
2 = S(7) = &
4 (9)

33
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Cubic spline interpolation

e The first and second derivatives of the cubics must
agree at their shared node x = 7:

Si(7) = by +4cy + 12dy = by = S|(7)
SU(7)=2c +12dy =2¢; = S/(7)

e The final two equations come from the natural
boundary conditions:

S!(5) = 0=2c
SI(9) = 0=2¢ + 120,

34



Cubic spline interpolation

e Solving a linear equation system
— all eight linear equations together form the system
— note that the system is generally sparse

— 2C1 + 12d1

S5 = &

2 = ag+2by+4c+8d, ila b o d

2 = a

4 = ai+2by+4cq + 80, 0l 5 17 0 k)
0 = by+4cy+12dy — b, ™= 8 32

0 = 2¢y+ 12dy — 2c¢; 1 15 5
0 = 26 L e S T
0

35



Cubic spline interpolation

S(X) = <

4

5

2 —

e The natural cubic spline can be expressed as:

17

— g(x 5)+ —(x 5)3
1 15 5
4(x 7) + E(x 7)% — 32(

f5<x<7

XxX—7)P f7<x<9

36



Cubic spline interpolation

e We can verify the continuity of the first and
second derivatives from the following graphs

15}

10k

osl

1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 X
6 7 2 9

First derivative Second derivative
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Cubic spline interpolation

e General construction process

Given n + 1 nodal/data values:

{(Xo,f(X0)), (X1.f(X1)). ..., (Xn, (X))} we will create n cubic
polynomials.
Forj=0.1.....n—1 assume

Sj(x) = & + bj(x — X)) + Gi(x — X))* + di(x — x)°.

We must find a;, b;, ¢; and d; (a total of 4n unknowns) subject to
the conditions specified in the definition.

38



Cubic spline interpolation

e Redefinition of equations

Let h = x;.1 — Xx; then

Si(x) = & =1(x)
Sit1(Xj1) = @1 = Sj(X11) = & + by + ghf + gy,

So far we know g, forj = 0.1....,n— 1 and have n equations
and 3n unknowns.

a, = ag+ bohg + cohd + dohd
g1 = g +bh+ght +dhy

39

an = ap_1+bp_1hp_1+ Cn—1hr%—1 + dﬂ—1hf3?—1



Cubic spline interpolation

e First derivative relations

— The continuity of the first derivative at the nodal points
produces n more equations

Forj=0.1,....n—1 we have

S/(x) = by + 2¢;(x — x;) + 3dj(x — X))°.

Thus
Si(x) = b

(X)) = b1 = Sj(Xq) = by +2¢h + SO}hfz

Now we have 2n equations and 3n unknowns.

40



Cubic spline interpolation

e Equations derived so far

aj+1 — aj -+ bjhf —+ thf 1= q,hf (forj =, . 11— 1)
by = by + 2cyhy + Sd(}hg
bj—i—1 = bj 7 2thf & i SOf,'hf

bn — bn—1 T 2Cﬂ—1 hﬂ—‘i T 3dﬂ_1 h??—1

The unknowns are b;, ¢;, and d;forj=0,1,....n—1.



Cubic spline interpolation

e Second derivative relations

— The continuity of the second derivative at the nodal points
produces n more equations

Forf=0.1; n— 1 we have

§/(x) = 2¢; + 6d;(x — X;).

Thus

S'(x) = 2¢g

Now we have 3n equations and 3n unknowns.



Cubic spline interpolation

e Summary of equations

a1 = a+bhi+ch+dh
bf'_|_1 = bj + 2thj + SO}hjz
Ciy1 = G +3gh;

Note: The quantities a; and h; are known.

Solve the third equation for d; and substitute into the other two
equations.

C — &
d: — Gk |
/ Sh}r

43



Cubic spline interpolation

e Substitution Cy—C
g1 = &+bh+ght+ ( thj. J) by
5 it h?
d = H;,h. .Y = aj+bfhf+§}(2cj+f&'+1)
bj+1 = Q, = Qthj + 3 ( ’H_;h "‘) hj?
j
= b+ hi(G + G+1)

Solve the first equation for b;.

1 h;
bj’ - Fj(af—l—1 = af) o 5(2(’} + Cf‘f‘1) 44



Cubic spline interpolation

e Substitution

Replace index j by j — 1 to obtain

1 h;
bj 1 = E(af —&-1) - T(ZC} 1+ G)-

We can also re-index the earlier equation
bj+1 = bj + hj(G + Cj11)

to obtain
bj = b};_1 + hj_1(Cj_1 + CJ,;).

Substitute the equations for b;_ and b; into the remaining
equation. This step eliminate n equations of the first type. 4



Cubic spline interpolation

e Substitution

1 h;
E(ajﬂ — &) — §(2Cf + Cjt1)
= E(E‘f — &) - T(2Cj—1 +6) + hi1(¢-1 + G)

Collect all terms involving ¢ to one side.

3 3
Nj—1Gj—1 +26(Aj—1 + ) + NGt = (811 = &) — (8~ 8j—1)
/

-
forj=1.2,..., n—1.

Remark: we have n— 1 equations and n+ 1 unknowns.

If S"(x0) = Sy (X0) = 2¢o = 0 then ¢y = 0 and if
S"(xp) = S!_,(xn) = 2c, = 0 then ¢, = 0. “



Cubic spline interpolation

the form Ac =y where

e In matrix form, the system of n + 1 equations has

1 0 0 0 0
ho Q(h[} + h1) hy 0 0
0 hy 2(h1 + hg) ho 0
A= | . . . . .
0 0 0 hn—2 2(hn—2 + Jhn—1) Jhn—1
0 0 0 0 - 1
0
,%(32 —ay) — ,%(31 — ap)
3 (ay —a,) — ~(ar — a
y = }E( ° 2) E( ° 1) Note: A is a tridiagonal matrix
hn3_1 (@n —an—1) — hna_g(an—1 — an_2) .
0




e

(an —an—1) —
0

Cubic spline interpolation

e Solve the linear equation system

0
p(a—a) — o (a — a)
(@3 — a2) — ,»,—5;(32 — ay)

hf_z(an—1 — ap_o)

We solve this linear system of equations using a common algorithm for handling
tridiagonal systems

Note that such a process is not quite computationally efficient if the number of
sample points is large!!



2.3. Approximating polynomials




Polynomial approximation

 The polynomials are generated by control points

— the curve does not necessarily pass through control
points

— control points are used to control the shape of the curve




2.3.1. Bezier curve




Bernstein polynomial

e Bernstein polynomial

— the n + 1 Bernstein basis polynomials of degree n are
defined as:

byn(x) = (n) z’(1—-2z)"", v=0,...,n.

v

— Alinear combination of Bernstein basis polynomials:

B(@) = 3 Bubun (@)
v=0



Bernstein polynomial

e The first a few Bernstein basis polynomials are:

b(),g (CC) = 1,

bo,l(m) =1- Z, b1,1 (:L') =T

bo2(z) = (1— az)z, bi2(z) = 22(1 — ), ba2(z) = 2

bos(z) = (1 —z)°, bi3(z) = 3z(1 — )2, by3(z) = 32°(1 — ), b3 3(z) = z°

e Approximating continuous functions
— let f be a continuous function on the interval [0, 1]

Ba(f)(z) = Zf( ) b (=) lim B, (f)(z) = f(z)

n—oo

53



Bezier curve

e A Beézier curve is a parametric curve

— used to model smooth curves that can be scaled
indefinitely

/ Control points

54



Bezier curve

e The mathematical basis for Bezier curves —
the Bernstein polynomial
— known since 1912

— its applicability to graphics was not realized for another
half century

— Beézier curves were widely publicized in 1962 by
the French engineer Pierre Bezier, who used them to
design automobile bodies at Renault

55



Bezier curve

e Linear Bezier curves

B(t):P(} +t(P1—P0):(1—t)P0 +tP, 0<t<1

e Quadratic Bezier curves

B(t) = (1 -t)[(1 —t)Py +tP1] +t[(1—t)P; +tPs], 0<t <1

B(t) = (1 —t)’Po +2(1 — t)tP; +t*P,, 0<t <1

56



Bezier curve

e Cubic Bezier curves

B(t) — (1 - t)BPOaPIaPiZ (t) + tBP1,P2-,-P3 (t)

B(t) = (1-t)°Py +3(1 — t)*tP; + 3(1 — t)t’P, + t°P3, 0 <t < 1

e General definition

— recursive definition

Bp, (t) = Py, and
B(t) — BP0P1- ..Pp (t) — (1 o t)BPUP]L* . -Pn—l (t) + tBPlPZ- ..Pp (t)

57



Bezier curve

e General definition
— explicit definition

B(t) = Zn: (?:) (1— )"t P,

1=0

— (1—t)"Py + (717’) (1— )" 1Py +---

..+( n 1)(1-::)::"”"1Pn_1 +t"P,, 0<t<1
n —

e Representation using Bernstein polynomial

B(t) =) bi.(t)P;, 0<t<1
=0

58



Bezier curve

e The basis functions on the range tin [0,1] for cubic
Bézier curves

blue: y,= (1 - 1)
green: y, = 3(1 - t)*t
red: y, =3(1 - 1) 2
cyan: y; =2

59



Bezier curve

e Evaluation
— de Casteljau's algorithm
e recurrence relation

B =B, i=0,.
B9 = gl (1 — ¢, )+5§111 ty, i=0,....n—j, j=1,...,n

e Linear curves

P,

t

0 oP, 6o



Bezier curve

e Quadratic curves
oP,
Q,
.0
0 {=.25 P2
' af



Bezier curve

e Higher-order curves

— cubic Bezier curve

62



Bezier curve

e Higher-order curves

— fourth-order curves

pP,

63



Bezier curve

e Higher-order curves
— For fifth-order curves

64



Bezier curve

e Computing the tangent vector

— the tangent can be directly obtained from the evaluation
process by de Casteljau's algorithm

t = Vror1/lIVRorll

65



Bezier curve

e Convex hull
— All Bezier curves always lie inside the convex hull

— Convex hull edges tangential to the curve at end points

P3

P2

P4

convex hull

P1

66



Meshing a Bézier curve

e Meshing in parameter space

— Sample in parameter space and connect sample points by
line segments

t parameter space

67



2.3.2. Bézier surface

68



Bezier surface

e A Bézier surface of degree (n, m) is defined by a
set of (n + 1)(m + 1) control points k; ;

— it maps the unit square into a smooth-continuous surface

69




Bezier surface

e A two-dimensional Bezier surface can be defined
as a parametric surface

— atensor product of 1D Bézier curve

n

7
1=0 5=0

evaluated over the unit square, where:

n

) ut (1 — u)"™

7

B = (



Bezier surface

e Evaluation
— recursively apply de Casteljau's algorithm

— first, evaluate control points by de Casteljau's algorithm
along one parameter direction

— then, evaluate the final point by de Casteljau's algorithm
again with the evaluated control points

71



Bezier surface

e Computing the tangents and normal
— compute the tangent of two crossing Bezier curves

— then take the cross product of these two tangents to form
the normal

72



Meshing a Bezier surface

e Meshing in parameter space
— gridding in u,v parameter space

73



Meshing a Bezier surface

e Meshing in parameter space

— triangulation in u,v parameter space

74



Problem of Bezier curve/surface

e Change of local control points
— affect the whole curve/surface
— change the shape of the whole curve/surface
— require re-evaluation of the whole curve/surface

N
51y

4P
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2.3.3. B-spline curve




Support of basis functions

e Definition

— regions of definition domain where the function value is
non-zero

10 r\
NV

0 20 40 - | .

support region

/




Support of basis functions

e Global support
— support range over the whole definition domain
— for example, Bernstein basis, Fourier basis, etc.

(i1 P U SSUREEOY. SRR - SRR . SORPORY |

Fourier Expansion
1.0 ; . : ; 5] ‘?
; : : B i
0.6} & < : devr ot eonst
. . : L =
0.4 : : 7 /\
10 o . n o e

0.0 e L L ;
0.0 0.2 0.4 0.6 0.8

Da

Bernstein basis Fourier basis
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Support of basis functions

e Local support

— support range over a relatively narrow region in the
definition domain

— for example, B-spline basis, wavelet basis, etc.

0.2 —

0.8

0.1+

. TN
0.0
. / -0.1
E I ] I ] I ]
0.0 0.2 0.4 0.6 0.8 1.

0 T T T T T T
0 200 400 600 500 1000

0.4

0.0

B-spline basis wavelet basis
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B-spline curve

e Basis spline — B-spline
— aspline function that has minimal support with respect to
a given degree

\
\
\




B-spline curve

e Inthe computer-aided design and computer
graphics
— linear combinations of B-spline basis functions with a set
of control points

— aspline function is a piecewise polynomial function of
degree <k

— the places where the pieces meet are known as knots

— the number of internal knots must be equal to, or greater
than k-1

— the spline function has limited support

81



B-spline curve

e Definition

— a B-spline of order n is a piecewise polynomial function of
degree <nin a variable x

Snt(x) = Z o; Bi ()

— Cox-de Boor recursion formula

B. (.’B) L {1 if ¢ <x<ti
bl . 0 otherwise
— tz' t; — I
B;r(x) := < B itk

k—1() + Bii1p—1(z
tivk—1 —t; () tivk —tign ()

82



B-spline curve

e Recursion formula with the knots ato, 1, 2, and 3
gives the pieces of the uniform B-spline of degree
2:

By=z*/2 0<z<1
By = (—2z*+6x—3)/2 1<z<2
B;=(3-2)"/2 2<2<3

83



B-spline curve

e Evaluation
— de Boor algorithm
— find the support range of the current parameter
— apply recursive evaluation like in Bézier curve evaluation




B-spline curve

e B-spline basis and curve synthesis

1.0

oebl Buia B/
0.6}
0.4

0.2F

35F r

301 ’ .
251 g '
20 A flz) ¢/ agByy vl
15F .l . T P
1.0 as By

05+ ag Bg 4
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B-spline curve

e Convex hull

— like Bézier curves, all B-spline curves always lie inside the
convex hull

— convex hullis defined locally and changed with respect to
different parts of the curve

86



B-spline curve

e More complex examples

Font as a B-spline curve

Closed (Periodic) Cubic B-Spline

A
@
E @
O
®E
@
c SLIDE: order 4;
- < controlpointlist(ABCDEF ABC);

Data: G.Farin, Curves and Surfaces for
Computer Aided Geometric Design
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2.3.4. B-Spline/NURBS surface




B-spline surface

e Like Bezier surface, B-spline surface can be
constructed with tensor-product

— meshing in u-v parameter space

89



NURBS

 Non-uniform rational B-Spline

— formulation
k
i 1, n W; Zi:l Ni,nwiPi
i=1 23_1 Njnw; >ic1 Ninwi

— NURBS is commonly used in computer-aided design
(CAD), manufacturing (CAM), and engineering (CAE)

— part of numerous industry wide standards, such as IGES,
STEP, ACIS, and PHIGS



Free-form surface triangulation

e How to create meshes for free-form surfaces?

— create mesh in u-v parameter space

Boundary Points El

Rectangular Domain Mesh Grid Points [, ]
1-




Free-form surface triangulation

e Triangulation in parameter space




Free-form surface triangulation

e Problem with uniform meshing in parameter
space
— large deformation will distort triangles

e Adaptive triangulation according to some criteria
— boundary, surface deformation (curvature)

— criteria estimated from the control mesh

93



Free-form surface triangulation

e Construct triangle meshes with storage consistent
to OpenGL
— Vertex position/normal array + index array
— Render with OpenGL vertex array

T
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Free-form surface modeling

e Design by control points

95



3. Vector graphics




Vector graphics

e Vector graphics is the use of
polygons to represent images in
computer graphics

— based on vectors, which lead through
locations called control points or nodes

— ideal for printing

— unlimited zoom-in and zoom-out
without aliasing

97



Vector graphics

e Benefit of vector graphics
— compact representation

— aliasing-free display (rasterization)
a 7x Magnification
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Vector graphics

e More examples
— filling based on free-form surfaces
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Image vectorization

e Create vector representation of a natural input
Image




Image vectorization

e Diffusion curves
— create continuous curves to represent image edges

— the content of the image can be filled by Poisson equation
solver




Next lecture: Geometric modeling 2




