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Abstract—Kalman filter is a useful estimation algorithm that
can be used in guidance, navigation and control of vehicles
like spacecraft [1]. In the class, we have learned the basic and
extended form of Kalman filter. This paper gives a brief review
of some basic concepts of Kalman filtering such as the basic
dynamical model, formulations, intuitions and some limitations.
Then in the next section we will talks about some nonlinear vari-
ants of the Kalman filters like extended Kalman filter and some
modifications used to improve the performance. Another kind of
nonlinear Kalman filter called Unscented Kalman filter will be
talked. Finally, we will introduce an efficient noise covariances
estimator called autocovariance least square method.[2]

I. INTRODUCTION

Kalman Filter is a powerful and practical tool used in many
area like control and signal processing. This filter use the
concept of successive estimation. First, it uses a model to
predict the next signal and then it uses the measurement that
comes to correct the prediction weighted by the estimated
variance and true variance of the noise in measurement.
This algorithm is better than those only based on a single
measurement alone since it make use of the information of
the model we make.

The very first version introduced by Kalman[3] is linear
quadratic estimation. It is optimal in linear system only. In
practice, however, most of the systems are nonlinear. To cope
with this problem, a lot of extensions and generalizations
have been developed. In this paper, we will talk about two
forms of nonlinear Kalman filter that is widely used in many
fields. i.e. extended Kalman filter(EKF) and unscented Kalman
filters(UKF).

Another issue that is essential for Kalman filter is how
to get a good estimate of the noise covariances efficiently.
An unbiased practical estimator called autocovariance least-
squares method(ALS)[2] is introduced in this article.

II. SIMPLE KALMAN FILTER

In the class, we have learned about a basic simple Kalman
filter in the chapter13 of the textbook[4]. So to begin with, let
us review some concepts of the Kalman filter.

A. Dynamical Signal Models

The problem in Kalman Filter want to solve derive from the
estimation problem. Take a DC level in WGN problem as an
example:

x[n] = A+ w[n]

where A is the parameter that we want to estimate, and w[n] is
the White Gaussian Noise with variance σ2. But in practical,
the parameter A is not necessarily a constant. It may varies
over time. So in this context, our problem becomes

x[n] = A[n] + w[n]

In this situation, we may want to use a dynamical signal model
to use as much information we get as possible. To illustrate,
we use a simple model same as [4]i.e. the first-order Gauss-
Markov process:

s[n] = as[n− 1] + u[n]

where u[n] is WGN with variance σ2
u, and s[−1] ∼ N(us, σ

2
s)

is independent of u[n] for all n ≥ 0. Note that it is quite simple
model to illustrate the basic concepts of Kalman filter. Other
more complicated model like the second-order Gauss-Markov
process also can be considered to apply Kalman filter.

B. Formulation

Now we can introduce the formulation of the Kalman filter.
The signal s[n] and observation x[n] iterate over time with

the following equation

s[n] = as[n− 1] + u[n]

x[n] = s[n] + w[n]

with u[n] ∼ N(0, σ2
u), w[n] ∼ N(0, σ2

n) and s[−1] ∼
N(µs, σ

2
s). Also u[n],w[n] and s[n] are independent of each

other.
Follow the derivation in section 13.4 of the textbook[4], we

can obtain the formula as below. The basic idea of derivation is
applying Minimum Mean Square Error(MMSE) estimate and
orthogonality principle to the prolem, and making use of the
properties of dynamical signal models.
Prediction:

ŝ[n|n− 1] = aŝ[n− 1|n− 1]



Minimum Prediction MSE:

M [n|n− 1] = a2M [n− 1|n− 1] + σ2
u

Kalman Gain:

K[n] =
M [n|n− 1]

σ2
n +M [n|n− 1]

Correction:

ŝ[n|n] +K[n](x[n]− ŝ[n|n− 1])

Minimum MSE:

M [n|n] = (1−K[n])M [n|n− 1]

This formulas are beautiful since they are easy to implement
and fit the our intuitions quite well. In each step, we predict
the next signal with our dynamical signal model and corre-
sponding variance. Then we correct the estimation with current
observation x[n]. Note that the variance M[n] can be calculated
offline. i.e. whenever our model for the process is settled, we
can calculate all these M[i] no matter what observation x[n]
is.

C. Optimality

The Kalman is the optimal linear filter if the following
condition holds:
• The model matches the real system quite well and the

real system is linear.
• Then noise entering is white and independence between

signal and noise holds.
• The covariances of the noise are exactly known.

As can be seen, there are certain limitations for Kalman filter’s
optimality. In the real world, it is quite difficult to find the
optimal filter since neither of those conditions can be fully
satisfied. Linear models are only approximations of the actual
process near the operating point. The noise covariance matrix
is unknown and not easy to estimate. In the following section,
we will talk about some variants created to cope with those
limitations.

D. More Than Textbook

In the textbook[4], the derivation of Kalman filter is under
Bayes’s rule and the assumption that all estimates have in-
dependent, Gaussian noise. There is a misunderstanding that
Kalman filter can only be applied under Gaussian assumptions.
The original derivation[3], however, did not apply Bayes’ rule
and did not require any noise distribution information except
mean and covariance.

III. EXTENDED KALMAN FILTER

Notice that our simple Kalman filter is limited. It works
well only for linear system. When our system become nonlin-
ear,which is the most case in practice, there should be a more
general extension for the filter. Suppose we have a general
dynamical signal model:

sk = f(sk−1, uk) + wk

xk = h(sk) + vk

where f(s,u) and h(s) are two functions corresponding the
system and wk and vk are two zero mean Gaussian noises.
In addition, uk is the control signal.

And more generally, the noise signal does not have to be
additive, our system becomes

sk = f(sk−1, uk, wk)

xk = h(sk, vk)

The basic idea of extended Kalman filter is quite straight
forward. That is, to linearize the system by a Taylor expansion
and apply the simple Kalman filter showing above. More
details can be seen in section 13.7 of the textbook[4]. Note
that unlike simple form of Kalman filter, the estimated variance
M [n|n] has to be calculated online since we have to wait for
the estimated signal to calculate the Taylor expansion and then
the estimated variance.

Also note that the extended Kalman filter described in the
textbook is a first-order extended Kalman filter(EKF). Higher
order EKFs may be obtained by retaining more terms of the
Taylor series expansions. For example, second and third order
EKFs have been described. However, higher order EKFs tend
to only provide performance benefits when the measurement
noise is small.

The disadvantage of the extended Kalman filter is quite
obvious: it is in general is not an optimal estimator any
more. And due to the linearization, the estimate will not be
accurate when system is not near linear. In order to improve the
performance of the extended Kalman filter, there are certain
modifications.[5]

A. Iterated extended Kalman filter

The iterated extended Kalman filter improves the lineariza-
tion of the extended Kalman filter by recursively modifying
the centre point of the Taylor expansion. This reduces the
linearization error at the cost of increased computational
requirements.

B. Robust extended Kalman filters

The extended Kalman filter arises by linearizing the signal
model about the current state estimate and using the linear
Kalman filter to predict the next estimate. This attempts to
produce a locally optimal filter, however, it is not necessarily
stable because the solutions of the underlying Riccati equation
are not guaranteed to be positive definite.

As stated in [6], we can employ the H∞ results from
robust control. Robust filters are obtained by adding a positive
definite term to the design Riccati equation. The additional
term is parametrized by a scalar which the designer may tweak
to achieve a trade-off between mean-square-error and peak
error performance criteria.

Another way is the faux algebraic techique. The similar
structure of the Extended Kalman filter maintains while the
stability is achieved by selecting carefully a positive definite
solution to a faux algebraic Riccati equation.



C. Invariant extended Kalman filter

The invariant extended Kalman filter (IEKF)[7] is another
version of the extended Kalman filter (EKF) for nonlinear
systems possessing symmetries (or invariances).It has the
advantages of both the EKF and the symmetry-preserving
filters that introduced recently.

Instead of using a linear correction term based on a linear
output error, the IEKF uses a geometrically adapted correction
term based on an invariant output error; in the same way the
gain matrix is not updated from a linear state error, but from
an invariant state error. The main benefit is that the gain and
covariance equations converge to constant values on a much
bigger set of trajectories than equilibrium points that is the
case for the EKF, which results in a better convergence of the
estimation.

IV. UNSCENTED KALMAN FILTERS

As stated in [8], ”The extended Kalman filter (EKF) is
probably the most widely used estimation algorithm for non-
linear systems. However, more than 35 years of experience
in the estimation community has shown that is difficult to
implement, difficult to tune, and only reliable for systems that
are almost linear on the time scale of the updates. Many of
these difficulties arise from its use of linearization.”

It is true that when the system is highly non-linear, i.e.
the function f and h are highly nonlinear, the performance
of EKF will be quite poor. This is because the higher orders
of Taylor expansion are neglected during the linearization in
EKF. In the UKF, we apply an unscented transformation that
will maintain higher order information of nonlinear function
f and h. It means that the error is smaller so the performance
of UKF is better than EKF in highly nonlinear conditions.

A. The Unscented Transformation

The basic idea of unscented transformation(UT) is to pick
a set of point properly. This set of point (called sigma point)
is the input of the function f, then we can calculate the output
set and this set contains most of the information we need
in function f. Therefore, we can approximate the non-linear
function with high accuracy and efficiency.

In general, a set of sigma points S consists of p+1 vectors

and their associated weights S = {i = 0, 1,
..., p : x(i),W (i)}.

The weights W (i) ∈ R with subject to the condition:
p∑

i=0

W (i) = 1

Then we can compute the transformed sigma points as follow-
ing:

z(i) = f [x(i)]

z̄ =

p∑
i=0

W (i)zi

Σz =

p∑
i=0

W (i){z(i) − z̄}{z(i) − z̄}T

By choosing the set of sigma points properly, we get
transformed data with mean and covariance matching the
nonlinear function f and minimizing the error of the higher
order. Further, if the number of sigma points is larger, we
can match higher order like first four moments of a Guassian
exactly. And then apply it into simple Kalman filter. Then we
will introduce a set of sigma points that mentioned in [8] and
talk about how it can be used in detail.

B. The Unscented Kalman Filters

Note that if we choose the sigma point differently, these
formula can be changed, so there is no unique way to
implement a UKF.

Here is an example of how to use UT in Kalman filter. [9]
1) prediction: Consider a augmented version of mean and

covariance of the process noise.

sk−1|k−1 =
[
ŝTk−1|k−1 E[wT

k ]
]T

Pk−1|k−1 =

[
Pk−1|k−1 0

0 Qk

]
Then we can construct a set of 2L+1 sigma points

s
(0)
k−1|k−1 = sk−1|k−1

s
(i)
k−1|k−1 = sk−1|k−1 +Di, i = 1, ..., L

s
(i)
k−1|k−1 = sk−1|k−1 −Di−L, i = L+ 1, ..., 2L

D =
√

(L+ λ)Pk−1|k−1

where Di denotes the ith column of the matrix D. And the
square root of a matrix D =

√
A is defined as A = D ×D.

The matrix square root should be calculated using numerically
efficient and stable methods such as the Cholesky decompo-
sition.

Then we can apply the UT metioned before to get ŝk|k−1
and corresponding predicted covariance Pk|k−1 with

W (0)
s =

λ

L+ λ

W (0)
c =

λ

L+ λ
+ (1− α2 + β)

W (i)
s = W (i)

c =
1

2(L+ λ)

λ = α2(L+ κ)− L

s
(i)
k|k−1 = f(sk−1|k−1)

ŝk|k−1 =

2L∑
i=0

W (i)
s s

(i)
k|k−1

Pk|k−1 =

2L∑
i=0

W (i)
c [s

(i)
k|k−1 − ŝk|k−1][s

(i)
k|k−1 − ŝk|k−1]T

where α, β, κ are the parameters that we can tune.



2) Correction: Similarly, we have the augmented matrix:

sk|k−1 =
[
ŝTk|k−1 E[vTk ]

]T
Pk|k−1 =

[
Pk|k−1 0

0 Rk

]
And apply UT to the similar set of 2L+1 sigma points and
get corresponding measurement and measurement covariance,
ẑk, Pzkzk and Pxkzk . And finally get the UKF Kalman gain
to finish the correction step.

Kk = PxkzkP
−1
zkzk

x̂k|k = x̂k|k−1 +Kk(zk − ẑk)

Pk|k = Pk|k−1 −KkPzkzkK
T
k

where zk is the true measurement which is known.

V. ESTIMATION FOR NOISE COVARIANCE

Note that another condition that need to be satisfied for
Kalman filter is that the noise covariance matrix is exactly
known. So in practice, if we want to implement a useful
Kalman filter, it is necessary to estimate the covariance in
an efficient way. One practical approach to do this is the
autocovariance least-squares (ALS) technique presented in
the [2]. It is unbiased and the covariance of the estimator
converges to zero when the the number of samples goes
large. Therefore, it is generally a good estimate for the noise
covariance.

A. preliminary

Consider a normal linear, time-invariant, discrete-time
model:

xk+1 = Axk +Buk +Gwk

yk = Cxk + vk

where A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×g, C ∈ Rp×n, and
wk and vk are uncorrelated zero-mean Gaussian noise with
covariances Qw and Rv , respectively. In addition, uk is the
control input which is known. And our state estimator result
in

x̂k+1|k = Ax̂k|k +Buk

x̂k|k = x̂k|k−1 + L[yk − Cx̂k|k−1]

where L denotes the estimator gain, note that this gain is
general and is not necessarily optimal gain. Particularly, in
Kalman filter, this gain is the Kalman gain. Our goal is to
estimate the covariances of the noises Qw, Rv . But before we
go, let me introduce some notations that will be used in the
following discussion.

1) Kronecker product & Kronecker sum: If A ∈ Rm×n and
B ∈ Rp×q , then the Kronecker product A ⊗ B is the mp ×
nq block matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
Then we can define Kronecker sum.

A⊕B = A⊗ Im + In ⊗B

where A ∈ Rn×n, B ∈ Rm×m and Ik denotes the k × k
identity matrix.

2) Autocovariance & autocovariance matrix: The autoco-
variance is defined as the expectation of the data with some
lagged version of itself.

rj = E[yky
T
k+j ]

Then we can define the autocovariance matrix (ACM) as

R(N) =

 r0 · · · rN−1
...

. . .
...

rTn−1 · · · r0


where N is a user-defined parameter.

3) ”vec” Operation: Define ”vec” operation as columnwise
stacking of a matrix into a vector. If zk is the kth column of
a matrix Z.

vec(Z) = Zs = [zT1 · · · zTk ]T

In the following derivation, we use the s subscript to denote
the output of applying the ”vec” operation.

4) System Transformation: The state estimate error is εk =
xk − x̂k|k−1. Then our iterative equation becomes:

εk+1 = (A−ALC)εk +Gwk −ALvk

Define A′ = A − ALC , G′ = [G,−AL] , w′k = [wT
k , v

T
k ]T ,

y′k = yk − Cx̂k|k−1then the equations become:

εk+1 = A′εk +G′w′k

y′k = Cεk + vk

5) Assumptions: There are assumptions required for the
following derivation

1) (A,C) is detectable, i.e. matrix A and C are known for
the following derivation.

2) A′ = A−ALC is stable
3) E[ε0] = 0, cov(ε0) = P where P is the solution of the

Lyapunov equation P = A′PA′ +G′Q′wG
′T



B. The ALS estimator

First, we can compute the autocovariance of yk

E[y′kt
′T
k ] = CPC +Rv

E[y′k+jy
′T
k ] = CA′jPCT − CA′j−1ALRv, j ≥ 1

Now we can calculate the ACM and write it as the following
form.

R[N ] = OPOT + T [⊕N
i=1G

′Q′w]TT + Φ[⊕N
i=1Rv]

+[⊕N
i=1Rv]ΦT +⊕N

i=1Rv

where

O =


C
CA′

...
C ′N−1

 , T =


0 0 0 0
C 0 0 0
...

. . .
...

CA′N−2 · · · C 0


Φ = T [⊕N

i=1(−AL)]

Then we apply the ”vec” operation to the Lyapunov equa-
tion and ACM R(N):

Ps = (A′ ⊗A′)Ps + (G′Q′w)G′T

[R(N)]s = [(O ⊗O)(In2 −A′ ⊗A′)−1+

(T ⊗ T )φn,N ](G⊗G)(Qw)s

+(Rv)s{[(O⊗O)(In2−A′⊗A′)−1+(T⊗T )φn,N ](AL⊗AL)

+[Φ⊗ Φ + Ip2N2 ]φp,N}

where φp,N ∈ R(pN)2×p2

is a permutation matrix such that

(⊕N
i=1)s = φp,N (Rv)s

Define

D = (O ⊗O)(In2 −A′ ⊗A′)−1 + (T ⊗ T )φn,N

A =

[
D(G⊗G)

D(AL⊗AL)
+[Φ⊗ Φ + Ip2N2 ](φp,N )

]
x = [(Qw)Ts (Rv)Ts ]T , b = R(N)s

Then we get the standard form of least square estimation
A x = b. And to estimate the noise covariance x̂, we can
simply apply the well known x̂ = A +b̂ = (A TA )−1A T b̂
and we can finally get the corresponding covariance x̂.

Another issue is how to get the autocovariance matrix
R(N). Ideally, we need to calculate all the autocovariance
E[y′ly

′T
k+j ]. In practice, we can approximate the expectation

by the formula:

r̂j =
1

Nd − j

Nd−j∑
i=1

y′iy
′T
i+j

Then we can use the computed r̂j to get the estimated R̂(N)
and thus get b̂.

VI. CONCLUSION

In this article, we summarize some variants of Kalman filters
that can be apply to linear and nonlinear system. Also, we learn
a practical way caller autocovariance least-squares method to
efficiently estimate the noise covariance which is important in
Kalman filter.
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