Computer Graphics I Lecture 6: Geometric modeling 2

Xiaopei LIU

School of Information Science and Technology ShanghaiTech University

What can we do now?

• Draw simple geometries

• Triangulate scattered points to form triangle

meshes

What can we do now?

Construct free surface meshes and draw them

Project & rasterize geometries and render them

Subdivision and simplification

Subdivision

Simplification

Implicit approach

- Surface meshes from implicit functions (sampled data)
- Isosurface from level set

- Implicit approach
 - Surface mesh reconstruction from point cloud

Remeshing

- Reorganize mesh elements with better quality

1. Mesh subdivision/refinement

Subdivision surface

- A method of representing a smooth surface via the specification of a coarser piecewise linear polygon mesh
- The underlying concepts are derived from spline refinement algorithms

Overview

- Subdivision surfaces are defined <u>recursively</u>
- Starting with a given polygonal mesh, a (convergent)
 <u>subdivision scheme</u> is applied to this mesh

Catmull–Clark subdivision scheme

- Devised by Edwin Catmull and Jim Clark in 1978
- A generalization of bi-cubic uniform B-spline surfaces to arbitrary topology

- Catmull–Clark subdivision scheme
 - Add a new face point

$$v_F = \sum_{i=1}^n \frac{1}{n} v_i$$

- Add a new edge point
 - End points v and w and adjacent faces F1 and F2

$$v_E = \frac{v + w + v_{F_1} + v_{F_2}}{4}$$

- Update the original vertex point $v' = \frac{1}{n}Q + \frac{2}{n}R + \frac{n-3}{n}v$
 - v: the original vertex point
 - Q: average of the new face points for all faces adjacent to v
 - R: average of the midpoints of the n edges connected to v

- Catmull-Clark subdivision scheme
 - Subdivision scheme Illustration

- Catmull-Clark subdivision scheme
 - Mesh structure

- Quadrilateral based meshes generally use Catmull-Clark subdivision scheme
- Triangle based meshes generally use loop subdivision

Loop subdivision surfaces

 For every edge in the source mesh, add a vertex (shown in blue) and for every triangle on the mesh, create the four triangles

- Every edge in the source mesh has two adjacent faces
- We just take the a linear combination of the source vertices to have the location of the vertex associated with this edge.

- Every vertex in the source mesh is also in the subdivided mesh
- Its new position is computed depending on all the vertices connected to the vertex by an edge

- The number of such vertices, n, determines the constant beta
- There are many options available, but the simplest choice is

$$\beta = \frac{\frac{3}{8 \text{ n}} \text{ n} > 3}{\frac{3}{16} \text{ n} = 3}$$

Loop subdivision surfaces

 The boundary cases are based on basic spline refinement schemes and are equally simple. For a new edge vertex:

– And for a boundary vertex:

2. Mesh simplification/coarsening

What is mesh simplification/coarsening?

- The process to reduce the number of vertex/face of a polygonal mesh
 - Approximate the same shape with fewer primitives
 - Inverse process of mesh subdivision/refinement

Decimation operator

Decimation operator

Decimation operator

Decimation operators

3. Level-of-detail and progressive meshes

Level of detail (LoD)

Level of detail involves

- Decreasing the complexity of a 3D model representation as it moves away from the viewer
- Level-of-detail techniques increase the efficiency of rendering

Progressive meshes

Hugues Hoppe

- SIGGRAPH 1996
- Integrated into Direct3D

Incorporate geomorph

- Allow a smooth choice of detail levels
- Depending on the smooth view changes

Real-time performance

Considerable memory consumption

Progressive meshes

Edge collapse ecol

 ecol takes two connected vertices and replaces them with a single vertex

• Vertex Split vsplit

 The inverse operation to the edge collapse that divides the vertex into two new vertexes

Progressive meshes

• Animated Progressive meshes

3. Isosurface and marching cube algorithm

Implicit representation of a surface

- Implicit surface representation
 - Implicit surfaces have some nice features (e.g., merging/splitting)
 - But, hard to describe complex shapes in closed form
 - Alternative: store a grid of values approximating function

- Surface is found where interpolated values equal zero
- Provides much more explicit control over shape (like a texture)

Contour line

- A contour line of a function of two variables
 - A curve along which the function has a <u>constant value</u>

Isosurface

- A three-dimensional analog of an iso-contour
 - A surface that represents points of a constant value (isovalue)

Applications of isosurface

- Scientific visualization
 - For example, medical data visualization

- 2D surface reconstruction from samples of a function
- Sample the function with a uniform grid

- 2D surface reconstruction from samples of a function
- Sample the function with a uniform grid

- 2D surface reconstruction from samples of a function
- For each cell, interpolate the values at select the iso-value points

- 2D surface reconstruction from samples of a function
- Then, we connect the two points to form an edge in isosurface

- 2D surface reconstruction from samples of a function
- All the constructed triangle faces in a cell form the whole isosurface

- 3D surface reconstruction from samples of a function
- All the constructed triangle faces in a cell form the whole isosurface

- Isosurface construction and rendering with face normal
- The surface looks non-smooth

- How to render smooth surface?
- Use vertex normal, but how to compute vertex normal?
 - Average from nearby face normals
 - Estimate the gradient of the sampling function

4. Mesh reconstruction from point clouds

Mesh reconstruction

- Given a set of points (possibly with normals for each point)
 - Construct a (triangle) mesh representation that closely fit the points

Mesh reconstruction

What we need?

- Point distribution in space
- Normal for each point
- If we do not know normal, we can estimate from points

Indicator function

- A function indicating the inner and outer region of the mesh
 - The mesh is the isosurface of the indicator function

Mesh reconstruction

Poisson mesh reconstruction

We can only specify the normal of the indicator function

Problem as a Poisson equation problem

$$\Delta \chi \equiv \nabla \cdot \nabla \chi = \nabla \cdot \vec{V}.$$

Surface reconstruction as a Poisson problem

Poisson mesh reconstruction

- After solving the Poisson equation, the surface mesh is the isosurface with an iso-value (>o)
- Isosurface generation method (marching cubes)

5. Mesh manipulations

Mesh filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, compressed sensing, ...
- Polygon meshes:
 - curvature flow
 - bilateral filter

Remeshing

- Modify sample distribution to improve quality
- Images: ...not usually an issue!
 - pixels are always stored on a regular grid
- Polygon meshes: shape of polygons extremely important!
 - approximation
 - simulation
 - further processing

Mesh compression

- Reduce storage size by eliminating redundant data/ approximating unimportant data
- Images:
 - run-length encoding (RLE) no loss of information
 - spectral/wavelet encoding (e.g., JPEG/MPEG) lossy
- Polygon meshes:
 - have to compress geometry and connectivity
 - many techniques (spectral, diffusion, ...)

Shape analysis

- Identify/understand important semantic features
- Images: computer vision, segmentation, face detection, ...
- Polygon meshes:
 - segmentation
 - correspondence
 - symmetry detection

Next lecture: Rendering geometries