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Abstract—The principle of compressed sensing (CS) can be
applied in a cryptosystem by providing the notion of security.
In this paper, we study the computational security of a CS-
based cryptosystem that encrypts a plaintext with a partial
unitary sensing matrix embedding a secret bipolar keystream.
For security analysis, the total variation distance, bounded by
the Hellinger distance, is examined as a security measure for the
indistinguishability of the CS-based cryptosystem. By developing
an upper bound on the Hellinger distance, we show that the CS-
based cryptosystem can be computationally secure in terms of the
indistinguishability, as long as it has a sufficiently long keystream
for each encryption with low compression and sparsity ratios.

I. INTRODUCTION

Compressed sensing (CS) [1]−[3] is to recover a sparse
signal from the measurements that are believed to be incom-
plete. With efficient measurement and stable reconstruction,
the CS technique has been of interest in various research areas.
A CS-based cryptosystem encrypts a plaintext through a CS
measurement process by keeping the sensing matrix secret.
With the knowledge of the matrix, the ciphertext can then
be decrypted by a CS reconstruction process. In [4], Rachlin
and Baron proved that the CS-based cryptosystem cannot
be perfectly secure, but might be computationally secure.
Orsdemir et al. [5] showed that it is computationally secure
against a key search technique via an algebraic approach.
By renewing a random Gaussian sensing matrix at each
encryption, Bianchi et al. [6] analyzed the security of noiseless
CS-based cryptosystems. A similar analysis has been made for
a noiseless CS-based cryptosystem having a circulant sensing
matrix for efficient CS processes [7][8]. In [9] and [10],
wireless channel characteristics could be exploited for the
security of CS-based cryptosystems. The CS technique can
also be applied in database systems [11], where random noise
has been intentionally added to CS measurements for differen-
tial privacy. In practice, a variety of CS-based cryptosystems
concerning the security of multimedia, imaging, and smart grid
data have been suggested in [12]−[18].

In this paper, we study the computational security of a CS-
based cryptosystem that encrypts a plaintext with a partial
unitary sensing matrix embedding a secret keystream. The
keystream to be embedded is assumed to be obtained by a
keystream generator of stream ciphers. Then, the initial seed
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of the generator is essentially the secret key of the CS-based
cryptosystem. With the sensing matrix, we demonstrate that
the CS-based cryptosystem theoretically guarantees a stable
and robust CS decryption for a legitimate recipient.

For security analysis, the total variation (TV) distance [19]
between probability distributions of ciphertexts conditioned on
a pair of plaintexts is examined as a security measure for the
indistinguishability [20]. We investigate the TV distance by
developing an upper bound on the Hellinger distance [21],
which demonstrates that our CS-based cryptosystem can be
computationally secure in terms of the indistinguishability, as
long as the keystream length for each encryption is sufficiently
large with low compression and sparsity ratios.

Notations: A matrix (or a vector) is represented by a bold-
face upper (or lower) case letter. UT and |U| denote the
transpose and the determinant of a matrix U, respectively.
U(k, t) is an entry of an M ×N matrix U in the kth row and
the tth column, where 0 ≤ k ≤ M − 1 and 0 ≤ t ≤ N − 1.
μ(U) denotes the maximum magnitude of the entries of U,
i.e., μ(U) = max

k,t
|U(k, t)|. diag(s) is a diagonal matrix

whose diagonal entries are from a vector s. An identity matrix
is denoted by I, where the dimension is determined in the
context. W is a conventional N×N Walsh-Hadamard matrix,
where WWT = WTW = NI. Also, D denotes a discrete-
cosine transform (DCT) matrix, where DDT = DTD = NI.
For a vector x = (x0, · · · , xN−1)

T ∈ R
N , the lp-norm of x

is denoted by ||x||p =
(∑N−1

k=0 |xk|p
) 1

p

, where 1 ≤ p < ∞.

If the context is clear, ||x|| denotes the l2-norm of x. A
vector n ∼ N (0, σ2I) is a Gaussian random vector with mean
0 = (0, · · · , 0)T and covariance σ2I. Finally, E[·] denotes the
average of a random vector or a random matrix.

II. MATHEMATICAL MODEL

A. CS Encryption With a Partial Unitary Sensing Matrix

A CS-based cryptosystem encrypts a sparse plaintext x ∈
R

N through the CS measurement process by employing a
sensing matrix Φ ∈ R

M×N , which produces a ciphertext
r = Φx + n ∈ R

M , where n ∼ N (0, σ2I) is a measurement
noise. This paper proposes a CS-based cryptosystem that
employs a partial unitary sensing matrix Φ embedding a secret
keystream, as defined in Definition 1.
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Definition 1: The sensing matrix of our CS-based cryptosys-
tem is defined by

Φ =
1√
M

RΩU =
1√
MN

RΩU1diag(s)U2. (1)

In (1), RΩ is a public random subsampling operator that
selects M rows out of N ones uniformly at random, where
the selected indices are specified by Ω with |Ω| = M . Also,
Ui ∈ R

N×N is a unitary matrix, i.e., UT
i Ui = UiU

T
i = NI

for i = 1 and 2, respectively. In particular, each entry of U 1

has unit magnitude, i.e. |U1(k, t)| = 1 for all 0 ≤ k, t ≤
N − 1. Finally, U = 1√

N
U1diag(s)U2 is also unitary for

s ∈ {−1,+1}N , where s is a secret keystream to be embedded
in Φ for each CS encryption.

In Definition 1, one may consider x̂ = U2x as a plaintext,
which is sparse with respect to the sparsifying basis U2.

In this paper, U1 = H, or an N × N Hadamard matrix
employing a binary m-sequence [22] of period N−1 = 2n−1,
i.e., d = (d0, · · · , d2n−2), where dk ∈ {0, 1}. For 0 ≤ k, t ≤
N − 1, each entry of H is

H(k, t) =

{
1, if k = 0 or t = 0,
(−1)dk+t−2 , otherwise

where the index k + t− 2 is computed modulo 2n − 1. From
the structure, H is symmetric, or HT = H. As the out-
of-phase autocorrelation of d is −1 [22], it is obvious that
HHT = HTH = NI. Since H is public, the structure and the
initial state of an n-stage linear feedback shift register (LFSR)
generating the binary m-sequence d are publicly known.

We assume that the keystream s is a segment of length N
from an original keystream of extremely long period, which
enables to update the keystream s at each CS encryption.
Regarding the keystream of our CS-based cryptosystem, we
make the following assumption.

Assumption 1: In stream ciphers [23][24], an original
keystream is designed to have nice pseudorandomness prop-
erties [22] such as balance, large period, low autocorrelation,
large linear complexity, etc. With the properties, we assume
that each entry of the secret keystream s takes +1 or −1
independently and uniformly at random, which facilitates the
security analysis of our CS-based cryptosystem.

If a keystream generator produces the keystream s, the
initial seed (or state) of the generator is essentially the key
of our CS-based cryptosystem. The key should be kept secret
between a sender and a legitimate recipient, whereas the
structure of the keystream generator can be publicly known.

B. CS Decryption

For CS decryption, a noisy ciphertext r = Φx + n ∈ R
M

is available for an adversary as well as a legitimate recipient,
where n ∼ N (0, σ2I) is the measurement noise. A legiti-
mate recipient of the ciphertext, who knows Φ, attempts to
recover the plaintext x by conducting a CS reconstruction.
Meanwhile, an adversary will make various attempts to recover
the plaintext or the keystream, with no knowledge of Φ.

Proposition 1 presents the reliability and the stability of our
CS-based cryptosystem for a legitimate recipient.

Proposition 1: [25][26] In our CS-based cryptosystem, a
stable decryption of a plaintext with at most K nonzero entries
is theoretically guaranteed with bounded errors for a legitimate
recipient, as long as M = O (μ2(U) ·K log4 N

)
.

When U1 = H, numerical experiments revealed that
μ(U) = O(

√
logN) for i) U2 = W or ii) U2 = D, if each

entry of the keystream s takes +1 or −1 uniformly at random.
Therefore, if M = O(K log5 N), Proposition 1 guarantees a
stable and robust decryption for this case.

Table I summarizes a symmetric-key CS-based cryptosys-
tem proposed in this paper.

III. SECURITY ANALYSIS

The notion of indistinguishability has been proposed as a
concept of the computational security [20]. Assume that a
cryptosystem produces a ciphertext by encrypting one of two
possible plaintexts. It is said to have the indistinguishability, if
no adversary can determine in polynomial time which of the
two plaintexts corresponds to the ciphertext, with probability
significantly better than that of a random guess [27]. In short,
if a cryptosystem has the indistinguishability, an adversary
is unable to learn any partial information of the plaintext in
polynomial time from a given ciphertext.

Let us consider the indistinguishability experiment [27] with
a constraint of K-sparse plaintexts. First, an adversary creates
plaintexts x1 and x2 with at most K nonzero entries. Our CS-
based cryptosystem then produces a ciphertext r = Φxh+n by
randomly selecting h, where h = 1 or 2. Given r, the adversary
tries to figure out which plaintext, x1 or x2, was encrypted for
the ciphertext, by carrying out a polynomial time test D : r →
h. Let dTV(p1, p2) be the total variation (TV) distance [19]
between the probability distributions p1 = Pr(r|x1) and p2 =
Pr(r|x2). Then, it is readily checked that the probability that
an adversary can successfully distinguish the plaintexts by any
kind of binary hypothesis test D is bounded by [28]

pd ≤ 1

2
+

dTV(p1, p2)

2
. (2)

Therefore, if dTV(p1, p2) approaches to zero, the probability
of success will be at most that of a random guess, which leads
to the indistinguishability of a cryptosystem. Consequently,
one can argue that a cryptosystem with dTV(p1, p2) closer to
zero would be more secure in terms of the indistinguishability.
Since computing dTV(p1, p2) directly is difficult [29], we
compute the Hellinger distance [21] to bound the TV distance.

In (1), one may assume that the entries of Φ are asymptoti-
cally Gaussian for a sufficiently large N , since each one can be
seen as the sum of independent random variables weighted by
each entry of s. Along with the Gaussian noise n, we assume
that r, conditioned on x1 (or x2), is a jointly Gaussian random
vector. Also, E[Φ] = 1√

MN
RΩU1 · E[diag(s)] ·U2 = 0 for a

given RΩ, as each entry of s takes ±1 with probability 1/2
under Assumption 1. Thus, E[r|xh] = E[Φ] · xh + E[n] = 0.
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TABLE I
SYMMETRIC-KEY CS-BASED CRYPTOSYSTEM

Public: Subsampling operator RΩ, Unitary matrices U1 and U2, Structure of a keystream generator
Secret: Initial seed (or state) k ∈ {0, 1}L of a keystream generator
Keystream generation: With the initial seed k, a keystream generator creates a keystream s ∈ {−1,+1}N .

The keystream s is updated at each encryption by the extremely long entire keystream.
CS encryption: With the keystream s and a plaintext x ∈ R

N , a ciphertext is generated by r = Φx+ n ∈ R
M ,

where Φ = 1√
MN

RΩU1diag(s)U2 and n is a measurement noise.

CS decryption: The plaintext x is reconstructed by a CS recovery algorithm with the knowledge of s.

Then, the Hellinger distance for the multivariate Gaussian
distributions p1 and p2 is given by [30][31]

dH(p1, p2) =

√
1− |C1| 14 |C2| 14

|C3| 12
(3)

where C1 and C2 are the covariance matrices of r conditioned
on x1 and x2, respectively, and C3 = C1+C2

2 . The Hellinger
distance is particularly useful by giving both upper and lower
bounds on the TV distance [32], i.e.,

d2H(p1, p2) ≤ dTV(p1, p2) ≤ dH(p1, p2)
√
2− d2H(p1, p2).

(4)
In what follows, we present an upper bound on the Hellinger

distance of (3), which leads to an analytic upper bound on the
maximum TV distance by (4).

Theorem 1: In our CS-based cryptosystem, assume that each
plaintext x has at most K nonzero entries with the constant
energy Ex = ||x||2. Then,

dH(p1, p2) ≤

√√√√
1−

(
2
√
Kμ2(U2) · PNR+ 1

Kμ2(U2) · PNR + 2

)M
4

(5)

where PNR = Ex

Mσ2 is the plaintext-to-noise power ratio.
To prove Theorem 1, we begin with the following lemma.
Lemma 1: Let λ1(Ch) ≥ · · · ≥ λM (Ch) be the eigenvalues

of Ch, where h = 1 or 2. Then,

λmin = min
h

min
xh

λM (Ch) = σ2,

λmax = max
h

max
xh

λ1(Ch) =
Kμ2(U2) · Ex

M
+ σ2

(6)

Proof : Like Lemma 1 of [33], the covariance matrix of r is

Ch = E[rrT |xh] = RΩC̃hR
T
Ω + σ2I, h = 1, 2 (7)

where C̃h = 1
NUT

1 diag
(

|x̂h|2
M

)
U1 for x̂h = U2xh. Let

λ1(C̃h) ≥ · · · ≥ λN (C̃h) be the eigenvalues of C̃h.
With x̂h = U2xh = (x̂h,0, · · · , x̂h,N−1)

T , let vh =
(vh,0, · · · , vh,N−1)

T , where vh,k = |x̂h,π(k)|2 for k =
0, · · · , N − 1, and π(k) is a permutation for vh,0 ≥ · · · ≥
vh,N−1. From the definition of C̃h, it is clear that λt(C̃h) =
vh,t−1

M ≥ 0 for t = 1, · · · , N .
In (7), Ĉh = RΩC̃hR

T
Ω is an M × M principal sub-

matrix of C̃h, where a successive application of the inter-
lacing inequality [34] yields λt+N−M (C̃h) ≤ λt(Ĉh) ≤
λt(C̃h) for 1 ≤ t ≤ M . Thus, min

h
min
xh

λM (Ĉh) =

min
h

min
xh

λN (C̃h) = 0 from vh,N−1 ≥ 0. On the other hand,

max
h

max
xh

λ1(Ĉh) = max
h

max
xh

λ1(C̃h) = max
h

max
xh

vh,0

M . By

the Cauchy-Schwarz inequality, we obtain vh,0

M =
|x̂h,π(0)|2

M =
1
M

∣∣∑
k∈S xh,kU2(π(0), k)

∣∣2 ≤ Kμ2(U2)·Ex

M , where S is the
set of nonzero entries of xh with |S| ≤ K . Finally, we have
(6), as λt(Ch) = λt(Ĉh) + σ2 from Ch = Ĉh + σ2I. �

Proof of Theorem 1: Let λ1(C3) ≥ · · · ≥ λM (C3) be the
eigenvalues of C3 = C1+C2

2 . Clearly, the eigenvalues of C1,
C2, and C3 are positive by (6) and the Weyl inequality [34].

In (3), let Γ = |C1|
1
2 |C2|

1
2

|C3| � Γn

Γd
. Then,

Γd =

M∏
t=1

λt(C3) ≤
(
tr(C3)

M

)M

=

(
tr(C1) + tr(C2)

2M

)M

(8)

where the inequality is from the arithmetic mean-geometric
mean inequality. For h = 1 or 2, the tth diagonal entry of C̃h

is given by 1
MN

∑N−1
k=0 |x̂h,k|2U2

1(k, t) = 1
M ||xh||2 = Ex

M ,
where U2

1(k, t) = 1 for 0 ≤ t ≤ N − 1. Also, Ĉh has the
same diagonal entry of C̃h. Thus, from Ch = Ĉh + σ2I,
we have tr(Ch) = tr(Ĉh) + Mσ2 = Ex + Mσ2, where (8)
becomes

Γd ≤
(Ex
M

+ σ2

)M

. (9)

In Γn, the geometric mean-harmonic mean inequality yields

|Ch| 12 =

(
M∏
t=1

λt(Ch)

) 1
2

≥
(

1
1
M

∑M
t=1 λ

−1
t (Ch)

)M
2

(10)

where h = 1 or 2. By the Kantorovich inequality [35],

1

M

M∑
t=1

λ−1
t (Ch) ≤ M

4 tr(Ch)

(
τ +

1

τ
+ 2

)
(11)

where τ = λmax

λmin
= Kμ2(U2)·Ex

Mσ2 + 1 = Kμ2(U2) · PNR + 1.
By (10) and (11),

Γn ≥
(
4
√
tr(C1) · tr(C2)

M(τ + 1
τ + 2)

)M

=

(
4
(Ex

M + σ2
)

τ + 1
τ + 2

)M

.

(12)
By combining Γd and Γn, (9) and (12) yield

Γ =
Γn

Γd
≥
(

2
√
τ

τ + 1

)M
2

=

(
2
√
Kμ2(U2) · PNR+ 1

Kμ2(U2) · PNR + 2

)M
2

.

Finally, the proof is completed by dH(p1, p2) =
√
1− Γ

1
2 . �
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Upper bound by Hellinger distance (Eqs. (3) and (4))
Lower bound by Hellinger distance (Eqs. (3) and (4))
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Fig. 1. The upper and lower bounds of total variation distance over PNR
with U2 = W, where N = 1024, M = 48, and K = 4. The number of
tested plaintext pairs is 10000.

IV. NUMERICAL RESULTS

This section presents numerical results to demonstrate the
reliability and the security of our CS-based cryptosystem.
In numerical experiments, each plaintext x has at most K
nonzero entries, where the positions are chosen uniformly
at random and the coefficients are taken from the Gaussian
distribution. For CS encryption, we use the N ×N Hadamard
matrix U1 = H that employs a binary m-sequence of period
N − 1 = 2n − 1. In CS decryption, the CoSaMP recovery
algorithm [36] has been employed for a legitimate recipient to
decrypt each ciphertext with the knowledge of Φ.

Figure 1 displays the upper and lower bounds of total
variation (TV) distance over PNR with U2 = W, where
N = 1024, M = 48, and K = 4. To compute the Hellinger
distance (3), the covariance matrix of (7) has been used.
Averaged over 10000 pairs of randomly generated plaintexts
with at most K nonzero entries per each, the Hellinger distance
yields the upper and lower bounds of TV distance by (4). We
also sketch the theoretical upper bound on the TV distance,
obtained by the maximum Hellinger distance of (5). The figure
shows that the TV distance approaches to zero as noise level
grows, which implies that our CS-based cryptosystem will be
indistinguishable at low PNR. As PNR increases, however,
the upper and lower bounds increase and finally converge
to certain levels, respectively. More extensive simulations
agreed with the implication of Theorem 1 that the CS-based
cryptosystem will have lower TV distances with less PNR, M ,
and K . We made similar observations of the TV distance when
U2 = D and/or each plaintext has bipolar nonzero entries.

Figure 2 depicts the upper bounds on the success probability
of an adversary in the indistinguishability experiment, where
U2 = W and PNR = 25 dB. In the figure, the best-
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CoSaMP CS decryption (Legitimate recipient)
Worst−case upper bound (Adversary)
Best−case upper bound (Adversary)

Random guess

Fig. 2. The success probability over N at PNR = 25 dB, where U2 = W
and M = 48. Each plaintext has at most K =

⌊
8.5M/ log22 N

⌋
nonzero

entries. The number of tested plaintext pairs is 10000.

and worst-case upper bounds of (2) are from the minimum
and maximum achievable TV distances of (4), respectively,
obtained by the Hellinger distance of (3). With M = 48,
the maximum sparsity is set as K = 	cM/ log22 N
 at each
N = 2n for reliable nonuniform CS recovery [37], where
c = 8.5. For comparison, we sketch the empirical success
probability of CS decryption by a legitimate recipient, where
a decrypted plaintext x̂ has been declared as a success if
||x− x̂||2/||x||2 < 10−2. In the test, the secret keystream has
been generated by the self-shrinking generator [38] of a 128-
stage LFSR. Figure 2 reveals that the adversary’s success prob-
ability approaches to that of a random guess as the keystream
length N increases, while a legitimate recipient maintains its
reliability. Thus, we conclude that if the keystream length N is
sufficiently large with low compression

(
M
N

)
and sparsity

(
K
N

)
ratios, our CS-based cryptosystem can be computationally
secure in terms of the indistinguishability, while guaranteeing
a reliable CS decryption for a legitimate recipient.

V. CONCLUSIONS

This paper has proposed a CS-based cryptosystem that
encrypts a plaintext with a partial unitary sensing matrix
embedding a secret keystream. We showed that our CS-based
cryptosystem can offer a theoretically reliable decryption
performance for a legitimate recipient. To examine the in-
distinguishability, we have studied the total variation distance
as a security measure, by developing an upper bound on the
Hellinger distance. Finally, we demonstrated that our CS-based
cryptosystem can be computationally secure in terms of the in-
distinguishability, if the keystream length for each encryption
is sufficiently large with low compression and sparsity ratios.
A further research will be required for specifying a region of
the system parameters by tightening the distance bound.
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