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Target Tracking using Kalman Filter
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Target tracking is often complicated by the measurement noise. The noise must be filtered out in order to predict the true path
of a moving target. In this study of linear filtering, the Kalman filter, a recursive linear filtering model, was used to estimate tracks.
Kalman filter was successful in smoothing random deviations from the true path of the targets, improving in its ability to predict
the path of each target as more measurements from the tracker were processed.

Index Terms—Kalman filtering, Target tracking, Image segmentation.

I. INTRODUCTION

Random process or signal is ubiquitous in engineering. On
the one hand, any deterministic signal, after being measured,
will often introduce a random error so that it will be ran-
domized. On the other hand, any signal itself has random
interference. A signal is called noise if it interfered signal or
system functions. Power spectral density (PSD) divides noise
into white noise and color noise, and we call a zero mean white
noise pure random signal. Therefore, any random signal can be
regarded as a mixture of pure random signal and deterministic
signal, or just called a random signal.

We are concerned about extract useful signal from a the
mixture signal with noise. Wiener and Kalman filter are
some of the methods to solve the problem. Kalman filter
uses a series of measurements observed over time, containing
statistical noise and other inaccuracies, and produces estimates
of unknown variables that tend to be more accurate than those
based on a single measurement alone, by estimating a joint
probability distribution over the variables for each timeframe.

Therefore, we can use Kalman filter to track moving target.
The detection and tracking of moving objects in sequence
images means to find and extract moving objects in real
time in a continuous sequence of images, and the moving
objects are continuously tracked according to the changes
of the edge, local motion and gray level of the target to
obtain the track of the moving objects. This provides the data
of target recognition, motion analysis and other processing
for the next stage. It is an important subject in computer
vision. It has a wide range of applications in military visual
guidance, video surveillance, traffic flow observation, robot
navigation and video image compression and transmission.
The commonly used moving target detection methods in
video surveillance mainly include the algorithm based on the

adjacent frame difference or based on the difference between
background image and the current frame. Most of the methods
based on background difference mainly involve the estimation
of background image and the real-time updating. When the
moving objects changes it state form moving to static in a
long time, due to the real-time updating of the background, it
is possible to mistake the moving object into the background
image. Moreover, when the target moves suddenly from a
standstill, subtracting the current frame from the background
may obtain a false detection results. In order to overcome these
shortcomings, we use Kalman filter to predict the area of the
moving target may be in next time slot. This can narrow the
search space so as to achieve the fast track of moving target.

II. KALMAN FILTER

One can use a Kalman filter in any place where one have
uncertain information about some dynamic system, and one
can make an educated guess about what the system is going
to do next. Even if messy reality comes along and interferes
with the clean motion one guessed about, the Kalman filter
will often do a very good job of figuring out what actually
happened. And it can take advantage of correlations between
crazy phenomena that one maybe wouldnt have thought to
exploit! Kalman filters are ideal for systems which are contin-
uously changing. They have the advantage that they are light
on memory (they dont need to keep any history other than
the previous state), and they are very fast, making them well
suited for real time problems and embedded systems.

Now we will give a detail introduction to the Kalman filter.
For convenience, we assume the data model is Gauss-Markov,
which has the form

s[n] = as[n− 1] + u[n] n ≥ 0 (1)
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Now we want to estimate s[n] based on the data
{x[0], x[1], . . . , x[n]} as n increases. This is called filtering.
The approach computes the estimator ŝ[n] based on the
estimator for the previous time sample ŝ[n − 1] and so is
recursive in nature. This is so-called Kalman filter. Consider
the scalar state equation and the scalar observation equation

s[n] = as[n− 1] + u[n]

x[n] = s[n] + w[n]
(2)

where u[n] is zero mean Gaussian noise with independent
samples and E(u2[n]) = σ2

u, w[n] is zero mean Gaussian noise
with independent samples and E(w2[n]) = σ2

n. Furthermore,
we make two assumptions:

(i) s[−1], u[n] and w[n] are all independent,
(ii) s[−1] ∼ N (µs, σ

2
s).

The noise process w[n] differs from WGN only in that
its variance is allowed to change with time. To simplify the
derivation we assume that µs = 0, so that E(s[n]) = 0

for n ≥ 0. We wish to estimate s[n] based on the observa-
tions {x[0], . . . , x[n]} or to filter x[n] to produce ŝ[n]. More
generally, the estimator of s[n] based on the observations
{x[0], . . . , x[m]} will be denoted by ŝ[n|m]. Our criterion of
optimality will be the minimum Bayesian MSE or

E[(s[n]− ŝ[n|n])2] (3)

where the expectation is with respect to p(x[0], x[1], . . . , x[n]).
But the MMSE estimator is just the mean of the posterior PDF
or

ŝ[n|n] = E(s[n]|x[0], . . . , x[n]) (4)

which gives

ŝ[n|n] = CθxC
−1
xxx (5)

since θ = s[n] and x = [x[0], . . . , x[n]]T are jointly Gaussian.
Because we are assuming Gaussian statistics for the signal
and noise, the MMSE estimator is linear and is identical
in algebraic form to the LMMSE estimator. The algebraic
properties allow us to utilize the vector space approach to find
the estimator. The implicit linear constraint does not detract
from the generality since we already know that the optimal
estimator is linear. Furthermore, if the Gaussian assumption
is not valid, then the resulting estimator is still valid but can
only be said to be the optimal LMMSE estimator. Returning
to the sequential computation of (5), we note that if x[n] is

uncorrelated with {x[0], . . . , x[n− 1]}, then from (4) and the
orthogonality principle we will have

ŝ[n|n] = E(s[n]|x[0], . . . , x[n− 1]) + E(s[n]|x[n])

= ŝ[n|n− 1] + E(s[n]|x[n])
(6)

which has the desired sequential form. Unfortunately, the
x[n] is correlated due to their dependence on s[n], which is
correlated from sample to sample.

There are some useful properties of MMSE estimator:

(i) The MMSE estimator of θ based on two uncorrelated
data vectors, assuming jointly Gaussian statistics, is

θ̂ = E(θ|x1,x2)

= E(θ|x1) + E(θ|x2)

if θ is zero mean.
(ii) The MMSE estimator is additive in that if θ = θ1 + θ2,

then

θ̂ = E(θ|x)

= E(θ1 + θ2|x)

= E(θ1|x) + E(θ2|x)

Now let X[n] = [x[0], . . . , x[n]]T and x̃[n] denote the inno-
vation, noting that the innovation is jointlythe part of x[n] that
is uncorrelated with the previous samples {x[0], . . . , x[n−1]}
or

x̃[n] = x[n]− x̂[n|n− 1] (7)

This is because by the orthogonality principle x̂[n|n− 1] is
the MMSE estimator of x[n] based on data {x[0], . . . , x[n −
1]}, the error or x̃[n] being orthogonal with the data. The data
X[n−1], x̃[n] are equivalent to the original data set since x[n]

may be recovered from

x[n] = x̃[n] + x̂[n|n− 1]

jointly = x̃[n] +

n−1∑
k=0

akx[k]

where ak are the optimal weighting coefficients of the MMSE
estimator of x[n] based on {x[0], . . . , x[n− 1]}. Now we can
rewirte (4) as

ŝ[n|n] = E(s[n]|X[n− 1], x̃[n])jointly (8)

and because X[n− 1] and x̃[n] are uncorrelated, we have

ŝ[n|n] = E(s[n]|X[n− 1]) + E(s[n]|x̃[n]).
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But E(s[n]|X[n− 1]) is the prediction of s[n] based on the
previous data, and we denote it by ŝ[n|n− 1], thus have

ŝ[n|n− 1] = E(s[n]|X[n− 1])

= E(as[n− 1] + u[n]|X[n− 1])

= aE(s[n− 1]|X[n− 1])

= aŝ[n− 1|n− 1].

Therefore we now have

ŝ[n|n] = ŝ[n|n− 1] + E(s[n]|x̃[n]) (9)

where
ŝ[n|n− 1] = aŝ[n− 1|n− 1].

To determine E(s[n]|x̃[n]) we note that it is MMSE of s[n]

based on x̃[n]. As such, it is linear, and because of the zero
mean assumption of s[n], it takes the form

E(s[n]|x̃[n]) = K[n]x̃[n]

= K[n](x[n]− x̃[n|n− 1])

where
K[n] =

E(s[n]x̃[n])

E(x2)
. (10)

This follows from the general MMSE estimator for jointly
Gaussian θ and x

θ̂ = CθxC
−1
xx x =

E(θx)

E(x2)
x.

But x[n] = s[n] + w[n], so that

x̂[n|n− 1] = ŝ[n|n− 1] + ŵ[n|n− 1]

= ŝ[n|n− 1]

since ŵ[n|n − 1] = 0 due to w[n] being independent of
{x[0], . . . , x[n− 1]}. Thus,

E(s[n]|x̃[n]) = K[n](x[n]− ŝ[n|n− 1])

and from (9) we now have

ŝ[n|n] = ŝ[n|n− 1] +K[n](x[n]− ŝ[n|n− 1]) (11)

where
ŝ[n|n− 1] = aŝ[n− 1|n− 1]. (12)

It remains only to determine the gain factor K[n]. From
(10) the gain factor is

K[n] =
E[s[n](x[n]− ŝ[n|n− 1])]

E[(x[n]− ŝ[n|n− 1])2]
.

Moreover, we can derivate that

K[n] =
E[(s[n]− ŝ[n|n− 1])(x[n]− ŝ[n|n− 1])]

E[(s[n]− ŝ[n|n− 1] + w[n])2]

=
E[(s[n]− ŝ[n|n− 1])2

E[(s[n]− ŝ[n|n− 1])2] + σ2
n

(13)

But the numerator is just the minimum MSE incurred when
s[n] is estimated based on the previous data or the minimum
one-step prediction error. We will denote this by M [n|n− 1],
so that

K[n] =
M [n|n− 1]

M [n|n− 1] + σ2
n

(14)

Moreover, the minimum prediction error is

M [n|n− 1] = E[(s[n]− ŝ[n|n− 1])2]

= E[(as[n− 1] + u[n]− ŝ[n|n− 1])2]

= E[(a(s[n− 1]− ŝ[n− 1|n− 1]) + u[n])2]

Note that

E[(s[n− 1]− ŝ[n− 1|n− 1])u[n]] = 0

since s[n− 1] depends on {u[0], . . . , u[n− 1], s[−1]}, which
are independent of u[n], and ŝ[n − 1|n − 1] depends on past
data samples, which also are independent of u[n]. Thus,

M [n|n− 1] = a2M [n− 1|n− 1] + σ2
u.

Summarize all above, we have, for n ≥ 0:

• Prediction:

ŝ[n|n− 1] = aŝ[n− 1|n− 1]

• Minimum Prediction MSE:

M [n|n− 1] = a2M [n− 1|n− 1] + σ2
u

• Kalman Gain:

K[n] =
M [n|n− 1]

M [n|n− 1] + σ2
n

• Correction:

ŝ[n|n] = ŝ[n|n− 1] +K[n](x[n]− ŝ[n|n− 1])

• Minimum MSE:

M [n|n] = (1−K[n])M [n|n− 1]

III. TARGET TRACKING

A. Basic target tracking methods based on Kalman filter

There are several steps to follow using Kalman filter in
target tracking:

(i) Calculate the feature of the moving object. In order to
track the moving target, firstly, calculate the center of
mass and the width and height of the bounding rectangle.

(ii) Initialize Kalman filter with the information obtained.
Due to the speed and the bounding rectangle change rate
is unknown when initializing, set these variables to 0.
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(iii) Using Kalman filter to predict the corresponding target
area in next frame. Then run a target matching in target
area after the arrival of next arrival.

(iv) If it matches, update Kalman filter, and record the target
information in the current frame.

B. Problem modeling

In order to reduce the search space of the target and improve
the speed of the target tracking, it is usually necessary to
estimate the target’s motion parameters at the next moment,
so as to reduce the search complexity. The Kalman filtering
is an optimal recursive algorithm for data processing. It does
not need to store all the previous data in the memory and
only needs to process the new measured value taken at each
moment to estimate the optimal state.

Assume we have a stochastic dynamic system, with statis-
tical properties as follows:

x(k + 1) = Φ(k + 1, k)x(k) + ξ(k) (15)

y(k) = Θ(k)x(k) + η(k) (16)

where x(k) is a n × 1 random state vector, y(k) is a p × 1

measurement vector, Φ(k+1, k) is a one-step transition matrix,
Θ(k) is a p × n measurement vector, ξ(k) is a n × 1 noise
vector while η(k) is a p× 1 measured noise vector.

In general, the statistical noise in video detection can be
regarded as a zero mean Gaussian r.v., then it can be assumed
that the system noise and the measurement noise satisfy the
independent and identically-distributed WGN with zero mean.
That is to say, for all k we have

E(ξ(k)) = 0, E(ξ(k)ξT (k)) = Q(k) (17)

E(η(k)) = 0, E(η(k)ηT (k)) = R(k) (18)

where the noise covariance matrix Q and measurement noise
covariance matrix R are all positive definite.

According to the measurement information, the Kalman
filtering equation should be:

• Prediction:

x̂(k + 1|k) = Φ(k + 1, k)x̂(k)

• Filtering:

x̂(k + 1) = x̂(k + 1|k) +K(k + 1)[y(k + 1)

− θ(k + 1)x̂(k + 1|k)]

• Kalman Gain:

K(k + 1) = P (k + 1|k)ΘT (k + 1)[

Θ(k + 1)P (K + 1|k)ΘT (k + 1) +R(k + 1)]−1

• Correction:

P (k + 1|k) = Φ(k + 1, k)P (k)ΦT (k + 1, k) +Q(k)

• Initial value:

x̂(0) = E(x(0))

P (0) = Var(x(0))

Kalman gain K(k+1) expresses the effect of innovation, with
larger value obtaining much more correction on prediction, and
small value denoting the prediction is much more accurate, the
innovation making little effect. Therefore, the error, of time
k+1, between the optimal estimation and real state is decided
by two factors: the difference between prediction x̂(k + 1|k)

and real state x(k+ 1); how much the Kalman gain K(k+ 1)

will correct the prediction x̂(k + 1|k).

We establish a Kalman filter for each moving object. Taking
the center of the bounding rectangle of the target as the
tracking point, x(k) consists of 4 components:

x(k) = [px(k), py(k), vx(k), vy(k)]T

where px(k) is the x component of the position of the tracking
point at time k, py(k) has the similar meaning, vx(k) is the x
component of the speed of tracking point at time k and vy(k)

has the similar meaning.

Since the time interval between each frame is relatively
small, considering that each frame can be approximated as
uniform motion, the system gain matrix is considered to be
invariant. Supposing the time interval per frame is T , linearize
and discretize the system to obtain the state transition matrix
and the measurement matrix as follow:

Φ(k + 1|k) =


1 0 T 0

0 1 0 T

0 0 1 1

0 0 0 1

 (19)

Θ(k) =

[
1 0 0 0

0 1 0 0

]
(20)

IV. EXPERIMENT RESULTS

We use the the video sequence with image resolution of
384 × 288 and frame rate 25 per second. Figure 1 shows
the change, in position, of the error of a Kalman filter that
stabilizes from initial state to stationary state.

We then use Kalman filtering to track the moving object.
Because Kalman filter estimation can obtain the continuous
motion state of the moving target, it is easy to maintain the
correspondence between the targets of different frames, the
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Fig. 1. Changes of error of position estimation, x and y component
respectively

only thing needed to do is to confirm the existence of the target
within the estimated range so as to reduce search complexity.

V. CONCLUSION

We elaborate, in detail, the application of kalman filter in
predicting the target information, track the different motion
states separately by establishing the inter-frame relationship
matrix. From the above we can conclude that Kalman filter
performs well in target tracking, it can well predict the target
area next time slot based on present information.
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