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Abstract

This is the final report of the project on EE251 Signal Detection, Parameter Estimation, and Statistical
Learning course. Through this report, we’ll interpret Kalman Filter from a least mean square (LMS)
algorithm view, and show the intrinsic relationship between these two popular adaptive estimation algo-
rithm. A generic system identification problem is introduced to demonstrate this idea. We’ll see that the
Kalman gain is precisely the optimal learning gain for LMS algorithm from specific problem to general
case, and Kalman filter can be interpreted as a LMS algorithm with optimal step size.

1. Introduction
The Kalman filter and the least mean square

(LMS) adaptive filter are two of the most popular
adaptive estimation algorithms which are widely
used in many signal processing systems. They
are typically treated as separate entities. The for-
mer one comes from Bayesian sequential estima-
tor and the latter one is always associated with
gradient descent method, which is a general train-
ing method for unknown parameters in model.

In other words, Kalman filter search targets
from the state space but the gradient decent search
in a space with higher dimension. Prior knowl-
edge is the key element for Bayesian estimators
including Kalman filter, that’s the crucial differ-
ence between Kalman filter and LMS algorithm.

In this report, we’ll not talk about Bayesian
statistics, but a straightforward view of optimal
parameter selection in learning algorithm. The
derivation procedures are based on this note[5].

Figure 1. System identification

We’ll finally show that the Kalman gain is pre-
cisely the optimal learning gain for LMS algo-
rithms, and Kalman filter can be interpreted as a
LMS algorithm with optimal step size.

2. Problem Formulation
System identification is a methodology for

building mathematical models of dynamic sys-
tems using measurements of the system’s input
and output signals. This methodology provides
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Algorithm dk xk wok
Kalman Filter Measurement Observation Model State
LMS Desired Output Input Data True Weight

Table 1. Different Interpretation of Notations

a fundamental view for many problems like ac-
tive noise control (ANC)[2]. A typical diagram of
system identification is shown in figure 1. We in-
troduce a generic system identification setting to
talk about the Kalman filter and LMS algorithm:

dk = xTkw
o
k + nk (1)

where the equation aims to estimate the unknown
system parameters wok.

2.1. Preliminaries

As for equation (1), here is the list of notations:

1. dk, observation of the system to be estimated

2. xk, input to the unknown system at time k

3. wo
k, target system weight at time k

4. nk, measurement noise at time k

where xk is usually designated as zero-mean in-
put vector and nk is a zero-mean white Gaussian
process with variance σ2

n = E{n2
k}.For simplic-

ity, we assume that all signals are real valued.
We’ll first discuss the case with time-invariant tar-
get weight wok = wo, and then extend it to general
case.

For clarification of different interpretation of
notations, we summarize them in Table 1.

2.2. Formulation

From the system response equation:

dk =xTkw
o + nk

ŵo =wk = f(wk−1, dk, xk)

where f is the estimator, thus we have the MSE
criteria used in adaptive algorithm:

ek =dk − xTkwk−1
MSE =Mk = E{e2k}

Here we can find the innovation defined in
Kalman filter and the covariance matrix of it:

w̃k =wo − wk
Pk =E{w̃kw̃Tk }
ek =xTk w̃k−1 + nk

The innovation w̃k here is no doubt to be one
of the best criteria for this system identification
problem, because it directly indicates the differ-
ence between our estimation and the target. How-
ever, we already know that E{||w̃k||2} is the
Bayesian MSE, which we want to minimize in
the iterations of Kalman filter, we’ll call it MSD
(mean square deviation).

Moreover, we shall introduce some more rela-
tions:

Jk =E{||w̃k||2}
=tr{Pk}

Mk =E{(xTk w̃k−1 + nk)
2}

=xTkPk−1xk + σ2
n

where we use Jk to represent the MSD criteria we
adopt in Kalman filter, and the Mk is the MSE
criteria for LMS algorithm. Besides, it should be
clear that Jk is closely related to Mk: minimiz-
ing the MSD also corresponds to minimizing the
MSE. And almost all adaptive methods for this
system identification problem does the same thing
like this:

wk =wk−1 + ∆wk

=wk−1 + gkek

where gk is the learning gain for every error.
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3. Intrinsic Relationship
3.1. Optimal Scalar Step Size for LMS

The LMS algorithm often employs stochastic
gradient decent (SGD) to approximately mini-
mize the MSE Mk:

wk = wk−1 + µkxkek

where the parameter µk is the step size which may
be crucial for the convergence of adaptive meth-
ods. The parameter is supposed to be varying for
different accuracy need, and some standard ap-
proaches find good step size that minimize the
MSE via ∂Mk/∂µk[6].

Our idea is to introduce an optimal step size
into LMS algorithm based on the direct minimiza-
tion of the Jk. From the recursion relation, we
have:

w̃k =w̃k−1 − gkxTk w̃k−1 − gknk
Pk =E{w̃kw̃Tk }

=Pk−1 − (Pk−1xkg
T
k + gkx

T
kPk−1)

+ gkg
T
k (xTkPk−1xk + σ2

n)

As we know:

tr{Pk−1xkgTk } =tr{gkxTkPk−1}
=gTk Pk−1xk

a similar equation about Jk holds:

Jk =Jk−1 − 2gTk Pk−1xk (2)

+ ||gk||2(xTkPk−1xk + σ2
n) (3)

By substituting the gain gk = µkxk into the equa-
tion (2):

Jk =Jk−1 − 2µkx
T
kPk−1xk

+ µ2
k||xk||2(xTkPk−1xk + σ2

n)

As for the above equation, we can obtain the
optimal step size which minimizes Jk by solving
for µk via ∂Jk/∂µk = 0. It yields[4]:

µk =
1

||xk||2
xTkPk−1xk

xTkPk−1xk + σ2
n

here µk is the optimal step size for LMS.

Algorithm 1 The Kalman filter for deterministic
states
At each time instant k > 0, based on measure-

ments {d[k], x[k]}
1) Compute the Kalman gain (optimal learning
gain):

g[n] = Pk−1xk/(x
T
kPk−1xk + σ2

n)

2) Update the weight estimate:

wk = wk−1 + gk(dk − xTkwk−1)

3) Update the innovation covariance matrix (pre-
dict error):

Pk = Pk−1 − gkxTkPk−1

3.2. From LMS to Kalman Filter

As we mentioned, the criteria MSD is actually
the Bayesian MSE for Kalman filter. Here we
solve the equation (2) for gk via ∂Jk/∂gk = 0,
the optimal gain for LMS emerges:

gk =
Pk−1

xTkPk−1xk + σ2
n

xk = Gkxk

Here the optimal gain is precisely the Kalman
gain[7], and the overall procedures of Kalman fil-
ter for this problem is described in Algorithm 1.
You may notice that the predict phases for the
state and MSE are missing, as for the prediction:

ŵk|k−1 = wk−1

which means the states tell nothing (if we know
nothing about the varying, we can’t do anything
but treat it as deterministic) about next prediction.
However, for deterministic states: the equation is
correct and accurate.

Specially, all derivations above come from a
LMS view instead of sequential Bayesian estima-
tion. It’s clear that Kalman filter can be inter-
preted as a LMS algorithm with optimal learning
gain for scalar case yet. Furthermore, it’s also
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Figure 2. The Simulation Result of Time Varying Case

suited to variants of LMS, such as NLMS (nor-
malized LMS) and ε-NLMS:

wk =wk−1 + ρk
xk
||xk||2

ek

wk =wk−1 +
xk

||xk||2 + εk
ek

where ρ =
xTk Pk−1xk

xTk Pk−1xk+σ2
n

and εk = ||x||2σ2
n

xTk Pk−1xk
can

result in the equivalence.

3.3. From Optimal LMS to General Kalman Filter

If the system weight we want to estimate is
time-varying, here comes the general case:

wok+1 =Fkw
o
k + qk

dk =xTkw
o
k + nk

where qk ∼ N (0, Qs) and nk ∼ N (0, σ2
n).

Now wk|k−1 6= wk−1, the new rules are:

wk|k =wk|k−1 + gk(dk − xTkwk|k−1)
ww+1|k =Fkwk|k

w̃k+1|k =Fkw̃k|k + qk

Pk+1|k =Ew̃k+1|kw̃
T
k+1|k

=FkPk|kF
T
k +Qs

Actually, here are less thing new for the general
case but updating the prediction before whenever
we do correction.

4. Comparison & Experiments
Since we have shown Kalman filter performing

optimal step size, it converges faster than many

Figure 3. 3 times (left) and 6 times (right) Deviation

adaptive algorithms like LMS. Generally, we’ll
choose Kalman Filter if we have sufficient prior
knowledge from system.

As for the time varying system identification
problem, we usually don’t know about the spe-
cific rate of varying. Actually, a Kalman filter
without the information about varying can work
well either owing to its fast convergence. The fig-
ure 2 depicted a system with 5% increasing rate,
and we can see the MSE can be kept in a low level,
either.

However, deficiency of prior knowledge is not
worse than the deviation of the known prior
knowledge. We introduce 3 times and 6 times
deviation of prior knowledge σ2

n respectively, the
simulation result is shown in figure 3. Note the
difference of scale of y-axis, it’s clear that Kalman
filter is not reliable without good prior knowl-
edge. In practice, good prior knowledge is not
easy to obtain. That’s why purely data-driven
methods are more and more popular nowadays.

5. Conclusion and Related Work
By selecting a special criterion for optimization

problem, we can derive the Kalman filtering al-
gorithm in an LMS-type fashion via the optimal
learning gain matrix, without resorting to proba-
bilistic approaches[1].

Nowadays, with the development of DSP tech-
nique, the calculation speed (time per operation)
is not the bottleneck of the performance of many
signal processing application based on adaptive
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algorithm. More and more commercial products
care more about adaptability (less prior knowl-
edge and fast convergence), which encourage
many data-driven methods with fast convergence
were proposed. However, since Kalman filter has
been proved to be the optimal (fast) determinis-
tic algorithm, some researchers are trying to over-
come its drawbacks.

For instance, a purely data-driven Kalman-like
(no prior knowledge but estimating online) algo-
rithm for ANC problem is proposed[3] recently,
which achieved a convincing performance. That
might be a bright direction of further ANC re-
search.

It could be helpful to analyze the fundamental
methods from different views, and then we might
know the drawbacks as well the potential of these
approaches, which may guide us a bright way to
a better solution.
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