
Kalman Filter for the Real Time Object Tracking

Fu Min
72677006

ShanghaiTech

Abstract

The objective of this project is to gain a deep
understanding of Kalman Filter. In this report, I
detail a system capable of simultaneously track-
ing the ball. I use a pre-filtered video sample as
input. And I propose Kernel Density Extraction
(KDE) as an efficient method to solve multiple
problems in object tracking.

1. INTRODUCTION

The kalman filter, known as linear quadratic
estimation, is an algorithm that uses a series of
measurements observed over time, containing
noise (random variations) and other inaccuracies,
and produces estimates of unknown variables
that tend to be more precise than those based on
a single measurement alone. The kalman filter
implements a Bayes filter and was invented by
Rudolph Emil Kalman in the 1950 [1].

The Kalman filter has numerous applications
in technology. A common application is for
guidance, navigation and control of vehicles,
particularly aircraft and spacecraft. Furthermore,
the Kalman filter is a widely applied concept in
time series analysis used in fields such as signal
processing, econometrics and tracking. Object
tracking has a wide range of applications, such as
surveillance, sports, medical imaging etc[2].

The Kalman filter uses a system’s dynamics
model (e.g., physical laws of motion), known
control inputs to that system, and multiple se-
quential measurements (such as from sensors) to

form an estimate of the system’s varying quan-
tities (its state) that is better than the estimate
obtained by using any one measurement alone.
The Kalman filter keeps track of the estimated
state of the system and the variance or uncertainty
of the estimate.

In this regard, this report analyses and dis-
cusses the kalman filter object tracking approach
in the context of video analysis. It has been ex-
haustively used in several Object Tracking prob-
lems, for instance in [3]. Object Tracking might
be complex due to several factors, such as noise
in the image frames, scene illumination changes,
complex image motion, object occlusions, real-
time image processing etc. This paper addresses
the three later. Additionally, I also inspect some
object detection techniques involving image pro-
cessing, which are essential for a successful ob-
ject tracking.

2. METHOD

Object tracking in videos is the task of locating
a specific object in a sequence of frames. First, a
detection algorithm is required in order to obtain
possible object locations. Next, the object tracker
is then responsible for following the trajectory of
the object in subsequent frames.

2.1. Point tracking

In this project, I consider the point tracking cat-
egory for object tracking. Point tracking repre-
sents the object by a point and estimates the cur-
rent object location based on estimations in pre-
vious frames. That is, there is a dependence be-

1

tween estimations at time k and time k+1. More-
over, these estimations usually are the pixel coor-
dinates of the object position and its motion (e.g.
velocity, acceleration). This information is stored
in a vector which is referred to as state vector[4].

2.2. Kalman Filter

If the signal and noise are jointly Gaussian,
then the Kalman filter is an optimal MMSE
estimator [5]. In this approach, the belief at time
step n, i.e. sn, is assumed to be Gaussian dis-
tributed, which allows it to be uniquely described
by a mean vector ŝn|n and a covariance matrix
M [n|n]. A standard Kalman filter is a set of
equations that implement a predictor-corrector
type estimator that is optimal in the sense that it
minimizes the estimated error covariance, when
some conditions are presumed[6]. It consists of
two steps, namely prediction and update, each of
them making important assumptions.

1) Prediction: In the prediction step, the KF
uses previous state to make a first prediction of
the current state. In particular, it assumes that the
state s[n] is related with s[n− 1] through a linear
function for all 1 ≤ n ≤ N , where N is the du-
ration of the tracking task.This linear function is
given by

s[n] = Ans[n− 1] +Bnv[n] + u[n] (1)

where we have used the following notation:

• s[n]: p×1 vector representing the state vec-
tor at time step n. Typically contains data of
interest.

• v[n]: m×1 vector denoting the control vector.
Typically contains control input data.

• An: p×pmatrix state transition matrix which
establishes the relation between two consecu-
tive states.

• Bn: p×m control matrix. Relates the control
vector and the estimated state.

• u[n]: p×1 Gaussian random vector modelling
the randomness in this system. It is assumed
to be zeromean with covariance matrix Q[n].

In the context of object tracking, where there
is no external influence, both the control matrix
and control vector can be omitted. Hence, (1)is
rewritten as

s[n] = Ans[n− 1] + u[n] (2)

As aforementioned, the state is fully character-
ized by a mean vector and a covariance matrix.
Thus, the predicted state is defined by the pre-
dicted mean ŝ[n|n−1], and the minimal predicted
MSE covariance matrixM [n|n−1]. Using (2) we
can write the prediction equations as

ŝ[n|n− 1] = Anŝ[n− 1|n− 1]

M [n|n− 1] = AnM [n− 1|n− 1]AT
n +Q[n]

(3)

The system performance depends on the value
of An and Q[n], whose impact will be later
studied.

2) Update: Next, in the update step the
KF uses the current measurement, i.e x[n] =
[x1[n]x2[n]...xM [n]]T to correct (or update) the
object’s state. It is assumed that the relation be-
tween the measurement x[n] and the state s[n] is
also linear. The observations are modeled using
the Bayesian linear model

x[n] = Hns[n− 1] + w[n] (4)

where Hn is a known M × p matrix, x[n]
is an M × 1 observation vector, and w[n] is a
M × 1 observation noise sequence, and w[n] ∼
N(0, C[n]).

In this step, the predicted parameters ŝ[n|n−1]
and M [n|n − 1] are corrected. For this purpose,
the Kalman gainK[n] is defined, which quantifies
the relative importance between the update and
prediction step. That is, the higher it is, the more
relevant is the measurement for the state estima-
tion, which might occur when the measurement is
very certain. Using (4) we write the update equa-
tion as

K[n] = M [n|n− 1]HT
n (C[n] +HnM [n|n− 1]HT

n)−1

ŝ[n|n] = ŝ[n|n− 1] +Hn(x[n]−Hnŝ[n|n− 1])

M [n|n] = (I −K[n]Hn)M [n|n− 1] (5)

2

The recursion is initialized by ŝ[−1| − 1] =µs,
and M [−1| − 1] =Cs

3. IMPLEMENTATION

I have selected 1 minute recording of the Nin-
tendo Pinball arcade game as my test video and
have focussed on tracking the ball. In addition,
I deleted some regions from the original video
in order to create occlusions. This allowed me
for testing the performance of my implemented
method when the measurements were very poor.
Prior to any tracking algorithm, I pre-process each
input video frame n in order to generate the cor-
responding binary matrix IB(n) of the same size
of the original picture with ’1’s in pixels that are
likely to contain ball and ’0’ in the rest. This was
done using an RGB color interval of the ball, giv-
ing the results shown in Figure 1 illustrates.

Figure 1. The left image illustrates the n-th input frame with the
artificially added occlusions. The right image shows the filtered
n-th frame, which shows likely region for the ball highlighted in
white.

I propose Kernel Density Extraction (KDE) as
an efficient method to solve multiple problems in
Object tracking such as: Tuning of noise covari-
ance matrix Q[n] in KF and state estimation.

Next, I applied the 10 × 10 kernel matrix K to
the binary image as

IN(n) = K ∗ IB(n) (6)

where ’∗’ stands for the convolution operator
and I removed the outer rows and columns of the
IN(n) in order for it to match the dimensions of
the original frame. Note that K is a circular kernel
which is what I need when the tracking object is

round. Next, IN(n) was used to include the mea-
surement information in the posterior estimation
on Kalman filter.

In the following, let me detail my implementa-
tions.

In this project, I have considered two differ-
ent motion models: (i) Constant Velocity and (ii)
Constant Acceleration. Moreover, for simplicity I
have used stationary matrices for the state transi-
tion and the state-to-measurement mapping,i.e.

An = A

Hn = H
(7)

Furthermore, the measurement xn for the
Kalman filter is simply acquired by obtaining the
coordinates of the mode of INn for all frames.

I shall highlight that I keep the measurement
noise covariance C[n] variable. I tune it using the
variance of the coefficients of IN(n). In particu-
lar, the higher is the variance (which means that I
might have a clear mode in IN(n)) the lower val-
ued we set C[n]. In contrast, when the variance
is low I set a high valued C[n]. This way, I have
a mechanism to put more weight on the motion
model whenever the measurements are poor and
vice-versa.

The algorithm of the Kalman Filter is summa-
rized in table 1.

Table 1. KF Algorithm

Algorithm KF (s[n− 1|n− 1],M [n− 1|n− 1], xk)

Step 1: Prediction
ŝ[n|n− 1]← As[n− 1|n− 1]
M [n|n− 1]← AM [n− 1|n− 1]AT +Q[n]

Step 2: Update
K[n]←M [n|n− 1]HT (C[n] +HM [n|n− 1]HT)−1

s[n|n]← ŝ[n|n− 1] +Hn(x[n]−Hnŝ[n|n− 1])
M [n|n]← (I −K[n]H)M [n|n− 1]

3.1. Constant Velocity Motion Model

For this approach we used a state vector of size
4×1, shown in (8). The first two positions are the
pixel coordinates of the object (pn,1 and pn,2) and
the two last are the discrete velocity of the object

3

(vn,1 and vn,2),

s[n] =

pn,1
pn,2
vn,1
vn,2

 (8)

Note that we only consider two dimensions of
motion, since we are working with images which
are two-dimensional. Moreover, we have vn,1 =
v1 and vn,2 = v2 for all n = 1, ..., N .

From physics, for a constant velocity linear
model the position pn can be obtained using the
position pn−∆t, the velocity v and the incremental
time difference ∆t, the Physics model defines

pn = pn−∆t + ∆tv

v = 1v
(9)

In my case, I have that ∆t=1. Hence (8) is
rewritten as

pn = pn−1 + 1v

v = 1v
(10)

Since I only observe the position of the object,
the size of the measurement vector x[n] is 2 × 1.
So the following defines the measurement from
the state

x[n] =

[
xn,1
xn,2

]
= Hs[n− 1] + w[n] (11)

Thus, the state transition matrix is given by

A =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (12)

The estimation matrix is given by

H =

[
1 0 0 0
0 1 0 0

]
(13)

The initial state, i.e. s[0], is characterized
by a mean vector ŝ[0|0] and a covariance matrix
M [0|0]. The first is estimated using the first two
measurements x−1 and x0.

ŝ[0|0] =

p0,1

p0,2

v0,1

v0,1

 =

x0,1

x0,2

x0,1 − x−1,1

x0,2 − x−1,2

 (14)

and the second is initialized with high coeffi-
cients

M [0|0] =

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 (15)

Using the algorithm from table 1 the object track-
ing task can be performed.

3.2. Constant Acceleration Motion Model

This approach considers variability in the ve-
locity according to a constant acceleration value
a. The Physics model defines

pt = pt−∆t + ∆tvt−∆t

vt = vt−∆t + a∆t

a = a

(16)

In this regard, the state transition matrix is now
given by

A =

1 0 1 0 0.5 0
0 1 0 1 0 0.5
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 (17)

The initial estimate is obtained similarly as in the
previous case. However, we now need the first
three measurements

ŝ[0|0] =
[
p0,1, p0,2, v0,1, v0,1, a1, a2

]T

=

x0,1

x0,2

x0,1 − x−1,1

x0,2 − x−1,2

(x0,1 − x−1,1)− (x−1,1 − x−2,1)
(x0,1 − x−1,1)− (x−1,1 − x−2,1)

(18)

Using the algorithm from table 1 the object
tracking task can be performed.

3.3. Algorithm Description

The algorithm is been implemented in Matlab
using different functions as described.

4

1) main.m
This is the entry point for the algorithm. The

file does the initialization, generates the mea-
surements, and run the Kalman filter and display
results.

2) KalmanInit.m
Inputs: update value of Q(param), choose be-

tween motion model(mmodel)
Outputs: measurement noise(R), process

noise(Q), state transition matrix(A), measurement
matrix(H)

This function initializes the parameters of the
Kalman Filter using a constant speed or constant
acceleration motion model.

3) KalmanPredict.m
Inputs: Previous state mean (ŝ[n − 1|n − 1]),

Previous covariance(M [n − 1|n − 1]), state tran-
sition matrix(A), process noise(Q)

Outputs: Predicted mean(ŝ[n|n−1]), Predicted
covariance(M [n|n− 1])

This function performs the prediction script
using Kalman Filter.

4) KalmanUpdate.m
Inputs: Predicted mean(ŝ[n|n − 1]), Pre-

dicted covariance(M [n|n − 1]), state tran-
sition matrix(A), measurement noise(R),
measurements(x[n])

Outputs: Updated mean(ŝ[n|n]), Updated
variance(M [n|n])

This function performs the update script using
Kalman Filter.

5) KalmanAlgorithm.m
Inputs: number of current frame(count), frame

after adding the occlusions(vidFrame), Previ-
ous state mean (ŝ[n − 1|n − 1]), Previous
covariance(M [n − 1|n − 1]), state transition ma-
trix(A), process noise(Q), measurements(x[n])

Outputs: Updated mean(ŝ[n|n]), Updated
variance(M [n|n])

This function performs the Kalman Filter algo-
rithm. When we are at count=0, obtain the mea-
sure and set the initial position coordinates. When

we are at count=1, we can obtain the initial speed
as the difference of the position at count=1 and
count=0.

If we choose the constant speed motion model.
Next, we initialize the initial covariance matrix
with an arbitrary value.

If we choose the constant acceleration motion
model constant acceleration. When we are At
count=2, we can obtain an estimation of the
initial acceleration by taking the difference of the
velocity at count = 1, count = 0. Next, we also
initialize the initial covariance matrix with an
arbitrary value.

6) Video-editing.m
Input: current frame occlusions
Output: current frame with occlusions
This function is used to add the occlusions to

each frame.

7) imageTranformation.m
Inputs: current frame(original-im), colour

threshold to decide the colour filtering(colour-
thres), identify a certain color(c-thres),

Output: Binary image(out)
This function is used to Filters the image

and transforms it in a binary image. White will
represent the most likely regions of target object’s
pixels.

8) rec-size.m
Inputs: size of the current frame(xp,yp), the

Updated mean (centroidx, centroidy), the as-
sumed size(distance)

Outputs: the maximum sizes of the rectan-
gle that will enclose the ball (max-distance-x-K,
max-distance-y-K)

The function computes the maximum possible
size of the rectangle that envolves the estimate
with the input conditions given.

9) KernelFunction.m
The function returns the Kernel matrix.

10) mse.m

5

The function computes the prediction error,
compared to the actual state of the system.

4. RESULTS

In this section I show and briefly discuss the re-
sults obtained when using the method explained
so far for object tracking. As already highlighted
in the previous section, I will use a 1 minute
length video which captures a Nintendo Pinball
game play. However, I restrict the analysis to the
first 15 seconds, since it is enough to gain some
insights about the performances of the kalman fil-
ter.

In the following, I put videos into the project
file where you can see how each method per-
formed:

• KF constant velocity motion model(constant
v.mp4)

• KF constant acceleration motion
model(constant a.mp4)

Table 2 lists the MSE of the estimations for
the first 15 seconds where no particle depriva-
tion happened. To compute the MSE, I use as a
reference image processing tools comparing pixel
values and removed the artificially added occlu-
sion regions. Furthermore, Figure(4) illustrate the
squared error for all frames within the 15 second
sequence.

Table 2. Results without occlusion regions

Model Mean square error

Constant Velocity 9.917
Constant Acceleration 9.918

In addition, Table 3 shows the MSE results
when particle deprivation happens. As expected,
I observe decrease in the performance. But it’s
not notable. Furthermore, Figure(5) illustrate the
squared error for all frames within the 15 second
sequence.

5. DISCUSSION

When occlusion intervals are shown in Figure2
and Figure3 as peaks in the squared error, then

Table 3. Results with occlusion regions

Model Mean square error

Constant Velocity 36.18
Constant Acceleration 56.69

constant velocity and constant acceleration per-
formances become poor . This is due to the fact
that the particle cloud loses track of the ball and
is not able to obtain new accurate measurements.
In contrast, without occlusion, the squared errors
of the two models are much small all time shown
in Figure4. From table 2 and table 3, in general,
I observe that the Kalman Filter is less affected
by occulusion. One of the keys here has been the
tuning of Q[n] when there are occlusions, previ-
ously explained. I can assert that kernels can be
very helpful in the filtering of the image in order
to obtain suitable measurements.

References

[1] Rudolph Emil Kalman. A new approach
to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35-45,
1960.

[2] Alper Yilmaz, Omar Javed, and Mubarak
Shah. Object tracking: A survey. Acm com-
puting surveys (CSUR), 38(4):13, 2006.

[3] Ted J Broida and Rama Chellappa. Estima-
tion of object motion parameters from noisy
images. IEEE transactions on pattern anal-
ysis and machine intelligence, (1): 90-99,
1986.

[4] Duc Phu Chau, Francois Bremond, and
Monique Thonnat. Object tracking in
videos: Approaches and issues. arXiv
preprint arXiv :1304.5212,2013.

[5] Kay, Steven M. Fundamentals of Statistical
Processing, Volume I: Estimation Theory.
PTR Prentice hall, 1993.

[6] G. Welch and G. Bishop, ”An Introduction
to the Kalman Filter”, In Pract. vol.7, no.1,
pp.116, 2006.

6

Figure 2. Constant Velocity Mean Square Error

Figure 3. Constant Acceleration Mean Square Error

7

Figure 4. Without Occlusion Mean Square Error

Figure 5. With Occlusion Mean Square Error.

8

