
ROBUST MULTIDIMENSIONAL SCALING EMPLOYING M-ESTIMATORS AND NUCLEAR
NORM REGULARIZATION

Fotios Mandanas and Constantine Kotropoulos

Department of Informatics, Aristotle University of Thessaloniki
Thessaloniki, 54124, Greece

Email: {fmandan@gmail.com, costas@aiia.csd.auth.gr}

ABSTRACT

Multidimensional Scaling (MDS) is applied to pairwise dissimi-
larities between entities, aiming to map each entity to a point in a
geometric space so that the inter-point distances preserve the pair-
wise dissimilarities. The well-known algorithms for solving the
MDS problem are vulnerable to gross errors (outliers), inducing
highly corrupted embeddings. To cope with such gross errors, two
algorithms are proposed, which resort to half-quadratic optimiza-
tion, employing M -estimators and nuclear norm regularization. It is
demonstrated by experiments that the proposed algorithms outper-
form the state-of-the-art MDS ones.

Index Terms— Multidimensional scaling, robustness, M -
estimators, nuclear norm, half-quadratic optimization

1. INTRODUCTION

Multidimensional Scaling (MDS) offers a visualization of the hidden
structures among a set of entities in a geometric space of reduced di-
mensions, preserving the pairwise dissimilarities between entities.
Its input is a square symmetric dissimilarity matrix that captures the
dissimilarities among the set of entities, while its output is a model
in a geometric space of two or three dimensions, where each entity
is represented by a single point. A spectrum of MDS applications
can be found in [1]. Common techniques solving the MDS problem,
such as the classical MDS [2] and the scaling by majorizing a com-
plicated function (SMACOF) [3], have shown to be less robust when
the pairwise dissimilarities are corrupted by gross errors [1, 4].

Here, we advocate that the exploitation of M -estimators in the
MDS algorithm with a proper regularization can mitigate the reper-
cussion of gross-errors more efficiently than the state-of-the-art tech-
niques. The paper contributions are: 1) The extension of the frame-
work proposed in [1] that is based on half-quadratic (HQ) optimiza-
tion, with two algorithms, which employ M -estimators and nuclear
norm to impose smoothness, whenever the initial dissimilarity ma-
trix is contaminated by gross errors. 2) The demonstration of the
benefits of the proposed algorithms against the sophisticated MDS
techniques.

The underlying reasoning for the use of nuclear norm (also
known as trace norm, Schatten 1-norm, or Ky Fan r-norm) stems
from the rich related literature. The nuclear norm is the best con-
vex approximation of the rank function over the unit ball of matrices
with norm less than one [5]. A singular value thresholding algorithm
for matrix completion and related nuclear norm minimization prob-
lems is proposed in [6]. In [5], the NP-hard affine rank minimization
problem is solved. Especially, if a specific restricted isometry prop-
erty holds for the linear transformation that defines the constraints,

the minimum rank solution problem turns to be the solution of the
convex nuclear norm minimization problem. In [7], the data matrix
is assumed to be the superposition of a low-rank and a sparse compo-
nent. It is proven that, under certain assumptions, a disentanglement
of both low-rank and sparse components is achieved by solving
a convex program called Principal Component Pursuit. However,
most nuclear norm minimization techniques exploit singular value
thresholding algorithms at each iteration, which induces additional
computational cost as the matrix size increases. Thus, a Schatten
p-norm optimization framework for the solution of rank and trace
norm objectives is proposed in [8], yielding a closed-form solution
suitable for large-scale matrix completion problems.

For x ∈ Rd×1, ‖x‖1 =
∑d

i=1|xi| and ‖x‖2 =
√∑d

i x
2
i are

the `1 and `2 norms of x, respectively. Let X = [x1|x2|, . . . , |xN ]T

∈ RN×d, where the i-th row of X is denoted as xi = (xi1, xi2, . . .,
xij , . . . , xid) ∈ R1×d. The Frobenius norm of X is defined as

‖X‖F =
√∑N

i=1 ‖xi‖22. For N > d, the nuclear norm of
X is defined as the sum of its singular values, namely ‖X‖∗ =

tr((XT X)1/2) =
∑d

i=1 σi, constituting a special case of the Schat-

ten norm ‖X‖p = (
∑d

i=1 σ
p
i )

1
p . The subdifferential of the nuclear

norm at X, ∂ ‖X‖∗, is UVT , where X = UΣVT is the singular value
decomposition (SVD) of X [9].

2. ROBUST MDS APPROACHES

Let N denote the number of entities, d be the reduced embedding
dimension, and ∆ = [δij ] denote the pairwise dissimilarity matrix
with δij , i, j = 1, 2, . . . , N corresponding to the dissimilarity be-
tween the entities i and j. The embedding in the reduced d dimen-
sional space is declared as X = [x1|x2|, ..., |xN ]T ∈ RN×d with
the i-th object mapped to xi = (xi1, xi2, ..., xij , ..., xid)

T ∈ Rd×1.
The distance matrix is denoted as D(X) = [dij(X)] ∈ RN×N

with ij-th element being equal to `2 norm between xi and xj , i.e.,
dij(X) = ‖xi − xj‖2.

MDS objective is to estimate X by minimizing the least-squares
(LS) loss function of raw stress, which is vulnerable to gross errors:

σr(X) =

N∑
i=1

N∑
j=i+1

(δij − dij(X))2
4
=

N∑
i<j

(δij − dij(X))2. (1)

Under the context of minimizing outliers impact, the function∥∥∆2 −D2
∥∥
1

was employed in the robust Euclidean embedding
(REE) [10]. Additional schemes can be found in [11, 12]. In the
robust MDS (RMDS) [4], each dissimilarity element is modeled as
δij = dij(X) + oij + εij , where oij represents a gross error, while
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εij denotes a zero-mean independent random variable modeling the
nominal errors. Since the gross errors are sparse, the `1 norm is
enforced to them, yielding [4]:

(Ô, X̂) = argmin
O,X

N∑
i<j

(δij − dij(X)− oij)
2 + λ1

N∑
i<j

|oij |. (2)

An iterative solution for (2) is:

o
(t+1)
ij = Sλ1(δij − dij(X

(t))) (3)

X(t+1) = L† L+(O
(t+1),X(t))X(t) (4)

where Sλ1(x) = sign(x)(|x| − λ1
2
)+ is the soft-thresholding op-

erator with (·)+ = max{·, 0}. Since the matrix L, with diagonal
elements [L]ii = N − 1 and off-diagonal elements [L]ij = −1, is
not full rank, its Moore-Penrose pseudoinverse L† = N−1J is used,
where J = I−N−1 e eT is the centering operator and e is theN×1
vector of ones. The Laplacian matrix L+(O,X) is defined:

[L+(O,X)]ij =


−(δij − oij) d

−1
ij (X) (i, j) ∈ S(O,X)

0 (i, j) ∈ T(O,X)

−
∑N

k=1,k 6=i[L+(O,X)]ik (i, j) ∈ Q(O,X)
(5)

where S(O,X) = {(i, j) : i 6= j, dij(X) 6= 0, δij > oij},
T(O,X) = {(i, j) : i 6= j, dij(X) = 0, δij > oij} and
Q(O,X) = {(i, j) : i = j, δij > oij}. The iterations in (3)
and (4) start with a randomly chosen initial configuration X(0) and
a zero initial outlier matrix O(0).

O(t+1) estimation, via (3), is an `1 regularization (LASSO)
problem. Despite the attenuation of outliers in (2), there is still
susceptibility to gross errors, since (4) is a LS solution of the

minimization of
∥∥∥LX(t+1) − L+(O(t+1),X(t))X(t)

∥∥∥2

F
. Thus, we

propose to a) substitute the aforesaid Frobenius norm with an M -
estimator by passing the residual LX−L+(O(t+1),X(t))X(t) from a
non-negative and differentiable function φ(·) with respect to (w.r.t.)
X and b) impose a regularization term through the nuclear norm of
X, i.e.,

X(t+1) = argmin
X

{φ(LX − L+(O(t+1),X(t))X(t)) + λ2 ‖X‖∗}.

(6)
M -estimators replace the LS loss function by another that increases
less than the squared error [13] and are inaugurated in order to attain
supplementary resilience to inaccurate estimation of O(t+1). The
nuclear norm regularization term is introduced in (6) in order to avert
the over-smoothness of the Frobenius norm employed in [1].

3. AN HQ FRAMEWORK FOR MDS WITH GROSS
ERRORS

In this section, (6) is solved via HQ minimization [14]. Let us rewrite
(6) as X̂ = argmin

X
{φ(X) + h(X)} where h(X) = λ2 ‖X‖∗. The

potential function can be expressed as φ(X) = min
P

{Q(X,P) +

ψ(P)} ∀X ∈ RN×d where P ∈ RN×d is the matrix of auxiliary
variables, Q(X,P) is a quadratic function for any P, and ψ(·) is
the conjugate function of φ(·) [15, ch. 3, p. 90]. In particular,

ψ(P) =
∑N

n=1

∑d
m=1 ψ(pnm). Thus, we solve for

(X̂, P̂) = argmin
X,P

{J(X,P)} = argmin
X,P

{
Q(X,P)

+

N∑
n=1

d∑
m=1

ψ(pnm) + h(X)
}
. (7)

An iterative solution for (X̂, P̂) is given by:

P(t+1) = δ(X(t)) (8)

X(t+1) = argmin
X

{Q(X,P(t+1)) + h(X)}. (9)

The HQ minimization admits two forms, namely the multiplica-
tive form and the additive one. To begin with, let us deal with scalar
p and x. For p ∈ R+ and x ∈ R, Q(x, p) is a quadratic function de-
fined as QM (x, p) = px2 in the multiplicative form. The resulting
potential function is φ(x) = min

p
{p x2+ψ(p)} [16]. In the additive

form, for p ∈ R and x ∈ R, QA(x, p) = (x
√
c− p√

c
)2 [17], result-

ing to the potential function φ(x) = min
p

{(x
√
c − p√

c
)2 + ψ(p)},

where c is a positive constant with its optimal value estimated by
c = sup

x∈R
φ′′(x) [14]. The minimizer function δ(·) for φ(x): R → R

in the additive and multiplicative forms is defined as [14]:

δA(x) = cx− φ′(x) (10)

δM (x) =

{
φ′′(0+) if x = 0
φ′(x)

x
if x 6= 0.

(11)

The auxiliary variables pnm in (8) are determined componentwise by
the minimizer function δ(·) associated to φ(·). Potential functions
φ(x) : R → R for various M -estimators and their corresponding
minimizer functions δ(x) : R → R for both forms can be found
in [1].

3.1. Multiplicative Form (HQMMDSNN)

Next, the just described HQ framework is extended to matrix and
vector arguments of the quadratic function QM (·), which is de-

fined as: QM (LX − L+X(t), p) =
∑N

i=1 pi

∥∥∥(LX − L+X(t))i
∥∥∥2

2
,

where p ∈ RN×1 denotes the vector of the auxiliary variables
controlled by the minimizer function δM (·) defined in (11). Then,
the potential loss function is defined as φM (LX − L+X(t)) =

min
p

{
∑N

i=1 pi

∥∥∥(LX − L+X(t))i
∥∥∥2

2
+

∑N
i=1 ψ(pi)}. Let Y =

L+(O
(t+1),X(t))X(t). The objective function takes the form:

JM (X, p) =
N∑
i=1

pi

∥∥∥(LX − Y)i
∥∥∥2

2
+

N∑
i=1

ψ(pi) + λ2 ‖X‖∗ . (12)

Let (X̂, p̂) = argmin
X,p

{JM (X, p)}. When X is sought, the terms

ψ(·) are omitted, since the auxiliary variables in (8) are contingent
on the minimizer function δM (·) and are fixed. Finally, a local min-
imizer (X̂, p̂) can be determined by the alternating minimization:

p
(t+1)
i = δM

(∥∥∥(LX(t) − Y)i
∥∥∥
2

)
(13)

X(t+1) = argmin
X

{
tr((LX − Y)T P(t+1)(LX − Y))

+ λ2 ‖X‖∗

}
(14)
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where P(t+1) = diag(p(t+1)) is a diagonal matrix with ii-th ele-
ment equal to p(t+1)

i . Setting the derivative of (14) w.r.t. X equal to
zero, a closed-form solution is obtained:

X(t+1) = (LT P(t+1) L)−1 (LT P(t+1) Y − λ2

2
U(t) (V(t))T )

(15)
where X(t) = U(t)Σ(t)(V(t))T is the SVD of X(t). For X(t) ∈
RN×d, U(t) ∈ RN×d, Σ(t) ∈ Rd×d, and V(t) ∈ Rd×d. The
auxiliary variable pi represents the weight that controls the impact of∥∥∥(LX − L+X(t))i

∥∥∥
2
. The objective function JM (X, p) is curtailed

at each iteration until convergence due to the HQ minimization. The
employment of M -estimators tapers off the outliers repercussion,
since p(t+1)

i admits a low weight due to δM (·) definition in (13)
associated with an M -estimator potential function φM (·).

3.2. Additive Form (HQAMDSNN)

For the additive form, a similar alternating minimization procedure
can be obtained:

P(t+1) = δA(LX(t) − Y) (16)

X(t+1) = (LT L)−1(LT H(t+1) − λ2

2c
U(t) (V(t))T ) (17)

where H(t+1) = Y + 1
c

P(t+1). In both forms, the initial outlier
matrix O(0) is set to zero, the initial embedding X(0) is chosen ran-
domly, while each entry of O(t+1) at each iteration is estimated via
(3).

4. NUMERICAL TESTS

The performance of the proposed algorithms was benchmarked
against three well known MDS techniques implemented in the same
environment and tested on the same matrices. These techniques
were: a) the SMACOF algorithm [3], b) the REE algorithm in its
subgradient version [10], and c) the RMDS [4].

The embedding quality of each algorithm has been appraised
w.r.t. the following figures of merit: a) the normalized outlier-free

stress defined as σ(X̂, Ô) =

√∑
(i,j)∈U(δij−dij(X))2∑

(i,j)∈U δ2ij
, where U de-

clares the set of outlier-free dissimilarities ([O]ij = 0), as in [4]; b)
the estimated number of outliers Ŝ, as in [4]; c) the raw stress σr(X̂),
defined in (1), between the final embedding and the outlier-free con-
figuration; and d) the standardized Procrustean goodness-of-fit cri-
terion %, applied only to fixed configurations, defined as the squared
errors sum standardized by a measure of the scale X1.

In order to judge algorithms performance, 100 Monte Carlo
simulations of RMDS took place with a different random ini-
tial configuration X(0) in each run. The run where RMDS raw
stress σr(X̂) acquired its minimum value was adopted. The
RMDS, HQAMDSNN, and HQMMDSNN algorithms terminated
if
∥∥∥X(t+1) − X(t)

∥∥∥
F
/
∥∥∥X(t+1)

∥∥∥
F

was less than 10−6 or when the
number of iterations attained 5000.

4.1. Cross Data

The first set is a fixed configuration of N = 65 points in the two-
dimensional space, arranged in a cross. In any branch, the sixteen

1sum(sum((X − repmat(mean(X, 1), size(X, 1), 1)).2, 1)).

points are equidistant by one unit. The center of the cross is at (16,
16). Each element of the initial dissimilarity matrix ∆ was con-
taminated with a background noise εij , derived from a zero mean
truncated Gaussian distribution with variance σ2 = 0.1 and range
[−1, 1], in order to avert negative values in ∆. The outliers indices
were chosen randomly, with outliers values being derived from a
uniform distribution in [0, 3max δij ]. The percentage of the gross
error corruption $ was set at 10%.

Let ah declare the Huber M -estimator parameter and σ̂ε de-
note the median absolute deviation (MAD)2 of nominal errors. Im-
posing the equivalence with Huber M -estimator (λ1 = 2ah) [18]
and implementing ah = 1.345 × 1.483 × σ̂ε which yields 95%
asymptotic efficiency for the Gaussian distribution [19], λ1 was set
to 3.99 σ̂ε = 0.8492 for RMDS and the proposed algorithms.

Table 1: Figures of merit for the embedding quality obtained by
SMACOF, REE, and RMDS applied to cross data.

Outlier percentage $ = 10% SMACOF REE RMDS

Normalized outlier-free stress σ(X̂, Ô) 0.6866 0.7250 0.0158

Estimated outliers Ŝ - - 511

Procrustean goodness-of-fit % 0.7965 0.0003 0.00017

Raw Stress σr(X̂) 141916 38.136 26.619

The figures of merit related to the embedding quality delivered
by the SMACOF, REE and RMDS are collected in Table 1. Due
to the lack of space, only the raw stress σr(X̂) of the proposed al-
gorithms is plotted in Figure 1 for λ2 ∈ [1, 100]. In particular for
the HQMMDSNN, a is set to 103, 0.25, 0.25 for the Welsch, Fair
and log-cosh M -estimators, respectively. The plots of σr(X̂) for
the additive form for the Fair and Huber M -estimators with a = 8
are also overlaid. It can be seen that σr(X̂) for HQMMDSNN with
WelschM -estimator and HQAMDSNN with the Fair and HuberM -
estimators coincide. Moreover, the proposed algorithms outperform
the state-of-the-art MDS techniques for a wide range of λ2 values
w.r.t. σr(X̂). The plots of % for the proposed algorithms and the
aforementioned M -estimators are roughly the same with those of
σr(X̂) and are always smaller than RMDS for λ2 ∈ [1, 100]. The
estimated number of outliers Ŝ is relatively constant, admitting val-
ues in the range [504, 512]. For most values of λ2 ∈ [1, 100], the
proposed algorithms admit smaller σ(X̂, Ô) values than the RMDS.
However, they demonstrated an unstable performance, implying that
σ(X̂, Ô) alone, without σr(X̂), is not a reliable figure of merit for
assessing algorithms’ performance.

The range [1, 100], shown in Fig. 1, constitutes a small interval
of values for λ2 used to evaluate the performance of the proposed
algorithms. For instance, HQMMDSNN employing the Welsch M -
estimator with λ1 = 0.8492 and a = 103 exhibits a better perfor-
mance than RMDS w.r.t. σr(X̂) for λ2 ∈ [1, 2827]. Furthermore,
the choice λ2 = 1416 yields the minimum raw stress configuration
(σr(X̂) = 19.95) from all integer λ2 values. It is worth noting that
SMACOF yields σr(X̂) = 12.727 on non-contaminated data.

4.2. Scholastic Aptitude Test Data

The second data set entails real data from average Scholastic Apti-
tude Test (SAT) scores for the N = 51 states in the US, including

2Median of the absolute deviations of nominal errors from their median.
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Fig. 1: Raw stress σr(X̂) of the proposed algorithms for cross data.

six attributes, such as population, average verbal and math scores,
percentage of eligible students taking the exam, percentage of adult
population without a high school education, and annual teacher pay
in thousands of dollars [20]. The minimum value of each attribute
was subtracted from the initial values of the corresponding attribute
and the resulting value was divided by the difference between the
maximum and the minimum of each attribute, in order to normal-
ize the initial values in [0, 1]. Then, the dissimilarity matrix was
computed. The data set was artificially contaminated by 128/(51 ·
50/2) = 10.04% outliers drawn from a uniform distribution in
[max δij , 4max δij ]. The outliers indices were chosen randomly.
λ1 was set to 0.75 in order to identify Ŝ = 128 outliers in RMDS
with the same value being used in HQMMDSNN.

The figures of merit for SMACOF, REE, and RMDS algorithms
are gathered in Table 2. HQMMDSNN was proven to be faster than

Table 2: Figures of merit for the embedding quality obtained by
SMACOF, REE, and RMDS applied to SAT data.

Outlier percentage $ = 10.04% SMACOF REE RMDS

Normalized outlier-free stress σ(X̂, Ô) 0.6862 0.7608 0.1511

Estimated outliers Ŝ - - 128

Raw stress σr(X̂) 251.317 11.7846 11.6615

HQAMDSNN. Accordingly, only the HQMMDSNN will be consid-
ered. For comparison purposes, we include also the performance
of HQMMDS1 [1]. Due to space limitations, we shall confine our-
selves to σr(X̂) only. Figure 2 depicts σr(X̂) for λ2 ∈ [1, 100].
The parameter a was set to 3, 1, and 1 for the Cauchy, Huber, and
Fair M -estimators, respectively. The superior performance of the
nuclear norm is attributed to the mitigation of the over-smoothness
imposed by the Frobenius norm. Hence, for the same parameter a,
the range of λ2 values where the proposed algorithms accomplish a
smaller σr(X̂) than RMDS is always greater than that obtained by
HQMMDS1 and HQAMDS algorithms proposed in [1].

4.3. Discussion

It is seen that the proposed algorithms outperform the state-of-the-art
competing techniques, delivering a more accurate approximation of
the real configuration for a wide range of λ2 values. To determine if
a given dissimilarity matrix ∆ is corrupted with gross errors, SMA-

λ
2

0 10 20 30 40 50 60 70 80 90 100

R
a

w
 s

tr
e

s
s

6

8

10

12

14

16

18

20

22

24

HQMMDSNN Huber a = 1
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HQMMDS1 Cauchy a = 3

HQMMDSNN Fair a = 1

HQMMDS1 Fair a = 1

RMDS

Fig. 2: HQMMDSNN and HQMMDS1 [1] raw stress σr(X̂) for
SAT data.

COF and the proposed algorithms are applied for λ2 = 0. If the
raw stress σr(X̂) estimated by SMACOF is smaller than that of the
proposed algorithms, then the dissimilarity matrix is error-free.

M -estimator selection: Welsch, Cauchy, Fair, and Huber M -
estimators are found to be more stable than others.

Parameter selection: The order of parameter selection is: λ1, a,
λ2 for the multiplicative form and λ1, c, a, λ2 for the additive one. If
the MAD of the nominal errors σε is accessible, then λ1 = 3, 99σε.
Alternatively, the plot of Ŝ versus λ1 for the RMDS algorithm is em-
ployed by choosing the λ1 value where this plot exhibits an elbow.
The typical choice of the parameter c is c = φ′′(0). The kernel size
a of Welsch, Cauchy and Fair M -estimators in both forms may be

selected by â2 =
‖LX(0)−L+X(0)‖2

F
2Nd

[21] or by applying Silverman’s
rule [22]. Let â be the kernel size determined by the aforementioned
rules. A rule of thumb is a = ξâ for ξ ∈ [2, 4].

Unavailability of the error-free dissimilarity matrix: In this
case, one of the proposed algorithms is implemented for a reason-
able range of λ2 values, with λ1 being selected according to the
elbow rule. Next, the configuration with minimum Ŝ value is cho-
sen. The latter is proven to be near to that with the minimum σr(X̂).
If Ŝ is stable for this λ2 values range, then the embedding with the
minimum σ(X̂, Ô) is selected.

Computational time and complexity: The multiplicative form,
incorporating alternating updates of O, P and X and SVD, costs
O(N3) per iteration in the worst case. The same applies for the
additive form. Even though the additive and the multiplicative forms
solve the same HQ optimization problem, the multiplicative form
exhibits two principal advantages compared to the additive one: a) It
requires fewer iterations to converge; b) The tuning of parameter a
is found to be more simple.

5. CONCLUSIONS

A novel HQ framework with two algorithms, employing M-estimators
and nuclear norm regularization, has been proposed for solving MDS
in the presence of gross errors in the dissimilarity matrix. The pro-
posed algorithms have been found to outperform the state-of-the-art
MDS techniques. Future research could address the estimation of
the optimum λ2 parameter in the minimization function.
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