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Abstract—Nowadays the smart phones are adapted in multiple
working scenarios. Unlike the traditional mobile phones, smart
phones are equipped with powerful functions as well as higher
power consumption. As a matter of fact, the power control of a
smart phone is among the most important features. This paper
proposed a situation where you are in a place of nowhere with
your smart phone alone (without power bank, you know). Your
phone has limited energy, which has to be distributed to both
standby and signal detection to increase your probability of
survival. The paper also purposes different energy distribution
strategy under various situation and determines the optimal rule
accordingly. In the last part of the paper, a simulation of the
most representative conditions is presented to show how it really
works.
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I. INTRODUCTION

Smart phones have invaded into our lives so deeply that
one would be thought to be out of date without a smart phone.
Also, smart phones are now so powerful that they can fulfill
almost all the demands in daily life. However, mobile devices
have their own worries. The more powerful one terminal is,
the more energy it consumes at every computation it operates.
The recent battery problem on iPhones raised public attention
on the power control.

It is obvious that operating at neither full power nor least
power all the time is an available solution to maximize the
power efficiency of a smart phone. The strategy should vary
with the specific situation. Imagine that you are in a place of
nowhere and your only possession is your smart phone. You
have to survive by sending out signals which consumes your
phone’s energy based on the current signal condition, and so
does the standby of your phone. Every single communication
of your phone between the base station will increase your
probability of survival according to the time interval between
the current and the last one as well as the real signal condition.
In order to make as many contacts as possible, your phone has
to determine a rule on when to communicate with the base
station, and the rest part of this paper will go on formulating
and deriving the best strategy under different circumstances.

II. PROBLEM FORMULATION

The key factor in this problem are the time t and the energy
each detection consumes ED. In order to make this problem

more intuitive, it can be assumed that the standby consumption
is linear to time. To be more specific, we can fix the following
parameters, {

Pstandby = 1
Etotal = 10000

It is reasonable to assume that the survival probability PS

that every detection increases is related to time t since multiple
communications with the base station within very short time
interval won’t provide any useful information. So the every
increased survival probability can be formulated as

ps = (
log(t+ 1)

ED
)2

It is also reasonable to put the ED in the denominator
since it is related to the signal intensity. The better the signal
condition is, the less it costs to make a contact and the more
information it provides. When the battery runs out(E = 0),
the final survival probability is

PS =
∑

psi

which is the probability you are going to survive after your
smart phone is turned off.

Besides, it should be taken into consideration that every
contact should be made with best efficiency, that is to say,
the biggest probability/consumption ratio. To compute this, the
consumption should be derived first as

EC = Pstandby · t+ ED

and the ratio can be derived as

r(t) =
( log(t+1)

ED
)2

Pstandby · t+ ED

then the problem becomes

max
t

r(t), s.t.ED

It is easy to solve the problem with let the derivation of
r(t) to t to 0. The numerical result is

t∗ = e1+2ProductLog(0.27(ED−1)) − 1(1)



The ProductLog(z)[1] indicates the solution to z(x) =
xex and can be calculated numerically. With this solution,
the optimal can be calculated as long as ED is determined.
However, as a matter of fact, the next ED is unknown in most
situations. The next part will come up with different ways to
estimate ED and how each will affect the result.

III. PROPOSITIONS ON ESTIMATION OF ED

A. Proposition I: ”Markov”

This proposition is to take the last EDi−1 as the next EDi

when no additional information is provided. This is especially
efficient when the real ED is monotonically decreasing(e.g.
you are walking in the right direction) or increasing. However,
this can be extremely unstable when the signal condition is
chaos.

B. Proposition II: ”Bayesian”

This proposition is to take the mean of all former ED as
the next ED. If signal is averagely good(or bad) everywhere,
this position will be the most useful to maximize the profit of
every attempt to contact.

IV. SIMULATION RESULTS

First of all, the t∗(ED) is like

Fig. 1. t∗(ED) vs. ED

This shows the relationship between ED and the optimal t
it should make the next contact. In order to test the proposition
under different situations, we purposed the following two
signal condition along with time.

Fig. 2. Monotonically decreasing ED

The first situation is the monotonically decreasing ED

which simulates that you are going in the right direction where
you can get survived.

Fig. 3. Random ED

The second situation is random signal intensity. This sim-
ulates a place where every point is averagely disturbed by the
noise.

A. Results of Situation A

The result of situation A of two propositions separately is
as following

Fig. 4. Result 1

The x-axis denotes the time t and the y-axis indicates the
total survival probability PS . It is clear from the picture that
in the first situation, the ”Markov” method is way better than
the ”Bayesian” method, the performance gap between which
is almost equal to the worse one. This is mainly due to that
the first situation encourages the estimation to step forward to
a certain direction, while the mean is lagged because of the
property of monotonically decreasing(and also nearly linear).

B. Results of Situation B

The result of situation A of two propositions separately is
as following



Fig. 5. Result 2

It can be seen from the plot that in situation 2, two methods
are very close to each other in performance. This is mainly
because the range of ED is quite small. The two method
degenerate to the same when ED is a constant. Also, with
the increase of the range of random ED, the Bayesian method
will perform even better.

V. CONCLUSION

The current result shows two things: first, the optimal deci-
sion rule with given ED has been derived and can be applied to
the real scenario; and second, with different estimators results
can be also very different from each other. There is no general
optimal estimator for all the situations, and once with the given
information, an asymptotic optimal estimator can be derived
for the situation. However, calculation and computation also
consume energy, so the further work should focus on taking
the calculation consumption into consideration.

APPENDIX A
PROOF OF (1)

First, take the derivative of the equation
ln(t+1)

ED

t+ED

∂
ln(t+1)

ED

t+ED

∂t
=

2ln(t+ 1)

(t+ ED)E2
D

· 1

t+ 1
− ln2(t+ 1)

(t+ ED)2E2
D

= 0

2

t+ 1
=

ln(t+ 1)

t+ ED

replace t+ 1 = ey into the equation,

ey − 1 + ED = 0.5yey

solve it and get

y = 1 + 2ProductLog(0.27(ED − 1))

replace y into the original equation,

t∗ = e1+2ProductLog(0.27(ED−1)) − 1(1)

Q.E.D.

APPENDIX B
THE REALIZATION OF PRODUCTLOG IN MATLAB

f u n c t i o n wx= Produc tLog ( z )
i f abs ( r e a l ( z ) ) + abs ( imag ( z ))<1 e−10

wx=z ;
r e t u r n ;
end
l n z = l o g ( z ) ;
zx= r e a l ( l n z ) ;
zy=imag ( l n z ) ;

Fy= z e r o s ( 2 ) ;
F=Fy ;
Fx=Fy ;
temp =0;
x=zx ;
y=zy ;
x0 =0;
y0 =0;
Fy ( 1 ) = l o g ( x ˆ2+ y ˆ 2 ) / 2 + x−zx ;
Fy ( 2 ) = y−zy+ a t a n 2 ( y , x ) ;
e r r o = abs ( Fy ( 1 ) ) + abs ( Fy ( 2 ) ) ;
l oopn =1000;
w=1;
w h i l e loopn>0 && w>−1.05 && e r r o >1e−10

w=x ˆ2+ y ˆ 2 ;
F ( 1 ) = x /w+1;
F ( 2 ) = y /w;
w=F ( 1 ) ˆ 2 + F ( 2 ) ˆ 2 ;
Fx ( 1 ) = ( Fy ( 1 )∗ F(1)−Fy ( 2 )∗ F ( 2 ) ) / w;
Fx ( 2 ) = ( Fy ( 2 )∗ F ( 1 ) + Fy ( 1 )∗ F ( 2 ) ) / w;
w=1;
w h i l e w>=−1

x0=x−w∗Fx ( 1 ) ;
y0=y−w∗Fx ( 2 ) ;
Fy ( 1 ) = l o g ( x0 ˆ2+ y0 ˆ 2 ) / 2 + x0−zx ;
Fy ( 2 ) = y0−zy+ a t a n 2 ( y0 , x0 ) ;
temp= abs ( Fy ( 1 ) ) + abs ( Fy ( 2 ) ) ;
i f temp<e r r o

e r r o =temp ;
x=x0 ;
y=y0 ;
w=−1.03;

e l s e
w=w−0 .1 ;

end
end
loopn = loopn −1;

end
wx=x+ i ∗y ;
end
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