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Abstract
We consider the problem of training a deep learning based
classifier in the presence of noise. Existing works have tried
to solve this problem either in implicit ways such as modi-
fying the deep model to make it more robust to label noise,
or estimating noise model, using bootstrapping methods to
clean the noisy dataset as well as using robust loss. The for-
mer methods are often motivated by intuitive thoughts, which
are hard to explain and can only claim their effectiveness by
empirical results. The later methods, in contract, often in-
spired by some statistical considerations, hence have better
interpretability. However, most explicit methods are scarcely
aware of the properties of deep learning based classifier and
made inappropriate assumptions about it. In this work, we
aim to investigate interpretable methods to solve the problem
not only using statistics, but also taking into account the prop-
erties of deep learning based classifier. Technically, we make
the following contributions: 1) We study the behavior of deep
learning based classifier when noise samples exist in training
and testing; 2) We formulate the problem with simple statis-
tics; 3) We propose a dual training procedure to decrease the
effects of noise.

In-Class and Out-of-Class Noise
While most related works often divide noise into three cate-
gories according to dependency considerations, we only use
two categories: 1) the true class of noise samples are within
the dataset classes, which we called in-class noise and 2) the
true class of noise samples are beyond the dataset classes,
which we called out-of-class noise. The two kinds of noise
effect the training of deep classifier in different ways.

The in-class noise is the most harmful noise to deep
classifier. When we train a deep classifier, we are search-
ing for the best θ to maximize the log-likelihood function∑
i p(yi|xi; θ). However, this target does not necessarily

lead to a generalizable solution - a trivial solution which
simply maps all xi in the training set to its label yi will also
maximize the log-likelihood function. In fact, deep classi-
fiers have capabilities to learn such mapping perfectly, and
some experiments even show that deep classifiers can eas-
ily fit random labels (Zhang et al. 2016). Hence, generaliza-
tion ability of deep classifiers suggests that instead of learn-
ing mapping from input to output, deep classifiers implicitly
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learn the distribution of images of their belonging classes.
However, in-class noise will badly interfere this process and
strongly hurt the generalization ability of deep classifiers.
According to the experiments in (Rolnick et al. 2017), given
the same noise level, in-class noise leads to worse classifica-
tion accuracy than out-of-class noise.

The out-of-class noise is somehow less harmful. Intu-
itively, it will make deep classifier to learn larger and per-
haps more complex distribution space for images belonging
to each class, hence cause classification problems more dif-
ficult. Experiments in (Rolnick et al. 2017) show that it does
hurt the final accuracy, but not much as in-class noise.

On the other hand, both kinds of noise introduce extra
loss terms that are not good for optimization. When noise
level is high, noise terms will dominate the overall loss, and
make gradient fairly noisy, which consequently cause gradi-
ent based optimization algorithm hard to converge to a good
optimal.

Image Classification with CNN Classifier
In image classification setting, we have access to a set of
N labeled training images. Denote each training image by
xi ∈ Rd and class label by yi ∈ C = {0 , 1 , 2 , . . . , C − 1},
where C is the number of classes. The training set T =
{(x1, y1) , (x2, y2) , . . . , (xN , yN )} is the set of all training
image-label pairs. Suppose that training set contains noise,
we denote the noise subset by TN and the remaining clean
subset by TC , that is, we have TC ∪ TN = T , TC ∩ TN = ∅.
Further, as we mentioned before, we divide noise into two
categories: the in-class noise TN in and the out-of-class noise
TN out, that is, TN in ∪ TN out = TN , TN in ∩ TN out = ∅.

We want to estimate the conditional distribution p(y | x),
which represents the probability of given image x belonging
to class y ∈ C. In our settings, we use convolutional neural
network (CNN) classifier f(x; θ) as the probabilistic model,
where θ represents all parameters in the classifier. We will
also use p(y | x; θ) to represent the estimated conditional
distribution with f(x; θ) for convenience.

In order to estimate θ in the classifier, we try to find θ that
maximizing log-likelihood function

θ = argmax
θ
L(θ) = argmax

θ

N∑
i=1

log p(yi | xi; θ)



when TN 6= ∅, i.e., there exists noise in the training set, we
can divide the above log-likelihood function into two parts

θ = argmax
θ
LC(θ) + LN (θ)

= argmax
θ

N∑
i=1

(xi,yi)∈TC

log p(yi | xi; θ) +
N∑
i=1

(xi,yi)∈TN

log p(yi | xi; θ)

(1)

When we try to optimize Eq. (1) with stochastic gradient
decent (SGD) based algorithm, the first part LC will con-
tribute the correct gradient, while the second part LN will
also influence the optimization procedure by adding wrong
direction to the overall gradient. If noise is relatively high,
the second part will dominate the overall gradient, conse-
quently leads to sub-optimal solution.

In order to eliminate the influence of LN , we consider
three cases: 1) TN = TN out, i.e., training set only contains
out-of-class noise; 2) TN = TN in, i.e., training set only
contains in-class noise and 3) both in-class and out-of-class
noise exist in the training set.

For case one, we introduce a set of weights W =
{w1 , w2 , . . . , wN} for each (xi , yi) pair that represent how
much we believe the label is clean, which leads to the
weighted version of problem (1)

θ = argmax
θ
LWC (θ) + LWN (θ)

= argmax
θ

N∑
i=1

(xi,yi)∈TC

wi log p(yi | xi; θ)+

N∑
i=1

(xi,yi)∈TN

wi log p(yi | xi; θ) (2)

In problem (2), if all weights in the noise part LWN equal
to zero and those in the clean part LWC equal to one, then
LWN will have no effect on the overall loss, and we will get
the optimal θ by optimizing

θ∗ = argmax
θ
LW

∗

C (θ) + LW
∗

N (θ)

= argmax
θ
LC(θ)

= argmax
θ

N∑
i=1

(xi,yi)∈TC

log p(yi | xi; θ)

The procedure of estimating weights for each training
pair, which we called dataset cleaning procedure, aims to re-
duce the influence of LN by simply remove the noise term
from our optimization target, and when we are not sure about
the noise term, softly remove it with smaller weight.

For out-of-class noise pairs, removing them is the best
thing we can do. However, in case two, where there are
only in-class noise pairs, if we can further estimate their

true labels, then we will have more clean training pairs and
may achieve better results than simply remove them. Hence,
we also introduce dataset relabeling procedure, which aims
to correct the original false labels to the true ones for in-
class noise pairs. Concrete, we use a set of weights V =
{v1, v2, ..., vN} to represent how sure we believe a given
image xi belong to a new label y′i other than yi. Thus, we
will get another weighted version of (1)

θ = argmax
θ
LC(θ) + LVN (θ) + LV

′

N (θ)

= argmax
θ

N∑
i=1

(xi,yi)∈TC

log p(yi | xi; θ)+

N∑
i=1

(xi,yi)∈TN

(1− vi) log p(yi | xi; θ)+

N∑
i=1

(xi,yi)∈TN

vi log p(y
′
i | xi; θ) (3)

If we correctly relabel all noise pairs with vi = 1, then (3)
will lead to the optimal θ.

θ∗ = argmax
θ
LC(θ) + LV

∗

N (θ) + LV
′∗

N (θ)

= argmax
θ
LC(θ) + LV

′∗

N (θ)

= argmax
θ

N∑
i=1

(xi,yi)∈TC

log p(yi | xi; θ) +
N∑
i=1

(xi,yi)∈TN

log p(y′i | xi; θ)

For case three, if we can distinguish in-class noise and
out-of-class noise, then we can apply training set clean-
ing procedure and training set relabeling procedure to this
two kinds of noise respectively, which leads to the mixture
weighted version of (1)

θ = argmax
θ
LWC (θ) + LWN out + L

V
N in(θ) + L

V ′

N in(θ)

= argmax
θ

N∑
i=1

(xi,yi)∈TC

wi log p(yi | xi; θ)+

N∑
i=1

(xi,yi)∈TN out

wi log p(yi | xi; θ)+

N∑
i=1

(xi,yi)∈TN in

(1− vi) log p(yi | xi; θ)+

N∑
i=1

(xi,yi)∈TN in

vi log p(y
′
i | xi; θ) (4)



Similarly, the optimal θ can be found when best estimation
of wi and vi as mentioned in case one and two are applied
to (4)

θ∗ = argmax
θ
LW

∗

C (θ) + LW
∗

N out + L
V ∗

N in(θ) + L
V ∗′

N in(θ)

= argmax
θ
LC(θ) + LV

∗′

N in(θ)

= argmax
θ

N∑
i=1

(xi,yi)∈TC

log p(yi | xi; θ) +
N∑
i=1

(xi,yi)∈TN in

log p(y′i | xi; θ)

Noise Estimation with CNN Classifier
Then the problem comes down to how we can estimate train-
ing set noise. Concretely, we want to known three things for
each training pair: 1) what’s the probability that the training
pair is a noise pair; 2) if it is a noise pair, which category of
the noise, in-class or out-of-class noise, it belongs to and 3)
if it is an in-class noise pair, what’s the possible true label
and what’s the probability that estimated true label is right.
After that, we can get θ for CNN classifier by solving opti-
mization problem (2), (3) or (4).

The only clues we can rely on are training pairs
T = {(x1, y1), (x2, y2), ..., (xN , yN )} and a CNN classi-
fier f(x , θ). Hence, a natural idea is to use CNN classi-
fier trained on the noisy training set to estimate noise in
the training set. Since from the very beginning, we intend
to use CNN classifier to approximate the conditional distri-
bution p(y | x), and if our estimation is fairly accurate, the
CNN classifier should give us all the informations we need
to estimate noise. Even better, experiments in (Rolnick et al.
2017) have shown that CNN classifier still attains good per-
formance even with an essentially arbitrary amount of noise
contained in the training set.

However, given the promising properties of CNN classi-
fier, there are still problems

1. CNN classifier is quite powerful, which makes it easily
overfit the training set. As we mentioned before, optimiza-
tion problem (1) does not necessarily ensure generaliza-
tion ability of CNN classifier. In fact, according to our
experiments, the CNN classifier can easily achieve high
accuracy on very noisy training set, and we can hardly
see the difference between the fitted noise pairs and cleans
ones merely from the output of CNN classifier.

2. Though CNN classifier output valid probability values,
these values seem fail to reflect real class probabilities
for given images. Our experiments have shown that CNN
classifier always prefers high probability values whether
it predicts the true label or the false one for a given im-
age. In other words, we can not know the probability that
a given image belong to a class merely from the output of
CNN classifier.

3. CNN classifier will learn the distribution of labels, hence
it’s hard to distinguish in-class and out-of-class noise.
CNN classifier is known to be sensitive to dataset bias,
and will prefer to predict the most frequent class ap-
peared in the training set. Actually, in one experiments,

we trained a 1000-class CNN classifier on the training set
which only contains 10 classes, expecting that the out-of-
class image will be predicted as some other classes other
than the supervised 10 classes. However, we found that
most out-of-class images will still be predicted as one
class out of ten. We can not distinguish in-class and out-
of-class images merely from the output of CNN classifier.
Many existing works, such as (Reed et al. 2014;

Sukhbaatar et al. 2014; Goldberger and Ben-Reuven 2016;
Jindal, Nokleby, and Chen 2016), have ignored these spe-
cific problems of CNN classifier and just see it as normal
probabilistic models. Here, we address these problems and
explore ways to solve them.

Consider the CNN classifier trained on a noisy training set
T consisting of the same number of training pairs belonging
toC classes, which we denote by f(x; θT ). We have already
known that f(x; θT ) have good classification performance
while at the same time overfit some noise training pairs in
T . Assume we know the classification accuracy of the clas-
sifier to be pc, and use this classifier to predict for another
set E that is mutually exclusive with T and also contains
image-label pairs of the same C classes. Then, we can infer
probability that the predicted class ŷi for (xi , yi) ∈ EC or
(xi , yi) ∈ EN is the same as yi

p
(
f(xi; θ

T ) = ŷi = yi | (xi , yi) ∈ EC
)
= pc (5)

p
(
f(xi; θ

T ) = ŷi = yi | (xi , yi) ∈ EN
)
= ps ≤ 1/C (6)

respectively. Probability (5) is easy to get, hence we only
explain (6) here.

First, let’s consider the out-of-class noise part EN out ⊆
EN . As we mentioned before, the CNN classifier learn the
class distribution of training set T . Therefore, even though
an image x doesn’t belong to any class in the C classes,
the classifier will also randomly predict one for it. Because
T and E are mutually exclusive and the number of training
pairs for each class in T is equal, the classifier can’t acquire
any information from x, thus can only pickup one class in
the C classes with equal probability. Hence, the probability
that the predicted class equals to the label of the image is
1/C.

Now consider the in-class noise part EN in ⊆ EN . We
have known that the classifier have good performance,
which means its classification accuracy is much better than
random guesses, that is, pc > 1/C. Given the truth that la-
beled class of images in EN in can not be their true classes
(otherwise, they are not noise pairs anymore), the probabil-
ity that the predicted label for a image x ∈ EN in equals to
its true class is certainly less than 1/C.

Note that if we use classifier f(x; θT ) to predict classes
for images in T , then (5) and (6) do not necessarily hold due
to overfit property of CNN classifier.

Assume the proportion of noise pairs in E is known to be
pn, with Bayes Formula, we can deduce that

p ((xi, yi) ∈ EC | ŷi = yi) =
1− pn

1− pn + ps
pc
pn

(7)

p ((xi, yi) ∈ EN | ŷi 6= yi) =
pn

pn + 1−pc
1−ps (1− pn)

(8)



Eq. (7) and (8) enable us to estimate the probability that a
pair (xi, yi) is a clean or noise pair by observing whether its
labeled class is the same as its predicted class by classifier
f(xi; θ

T ).
To better understand how well we can estimate noise with

(7) and (8), let’s first examine (7). Technically, (7) tells us
how sure we can decide a clean pair. From (7), we can see
that whenever ps/pc > 1, (7) will give us better estima-
tion of clean pairs than random guesses, and the better the
classifier, the better estimation can be. In particular, when
number of classes C is large, noise level pn is not extremely
large and CNN classifier attains good performance, pc will
be far greater than ps and ps/pc will be very closed to zero,
which makes (7) approach to one. Actually, in most cases, C
is quite large (e.g., C = 1000 for ImageNet), and the accu-
racy of CNN classifier is much greater than random guesses.
Hence, we should hardly make mistakes if we use (7) to
choose clean pairs for us.

Eq. (8), on the other hand, tells us how sure we can decide
a noise pair. Similarly, whenever (1−pc)/(1−ps) is less than
one, (8) should provide us better estimation of noise pairs
than random guesses. However, unlike (7), (8) is much more
sensitive to the accuracy of classifier pc and when noise level
pn is small while pc is not very large, we will make a lot of
mistakes to decide a noise pair with (8).

The Dual Training Procedure
In this section, we introduce the dual training procedure,
which enables us to train a CNN classifier on noisy train-
ing set. Assume we have a noisy training set T and a clean
validation set E . In general, the dual training procedure is an
iterative procedure, which maintains two subsets T1, T2 of
training set T and two CNN classifiers f(x; θT1), f(x; θT2)
trained on each subset. During each iteration, two subsets
will grasp the most possible clean training pairs from each
other according to some criterion, and the two CNN classi-
fiers will be fine-tuned on the new subsets respectively. Ad-
ditionally, we will estimate weights using (7) and (8) for ev-
ery training pairs in T , and train CNN classifier by solving
problem (2) or (4).

Initialization
At the beginning, we randomly divide training set T into
two mutually exclusive parts to initialize T 0

1 and T 0
2 , arbi-

trarily use W 0 = 1. The initial noise level of
(
T \T 0

1

)
and(

T \T 0
2

)
, i.e.T 0

2 and T 0
1 , should be the same as that of T ,

i.e., p0n1 = p0n2 = pn.

Iteration
During each iteration, we will follow the steps below

1. Update parameters θT1 and θT2 for the two classifiers by
training them on the subset T i1 , T i2 with weights W i. We
will use stochastic gradient decent to solve the optimiza-
tion problem (2). Note that, for now, we do not distinguish
between in-class and out-of-class noise, and only consider
to reduce the effects of noise training pairs by solving the

optimization problem (2). Later, we will discuss the possi-
ble ways to relabel the in-class noise and estimate weight
V that needed by (4).

2. Update the classification accuracy pic1 and pic2 for
f(x; θT

i
1 ) and f(x; θT

i
2 ) with the clean validation set E .

3. Update subset T i1 and T i2 . We use f(x; θT
i
1 ) and f(x; θT

i
2 )

to predict classes of images in subset (T \T i1 ) and
(T \T i2 ), respectively. Then we add pairs whose predicted
classes are the same as labeled classes to the subset. That
is

T i+1
1 = T1 ∪

{
(x, y) | (x, y) ∈ T \T i1 , f(x; θT

i
1 ) = y

}
T i+1
2 = T2 ∪

{
(x, y) | (x, y) ∈ T \T i2 , f(x; θT

i
2 ) = y

}
4. Update noise level pn1 and pn2 for subset

(
T \T i+1

1

)
and(

T \T i+1
1

)
. Given pic1, pic2, pin1 and pin2, we can use (8) to

update noise level for subset
(
T \T i+1

1

)
and

(
T \T i+1

1

)
pi+1
n1 =

pn1

pn1 +
1−pc1
1−ps (1− pn1)

pi+1
n2 =

pn2

pn2 +
1−pc2
1−ps (1− pn2)

Note that we use 1/C as the approximation of ps, which
makes the pi+1

n1 and pi+1
n2 always be overestimation of true

values.
5. Update wights W . For all new training pairs that added to

the T i+1
1 and T i+1

2 , we assign their new weights wi+1 to
be pc1 and pc2 respectively. And for all training pairs in(
T \T i+1

1

)
and

(
T \T i+1

2

)
, we assign their new weights

wi+1 to be (1− pi+1
n1 ) and (1− pi+1

n2 ) respectively.

We continue the iteration until classification accuracy of
the two classifier on validation set stops growing up. Finally,
we can obtain the noise level pn of T , which should ranges
from (9) to (10)

p
(
f(x; θT1) 6= y; (x, y) ∈ T2

)
− (1− pc1) (9)

p
(
f(x; θT1) 6= y; (x, y) ∈ T2

)
(10)

Relabeling for in-class noise
So far, we do not distinguish between in-class and out-of-
class noise, and merely (softly) remove noise pairs from
training set by selecting most possible clean pairs, estimat-
ing weights, then solving weighted optimization problem
(2).

Generally, we should get better results by estimating true
classes for in-class noise pairs, then solving the mixture
weighted optimization problem (4). However, it’s not easy
to recognize in-class noise due to the problems of CNN
classifier described in section Noise Estimation with CNN
Classifier. Here, we provide a way to recognize in-class
noise and to estimate weight V in problem (4).

Our method is quite straight-forward. Optionally, in step
1 of the last iteration, we examine the predicted classes in
every iteration for training pairs in

(
T \T +

1

)
and

(
T \T +

2

)
,



which should contains all training pairs we believe are noise
pairs. We consider a pair (xi, yi) an in-class noise pair if at
least half of its predicted classes are the same class yi′, and
assign the weight vi for our estimated true class yi′ to be
the average classification accuracy of classifiers that makes
the prediction. After that, we can do relabeling as long as
dataset cleaning by solving the mixture weighted optimiza-
tion problem (4).
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