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ABSTRACT

I-vector and Probabilistic Linear Discriminant Analysis
(PLDA) represents the state-of-the-art in the speaker veri-
fication system. In PLDA, the i-vectors are assumed to fol-
low Gaussian distribution. However, this assumption results
in poor modeling without Gaussianization. Different from
previous Gaussianization methods, in our proposed method,
we make no restriction towards the original distribution of
i-vectors for flexibility and universality. To optimize the
Gaussian transformation function, Kullback-Leibler diver-
gence (KLD) is introduced to measure the distance between
the two distributions. By minimizing the KLD value under the
development data, we can search out the optimal parameters
in transformation function. The proposed method shows sig-
nificant improvement on NIST SRE 2008 core set; together
with length normalization (LN), a famous Gaussianization
method, can further improve the verification accuracy.

Index Terms— speaker verification, PLDA, Gaussianiza-
tion, divisive normalization, Kullback-Leibler divergence

1. INTRODUCTION

Speaker verification system based on i-vectors [1] and PLDA
[2] represents the current state-of-the-art and has received
considerable attention in related fields [3, 4]. The most popu-
lar PLDA model, named Gaussian PLDA (G-PLDA), works
under the assumption that the latent variables and the i-
vectors both follow Gaussian distribution. However, it has
been shown that this assumption does not hold in the presence
of channel disturbance [5]. To deal with the non-Gaussian
behavior of i-vectors, a heavy-tail Probabilistic Linear Dis-
criminate Analysis (HT-PLDA) model [5] was proposed that
adopts a heavy-tail distribution to take the place of the Gaus-
sian assumption in the model. The HT-PLDA model shows
superior performance for speaker recognition from a tele-
phone channel, but it is ineffective for microphone channels
because the channel effects are extreme and not follow heavy
distribution. Moreover, the algorithm is computationally
expensive both in training and in testing.
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To take advantage of the simplicity and computational
efficiency of G-PLDA, several techniques [6–9] was pro-
posed to fulfill the Gaussian assumption. LN [6] assumed
that i-vectors’ original distribution belongs to the family of
Elliptically Symmetric Densities (ESD). Under this assump-
tion, i-vectors were projected onto a spherical surface to
meet the Gaussian assumption. Furthermore, iterative LN [8]
was proposed to modify the i-vectors distribution, making
it to approach Gaussian distribution further. The work de-
scribed in [9] assumed that the i-vectors distribution follows
a sinh-arcsinh distribution [10] and could be transformed by a
sequence of affine and nonlinear transformations. Compared
with HT-PLDA, above Gaussianization methods can achieve
equivalent or preferable performance under the G-PLDA
framework.

However, the above gaussianization methods are limited
with regard to real-world applications due to their specific
assumptions about the i-vectors’ original distribution. To
improve the applicability of our method, this paper presents
gaussianization method named Kullback-Leibler Divisive
Normalization (KL-DN) to make i-vectors satisfy the Gaus-
sian assumption in G-PLDA. The contributions of our pro-
posed method can be summarized as follows: (i) For flexi-
bility and universality, KL-DN makes no assumption about
the original distribution of the i-vectors. (ii) To optimize
the transformation function in training phase, the KLD [11]
between the i-vectors’ distribution and the standard Gaussian
distribution is minimized by transforming i-vectors. (iii) The
results show that a negative correlation exists between the
KLD and the verification accuracy. The Results also show
that KL-DN achieves a superior performance compared with
LN and combined with LN can further improve the accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a description of the related works. The pro-
posed i-vector Gaussianization method is described in Section
3. Section 4 presents to experimental setup and the behavior
of proposed method on the male portions of the core sets from
NIST SRE 2008. Section 5 draws conclusions.

2. RELATED WORKS

This section we provide a brief overview of state-of-the-art
speaker verification systems and a transforming method, re-
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spectively.

2.1. Speaker verification system

The i-vector extraction approach was proposed in [1]. Given
a speaker utterance s, the speaker-space and channel-space-
dependent GMM-supervector θθθ is written as follows:

θθθ = mmm+ TxTxTx, (1)

where the supervector mmm comes from the Universal Back-
ground Model (UBM). TTT is a low-rank total variability (TV)
matrix. The xxx is aD-dimension speaker identity vector called
i-vector. In the Eq.(1), i-vectors are assumed to follow stan-
dard Gaussian distribution.

For a speaker i, the collection of corresponding i-vectors
concerning utterance {j = 1, 2 · · · , S} is denoted asxxxij . The
G-PLDA model then assumes that each i-vector can be de-
composed xxxij as follows:

xxxij = µµµ+FhFhFhi +GwGwGwij + εεεij . (2)

This model can be decomposed into two parts: (i) the signal
component µµµ + FhFhFhi which describes between-speaker vari-
ability and (ii) the channel componentGwGwGwij + εεεij , which de-
scribes within-speaker variability. The latent identify vector
hhhi and the latent vector wwwij are assumed to statistical inde-
pendence and both follow standard Gaussian distribution.

2.2. I-vector regularization

LN is often applied prior to G-PLDA to address the non-
Gaussian behavior of i-vectors. Before LN, the i-vectors
should be standardization [6] to transform i-vectors from the
ESD family into the Spherically Symmetric Density (SSD)
family . After LN, all the i-vectors are scaled to the unit
length and lie on the maximum density shell of a standard
Gaussian, making the i-vectors to be closer to a standard
Gaussian distribution [12].

3. I-VECTOR GAUSSIANIZATION BASED ON
KL-DN

From the paper [5] we can draw a conclusion that the i-vectors
follow non-Gaussian distribution. In our proposed method,
to meet the Gaussian assumption in G-PLDA, we propose a
Gaussianization method to reduce the KLD between the i-
vectors and the standard Gaussian distribution by transform-
ing the i-vectors non-linearly. For flexibility and universality,
we make no assumption about the i-vectors’ original distribu-
tion.

In this section, we present a formal mathematical descrip-
tion of our proposed method. First, the i-vector transforma-
tion function is presented; then, the optimization function is
presented which takes the role of searching out the best pa-
rameters in the transformation function.

3.1. Transformation function

Divisive normalization (DN) proposed in [13] is used in bi-
ological vision modeling. Subsequently, it has been widely
used to explain human visual neurons [14–16], olfactory re-
ceptor neurons [17] and image processing field [18,19]. In our
task, a non-linear transformation is required according to [6].
The DN transformation function, as a nonlinear transforma-
tion aimed at reducing the Mutual Information (MI) of vec-
tors, has attracted extensive attention in the research fields
listed above both for its simplicity and its superior perfor-
mance. Thus we introduce the transformation function into
out method to transforming i-vectors:

(xkldn)d =
xd

(b+
∑D

i=1 cix
2
i )

1
2

, for d = 1, · · · , D, (3)

where the term xxxkldn represents an i-vector belonging to the
KL-DN transformed domain. b and ci are the related transfor-
mation parameters. The weights are all identical (ci = c, i =
1, · · · , D) after xxx is whitened. For simplicity, in the prepro-
cessing stage, the i-vectors are whitened before using Eq. (3)
in our method. To Gaussianization i-vectors through Eq.(3),
we propose a optimization function to search out transforma-
tion parameters b and c.

3.2. Optimization function

To search out the transformation parameters b and c in Eq.(3),
we minimize the distance between the i-vectors PDF p(xxx) and
standard Gaussian N(000, III). In this paper, KLD is employed
as the distance measurement method. The distance measured
by KLD is named as negentropy and defined as J(xxx). From
Eq. (5) in [20], we know that J(xxx) can be decomposed by
considering the target PDF N(000, III):

J(xxx) = DKL(p(xxx)|N(000, III))

= DKL(p(xxx)|Πdp(xd)) +

D∑
d=1

DKL(p(xd)|N(0, 1)).

(4)

In Eq. (4), the first part represents MI, expressed as I , which
is used to measure the statistical dependence of i-vector el-
ements. MI equals to zero if and only if the elements in
xxx are independent. The second part of Eq. (4) represents
marginal negentropy and is denoted by Jm(xxx), which is used
to measure the distance between every single dimension in i-
vectors and standard Gaussian N(0, 1). Given an unknown
PDF, both Jm(xxx) and I(xxx) are non-negative. It can be found
that J(xxxwht) is constant.

In this section, we attempts to search out the parameters
b and c by minimizing the J(xxxkldn), in order to introduce b
and c into optimization function, we maximize the difference
between the J(xxxwht) and J(xxxkldn) :

max ∆J = max(∆I + ∆Jm). (5)
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First, we provide the concrete representation of ∆I be-
tween xxxwht and xxxkldn as follows:

∆I =

D∑
d=1

H((xwht)d)−H(xwht)

− [

D∑
d=1

H((xkldn)d)−H(xkldn)]

=

D∑
d=1

H((xwht)d)−
D∑

d=1

H((xkldn)d)

+ 〈log |det(∂x
xxkldn
∂xxxwht

)|〉xxxwht
,

(6)

where H(xxx) = −
∫
p(xxx) log(p(xxx)) is the differential entropy

of xxx. Note that
∑D

d=1H((xwht)d) is constant with respect
to the transformation parameters and can be omitted. Here,
〈·〉xxxwht

denotes computing the expected log Jacobian for
xxxwht. By considering Eq.(3), the Jacobian is represented as:

det(
∂xxxkldn
∂xxxwht

) =
b

(b+ cr2)(D/2+1)
, (7)

where r = ‖xxxwht‖ is used to represent the `2-norm of the
whitened i-vectors. By substituting Eq. (7) into Eq. (6), we
can rewrite Eq. (6) as

∆I ≡−
D∑

d=1

H((xkldn)d) + log b− (
D

2
+ 1)〈log(b+ cr2)〉r.

(8)

In practice, both H(xxxkldn) and r need to be estimated from
development i-vectors.

It is worth mentioning that Eq.(8) is the optimization func-
tion of DN. Different from DN, which aiming at reducing the
statistical dependence of i-vector elements, we also take the
difference of i-vectors’ marginal negentropy ∆Jm into con-
sideration. Next, the second part ∆Jm in Eq. (5) is decom-
posed as follows:

∆Jm ≡ −
D∑

d=1

DKL(p(xkldn)d|N(0, 1))

=

D∑
d=1

H((xkldn)d) +

D∑
d=1

∫
p((xkldn)d) log(p(N(0, 1)),

(9)

where Jm(xxxwht) in Eq. (9) is omitted as a constant. By com-
bining Eq.(8) and Eq.(9) according to Eq.(5), we can obtain
our optimization function:

arg max
b,c

∆J =

D∑
d=1

∫
p((xkldn)d) log(p(N(0, 1)))

+ log b− (
D

2
+ 1)〈log(b+ cr2)〉r.

(10)

Through optimization function, the related parameters b and
c of the transformed function are calculated through a grid
search. It is worth mentioning that all the related PDFs in
Eq.(10) are estimated from the development data in training
phase by a non-parametric statistical method to maintain the
flexibility of the proposed method. In test phase, already
trained Eq.(3) is applied on target i-vector and test i-vector
for Gaussianization.

4. EXPERIMENTS AND ANALYSIS

This section presents experimental validations of the effec-
tiveness of KL-DN in speaker verification performance. The
following section provides details about the experimental
setup and the results of the proposed approach.

4.1. Experimental setup

Our experiments were performed on the male portion of the
core sets from NIST SRE 2008 and it was refered as the eval-
uation data. We report the results of trials through interview-
interview speech(det1) and core set(det1-det8). For a perfor-
mance metric, we used the equal error rate (EER) and DCF to
the minimum value of the 2008 NIST detection cost function
(minDCF08).

In all the experiments, the sentences were represented by
a 60-dimensional vector of Mel Frequency Cepstral Coeffi-
cients (MFCC), which was extracted using a 25 ms Hamming
window with a 10 ms frame advance. In particular, 20 MFCC
together with their first and second derivatives compose the
MFCC feature. A full-covariance gender-dependent UBM
with 2,048 mixtures was trained from NIST SRE 2003–2006
which is referred as development data. The dimension of the
gender-dependent i-vector extractor is 600. before i-vectors’
Gaussianization, LDA was used to project the i-vectors into
120 dimensions.

4.2. Optimization function analysis

Table 1 summarizes the value of the optimization function
and the related transformation parameters of the optimization
function under the KL-DN and DN methods. The value of
∆J in DN was derived under the transformation parameters
which were obtained by maximizing ∆I .

Table 1. The results of the optimization functions.

Method trans-parameter opti-function
log2 b log2 c ∆I ∆J

DN −19 −20 −512.4 −5, 451.0
KLDN −12 −13 − 97.8

From Table 1, it can be found that the ∆J under DN is
negative, which reveals that maximizing MI can only enlarge
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Fig. 1. Variation between the verification results and ∆J un-
der the conditions in the male portion of the det1 and core sets
(short2–short3) of NIST SRE 2008.

the distance between i-vector and standard Gaussian distri-
butions. However, taking KLD as the optimization function
can search out the parameters that narrows the distance be-
tween the original and target distributions. The results explain
that controlling MI is not enough to Gaussianization i-vectors,
marginal negentropy should also be taken into consideration.

Figure 1 displays the relationship between ∆J derived on
development data and the speaker verification results derived
on evaluation data. We chose the transformation parameters
b and c randomly and plotted the corresponding ∆J on the
horizontal coordinate axis. The verification results are rep-
resented in terms of EER and minDCF08. The two graphs
prove that narrowing the distance by our proposed method
can improve speaker verification accuracy.

4.3. Verification results analysis

The experimental results were compared under the G-PLDA
system with i-vector Gaussianization methods, including LN
and KL-DN with and without LN. The transformation param-
eters for KL-DN are listed in the results in Table 1 (log2b =
−13, log2c = −12). The results are summarized in Table 2
and related DET curves are shown in Figure 2. The results, in
terms of the evaluation criterion of EER and minDCF08, are
summarized in Table 2 and related DET curves are shown in
Figure 2.

By comparing the results of the three different approaches,
we can summarize as follows:

(i) Under the det1, KL-DN achieves a relative improve-
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Fig. 2. The DET curves obtained with LN, KL-DN with
and without LN in the male portion of the det1 and core sets
(short2–short3) of NIST SRE 2008..

ment of 8.9% in terms of minDCF08 over the baseline, de-
creasing from 0.056 to 0.051; and a relative improvement of
6.7% in EER over the baseline, decreasing from 12.07% to
11.26%. It proves the effectiveness of our proposed method
under the interview channel condition.

(ii) To prove the effectiveness of the proposed method in a
variety of conditions, we tested it on the entire core set, which
includes eight different conditions. The results show clearly
that our proposed method achieves superior improvements in
terms of both minDCF08 and EER.

(iii) Using the same transformation parameters, KL-DN
together with LN exhibits further improvement. We presume
that KL-DN reduces the non-Gaussian behavior in i-vectors
and then decreases the mismatching of i-vectors distribution
and the assumption in LN; a theoretical explanation will be
provided in future work.

Table 2. Speaker verification results under the conditions in
the male portion of the det 1 and core sets (short2–short3)
from NIST SRE 2008.

System code det1 core set
EER (%) minDCF EER(%) minDCF

LN 12.07 0.056 11.40 0.055
KL-DN 11.26 0.051 10.87 0.052

KL-DN+LN 10.87 0.051 10.58 0.051

5. CONCLUSIONS

In this paper, we propose a Gaussianization method to trans-
form the distribution of i-vectors. We prove that it can im-
prove the speaker verification performance by narrowing the
KLD between two distributions through promoted transfor-
mation function. Moreover, combining LN and KL-DN can
further improves the verification accuracy.
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