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ABSTRACT

Here, a novel sparse unmixing approach for hyperspectral
scene is proposed. Through the analysis of the difference of
mixing degree in pixels, feature pixels are defined as a set of
pixels where the linear combination of the whole endmembers
is able to represent any pixel in the scene. Namely, endmem-
bers for the whole scene can be obtained through only feature
pixels. Through the geological property of simplex formed
by hyperspectral data, it can be known that feature pixels
are vertices of the simplex. Based on N-FINDER algorithm,
the feature pixels can be identified. Then, the feature pixels
are decomposed in linear sparse unmixing algorithm to ob-
tain corresponding endmembers. Finally, least square method
is applied to estimate the abundance of endmembers in the
whole hyperspectral scene. Experimental results demonstrate
the efficacy and accuracy of the proposed algorithm.

Index Terms— Sparse unmixing, feature pixel, vertex

1. INTRODUCTION

Hyperspectral remote sensing is focused on the measurement,
analysis and interpretation of spectra acquired by an airborne
or satellite hyperspectral sensor [1]. Generally, the spectrum
of interest locates in wavelength from 0.4 µm to 2.5 µm,
covering from visible to infrared spectral bands [2]. With
hundreds of spectral channels, remotely sensed hyperspectral
imaging has a very high spectral resolution. However, due to
the insufficient spatial resolution of imaging spectrometers,
almost each pixel in the hyperspectral scene contains more
than one pure substance. To obtain accurate estimation of
substances, unmixing is proposed and it aims at decomposing
the measured spectrum of each mixed pixel into a combina-
tion of pure spectral signatures (endmembers) [3] and a set of
corresponding fractions (abundances) [4].

Typically, unmixing models can be classified as nonlin-
ear and linear. Nonlinear unmixing models assume that part
of the source radiation is multiply scattered before being col-
lected by the sensor. Conversely, linear unmixing models as-
sume minimal secondary reflections and multiple scattering
in the data collection procedure and thus hold several advan-
tages such as ease of implementation and flexibility in diverse

applications [5]. Specifically, the linear analysis expresses the
measured spectrum of each mixed pixel as a linear combina-
tion of endmembers weighted by abundances that indicate the
proportion of each endmember in the pixel.

Tremendous effort has been put to the linear unmixing
models since past years. In general, linear unmixing algo-
rithm can be classified as semisupervised algorithm and un-
supervised one depending on whether using the spectral li-
brary or not. For the unsupervised approaches, several meth-
ods based on statistics [6, 7], nonnegative matrix factoriza-
tion (NMF) [8, 9] and geometry [10, 11, 12, 13] have been
developed. As these approaches extract endmembers merely
from the hyperspectral data, they either could obtain virtual
endmembers with no physical meaning [14] or assume the
presence of at least one pure pixel per endmember in the
data, which is usually difficult to guarantee [15]. Taking the
spectral library as a priori knowledge, a semi-supervised ap-
proach, sparse unmixing [16, 17], is proposed, which by-
passes the limits of unsupervised approach. It aims at us-
ing only a few spectral signatures in a given spectral library
to model each mixed pixel in the hyperspectral scene. As
the number of actual endmembers in a hyperspectral scene is
usually much smaller than the number of spectral signatures
in the library, this approach often leads to a sparse solution.
Based on the increasingly mature linear sparse representation
techniques [18], several effective linear sparse unmixing al-
gorithms have been proposed such as the sparse unmixing via
variable splitting and augmented Lagrangian (SUnSAL) and a
constrained version of the same algorithm (CSUnSAL) [19],
which are based on the alternating direction method of mul-
tipliers (ADMM) [20] in a way similar to previous articles
[21, 22]. However, one great challenge faced by the sparse
unmixing algorithms is the high mutual coherence of spec-
tral library, i.e. the largest cosine between any two spectral
signatures in the library.

To propose a more effective sparse unmixing algorithm
based on spectral library, here we analyze the difference of
degree of mixing in pixels, and use the difference to imple-
ment more efficient identification of endmembers. Specif-
ically, in the real hyperspectral scene, part of mixed pixels
have relatively low degree of mixing, which are more similar
to pure endmembers and thus more representative. If a min-
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imal subset of such representative mixed pixels can be found
that any pixels in the scene can be expressed as a linear com-
bination of them, then pixels in the subset are called feature
pixels. Meanwhile, the feature pixels can be expressed as a
linear combination of pure endmembers in spectral library.
Therefore, any pixels in the hyperspectral scene also can be
expressed as a linear combination of endmembers obtained
from the feature pixels. Namely, we can identify all endmem-
bers from hyperspectral library through only feature pixels
instead of all pixels in a scene. Through least square method,
the abundance value of each identified endmember can be eas-
ily calculated.

The rest of the article is structured as follows. In Section
2, we present the proposed sparse unmixing algorithm. In
Section 3, experiments are implemented to evaluate our algo-
rithm. Finally, the conclusion is shown in Section 4.

2. THE PROPOSED METHOD

2.1. The Meaning of Feature Pixels

Suppose A ∈ RL×m is the given spectral library, where L is
the number of spectral bands and m is the number of spectral
signatures in the library; y ∈ RL is the spectrum vector of a
mixed pixel; x ∈ Rm is the abundance vector with regard to
the library A. Then the sparse unmixing model is

y = Ax+ n (1)

where n ∈ RL is the vector of error term.
The model has the following two constraints:

x ≥ 0 (2)
m∑
i=1

xi = 1 (3)

which are called abundance nonnegativity constraint and
sum-to-one constraint, respectively [23].

In feature space, hyperspectral data could form a simplex.
Generally, a L-simplex is a L-dimensional polytope which
is the convex hull of its L + 1 vertices; any point inside can
be expressed as a linear combination of vertices. Based on the
property, feature pixels can be regarded as vertices of simplex.

Consider V as the set of vertices, and it can be expressed
as

V = [v1,v2, · · · ,vL+1] (4)

where vi ∈ RL represents the i-th vertex.
Then any point inside the simplex is

y =

L+1∑
i=1

θivi

s.t. θi > 0,

L+1∑
i=1

θi = 1

(5)

where θi is the abundance value of vi.
Suppose E = [e1, e2, · · · , eP ], a subset of A, is the set

of endmembers corresponding to vertices, which means

vi =

P∑
j=1

xjiej

s.t. xji > 0,

P∑
j=1

xji = 1

(6)

where xji is the abundance value of j-th endmember corre-
sponding to i-th vertex.

According to Eq. (5) and (6), we can get

y =

L+1∑
i=1

θi(

P∑
j=1

xjiej)

=

L+1∑
i=1

θi(x
1
ie1 + x2ie2 + · · ·+ xPi eP )

=

L+1∑
i=1

(θix
1
ie1 + θix

2
ie2 + · · ·+ θix

P
i eP )

=

L+1∑
i=1

θix
1
ie1 +

L+1∑
i=1

θix
2
ie2 + · · ·+

L+1∑
i=1

θix
P
i eP

(7)

Since θi > 0, xji > 0, then
∑L+1
i=1 θix

j
i > 0.

Meanwhile,
∑L+1
i=1 θi = 1 and

∑P
j=1 x

j
i = 1, thus the

sum of coefficients in Eq. (7) is

L+1∑
i=1

θix
1
i +

L+1∑
i=1

θix
2
i + · · ·+

L+1∑
i=1

θix
P
i

=

L+1∑
i=1

θi(x
1
i + x2i + · · ·+ xPi )

=

L+1∑
i=1

θi

= 1

(8)

The linear Eq. (7) meets both abundance nonnegativity
constraint and sum-to-one constraint. Therefore, in hyper-
spectral scene, any mixed pixel can be linearly expressed by
endmembers obtained merely from feature pixels.

2.2. The Identification of Feature Pixels

To identify feature pixels in a hyperspectral scene, we need
to extract vertices of the simplex. Winter [24] first pro-
posed an endmember extraction approach through finding the
maximum volume data closing simplex, which results in a
widely applied algorithm in hyperspectral image analysis —
N-FINDR. Although various versions of N-FINDR have been
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proposed, such as sequential N-FINDR [25] and random N-
FINDR [26], they share the similar principle, namely, finding
a set of vectors from the original data which could comprise
a simplex with maximum volume.

The optimization formulation of the principle could be
written as follows

max
v1,··· ,vλ∈Rλ−1

vol(v1, · · · ,vλ)

s.t. vi ∈ S = conv{ỹ1, · · · , ỹN}, i = 1, · · · , N.
(9)

where N represents the number of pixels in the hyperspectral
scene, ỹi is the observed i-th column vector of Ỹ (usually
dimension-reduced), S = conv{} indicates that the vectors
could comprise a convex hull, and vol(v1, · · · ,vλ) calculates
the volume of simplex that is captured by the vectors. The
volume is mathematically written as:

vol(v1, · · · ,vλ) =
1

(λ− 1)!
|det(

[
V̂
1T

]
)| (10)

where V̂ = [v1, · · · ,vλ] and 1T is an all-one value column
vector.

With a reasonable assumption that the origin of coordinate
is also a vertex, an equivalent form for calculating volume is
popular and shown as follows [27]:

vol(v1, · · · ,vλ) =
1

(λ− 1)!

√
det(BTB) (11)

where B = (vλ − v1,vλ − v2, · · · ,vλ − vλ−1).
Then we will decompose feature pixels in linear unmixing

model.

2.3. Sparse Unmixing Using Feature Pixels

In this stage, the endmembers of feature pixels are obtained
by SUnSAL which is an effective linear sparse unmixing al-
gorithm. Then, mixed pixels in the scene are decomposed
into the obtained endmembers and their corresponding abun-
dances. Least square method is used to get the abundance of
the obtained endmembers for the whole hyperspectral scene.

For the i-th vertex, the vi in the set of vertices V, the
optimization problem of sparse unmixing can be written as
follows

min
x
‖x‖0 subject to ‖vi −Ax‖2 ≤ δ,x ≥ 0 (12)

where ‖x‖0 denotes the number of nonzero components in x,
δ ≥ 0 is the error tolerance due to the noise and modeling
errors.

With an appropriate Lagrange multiplier, the problem
above is equivalent to

min
x

1

2
‖vi −Ax‖22 + λ1‖x‖0 subject to x ≥ 0 (13)

where λ1 ≥ 0 denotes regularization parameter. However,
the problem in Eq. (13) is NP-hard, which means it can not
be solved in polynomial time. Typically, the l1 norm could be
a better alternative of l0 norm for sparse unmixing. Therefore
the problem in Eq. (13) can be converted into

min
x

1

2
‖vi −Ax‖22 + λ1‖x‖1 subject to x ≥ 0 (14)

Based on ADMM algorithm, we can solve the above opti-
mization problem and get the endmembers of feature pixels
[19]. Then least square method is used to get the abundances
of the obtained endmembers for all mixed pixels.

3. EXPERIMENTS

In this section, experiments are conducted to test the effective-
ness of the proposed approach in comparison with SUnSAL.

3.1. Performance Discriminators

The root mean square error (RMSE) is used to evaluate the
abundance estimations. For the i-th endmember, RMSE is
defined as

RMSEi ≡

√√√√ 1

N

N∑
j=1

(αji − α̂
j
i )

2 (15)

where αji represents the true abundance value of the i-th end-
member in the j-th pixel and α̂ji is the estimated abundance.

RMSEi measures the quality of the reconstruction of the
fractional abundances of the i-th endmember in all pixels.
The mean value of all the endmembers’ RMSEs will be cal-
culated. In general, smaller RMSE means more accurate esti-
mation.

3.2. Simulated Data Sets

Here, we evaluate the performances of the proposed algo-
rithms in different type of noises, different signal-to-noise ra-
tios (SNR ≡ 10 log10

‖AX‖22
‖n‖22

) of noise and different endmem-
ber numbers. Specifically, the synthetic data are corrupted by
Gaussian white noise and correlated noise1 with different lev-
els of SNR: 20, 30 and 40 dB.

The spectral library we use in our experiment is the first
part of the United States Geological Survey (USGS) [28].
Specifically, the spectral library A ∈ R224×498 contains 498
spectral signatures with 224 spectral bands distributed uni-
formly in the interval 0.4–2.5 µm. Nine spectral signatures

1The Gaussian white noise is generated using the awgn
function in MATLAB. The correlated noise is generated using
the correlatedGaussianNoise function that is available online:
http://www.mathworks.com/matlabcentral/fileexchange/21156-correlated-
gaussian-noise/content/correlatedGaussianNoise.m. The correlation matrix
is set as default.
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Table 1. RMSEs obtained by different algorithms on the sim-
ulated hyperspectral data (white noise)

SNR (dB) SUnSAL OURS
20 0.0676 0.0443

SD1 (k1 = 3) 30 0.0225 0.0104
40 0.0074 0.0057
20 0.0679 0.0507

SD2 (k2 = 6) 30 0.0231 0.0133
40 0.0079 0.0063
20 0.0695 0.0582

SD3 (k3 = 9) 30 0.0277 0.0197
40 0.0264 0.0170

Table 2. RMSEs obtained by different algorithms on the sim-
ulated hyperspectral data (correlated noise)

SNR (dB) SUnSAL OURS
20 0.0697 0.0473

SD1 (k1 = 3) 30 0.0266 0.0125
40 0.0088 0.0061
20 0.0723 0.0517

SD2 (k2 = 6) 30 0.0284 0.0156
40 0.0095 0.0065
20 0.0730 0.0563

SD3 (k3 = 9) 30 0.0397 0.0199
40 0.0316 0.0168

are chosen from A to generate the synthetic hyperspectral
image: Rhodochrosite HS67, Axinite HS342.3B, Chryso-
colla HS297.3B, Niter GDS43 (K-Saltpeter), Anthophyllite
HS286.3B, Neodymium Oxide GDS34, Monazite HS255.3B,
Samarium Oxide GDS36 and Pigeonite HS199.3B. Finally,
following a Dirichlet distribution [13], the simulated data
sets, each of which contains 900 pixels, are generated using
different endmember numbers: k1 = 3, k2 = 6, k3 = 9. To
make sure that no pure pixel exists in the hyperspectral data,
we force all the abundances to be no larger than 0.7.

3.3. Experiment Analysis

Tab. 1 shows the RMSEs obtained by different algorithms
on the simulated data corrupted by white noise. The perfor-
mances of all the algorithms degrade as the noise gets stronger
and the endmember number increases. It can be seen that
in most cases, the proposed algorithm outperforms SUnSAL.
This phenomenon indicates that using feature pixels can im-
prove the performance of sparse unmixing algorithm.

Tab. 2 shows the results obtained on the simulated data
corrupted by correlated noise. Since the noise in the real hy-
perspectral images is usually correlated, this case is closer to
the practical ones. From Tab. 2 we can see that in most cases,
the proposed algorithm behaves better than the SUnSAL.

4. CONCLUSIONS

In the article, a novel sparse unmixing algorithm for hyper-
spectral imagery is proposed. Feature pixels are introduced
that the spectral vector of each mixed pixel is a linear combi-
nation of endmembers of feature pixels. Therefore, endmem-
bers for the whole scene can be obtained through only feature
pixels. Specifically, the feature pixels are decomposed in lin-
ear sparse unmixing algorithm to obtain endmembers from
hyperspectral library. Then, least square method is applied to
estimate the abundance of obtained endmembers in the whole
hyperspectral scene. Experimental results indicate that the
proposed algorithm possesses improvement in accuracy com-
pared with SUnSAL.
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