
Using Portable Physiological Sensors to Estimate Energy Cost for

‘Body-in-the-Loop’ Optimization of Assistive Robotic Devices

Kimberly A. Ingraham1, Student Member, IEEE, Daniel P. Ferris2, and C. David Remy1, Member, IEEE

Abstract— Lower-limb assistive robotic devices have the po-
tential to restore ambulation in people with movement disor-
ders. The assistance provided by these devices is governed by a
large number of parameters that must be tuned on a subject-
specific basis. Recently, our group developed ‘body-in-the-loop’
optimization algorithms, and demonstrated that they can be
used to automatically determine the user’s energetically optimal
parameter setting. However, this algorithm relies on real-time
estimates of energetic cost collected via indirect calorimetry,
which is unsuited for long-term use. The purpose of this study
was to estimate energy cost using data from portable, wearable
sensors. We collected global signals (heart rate, electrodermal
activity, skin temperature, oxygen saturation) and local signals
(EMG, accelerometry) from 10 healthy subjects performing 6
different activities. We trained five multiple linear regression
models with different subsets of the collected data, and con-
cluded that the regression model trained with both global and
local signals performed the best for all subjects (R2=0.94±0.02).
This work has the potential to result in translational, clinically-
relevant tuning algorithms for assistive robotic devices.

I. INTRODUCTION

An estimated 20 million Americans are currently living

with ambulatory disabilities as a result of age, neurologi-

cal injury, amputation, or congenital conditions [1]. These

disorders can impair an individual’s ability to ambulate

freely, walk long distances, climb stairs, and/or participate in

independent activities of daily living. In addition, individuals

with ambulatory disabilities often have a higher energetic

cost of transport than healthy individuals, which can reduce

their stamina [2], [3]. In recent years, major advancements

in mechatronic design and control have resulted in wearable

robotic lower-limb assistive devices, such as bionic prosthe-

ses (e.g., [4], [5]) and exoskeletons (e.g., [6]–[8]). The goal

of such devices is to restore ambulatory function in people

with movement difficulties.

The quality of assistance provided by robotic devices is

governed by a large number of controller parameters. For

example, the commercial BiOM powered ankle prosthesis

has 11 configurable parameters that control the behavior of

the device, such as the power and timing of the actuated
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Fig. 1. ‘Body-in-the-loop’ optimization uses real-time respiratory measure-
ments taken from the user to identify the energetically optimal parameter
setting, and automatically updates the device controller [11].

push-off [9]. In clinical practice, these parameters are tuned

empirically on a subject-specific basis, using a combination

of patient feedback, clinician expertise, and visual inspection

of gait characteristics. This practice is time-consuming and

subjective. As the functionality of robotic assistive devices

increases, so too does the number of configurable parameters,

which quickly makes the empirical tuning process infeasible.

Additionally, once the user leaves the clinic with their

tuned device, most parameters remain static. The device

therefore does not have the ability to adapt its performance

to changing environmental conditions, such as walking over

uneven terrain.

In the research setting, one objective metric often used to

evaluate robotic assistive devices is a reduction in a user’s

energetic cost. Our group was the first to demonstrate an

automated tuning process, which uses real-time physiolog-

ical measurements to identify and prescribe optimal device

parameter settings that minimize the user’s energy cost [10]–

[12]. In this ‘body-in-the-loop’ optimization scheme, we used

real-time measurements of energy cost collected via indirect

calorimetry (Fig. 1).

With indirect calorimetry, the user wears a mask that

covers his or her nose and mouth, and an embedded

flowmeter measures oxygen consumption and carbon diox-

ide production. Whole body energy cost is then estimated

from these quantities [13]. Although this method is widely

utilized, there are several challenges associated with using

indirect calorimetry to estimate energy cost. Measurements

are extremely noisy due to high breath-by-breath variability,

and changes in the concentration of the respiratory gases
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are dynamically delayed from the instantaneous energetic

demands of the body [14], [15]. As such, it is common prac-

tice to average several minutes of respiratory measurements

collected during long bouts of constant-intensity exercise to

obtain a single estimate of energetic cost. These challenges,

plus the cumbersome and intrusive equipment required, make

indirect calorimetry poorly suited for long-term, real-world

applications. To improve automated tuning algorithms for

assistive robotic devices, it would be beneficial to estimate

energy cost using other portable physiological sensors with

less variability and better temporal resolution.

Many portable, wearable sensors are now capable of

monitoring and recording physiological data (e.g., heart rate)

and movement data (e.g., step counts) in real time. These

sensors have thus far been used in many areas of healthcare

and rehabilitation, such as health and wellness monitoring,

assessment of treatment efficacy, and early detection of dis-

orders [16]. We believe using portable sensing technology to

estimate energy cost can dramatically improve the automated

tuning process for assistive robotic devices.

There is an extensive body of literature documenting

successful prediction of energy expenditure from various

physiological sensors. Some studies have used commercial

accelerometers [17]–[20], heart rate monitors [21], or a com-

bination of both [19], [22], [23] to predict energy cost. Other

studies have incorporated electrodermal activity (EDA) and

near-skin temperature [24]–[26], electromyography (EMG)

[27], [28], or biological parameters [29], [30] into their

prediction algorithms. These studies have employed of a

wide variety of signal processing techniques to improve

energy cost estimates. These methods include simple time-

domain processing, such as calculating the vector magnitude

of tri-axial accelerometers to represent the total acceleration

of the segment [19], [20] or summing accelerations over

several seconds or strides [17], [18]. Advanced process-

ing techniques, including frequency-domain processing [27],

[28], and feature selection using Principal Component Anal-

ysis (PCA) [26] have also been explored. Linear regression

algorithms have been commonly used to predict energy cost

from physiological signals due to their simplicity and low

computational requirements [17]–[20], [30], but some studies

have opted to use more complex algorithms such as neural

networks [21], or branched equation modeling [22]. It is

currently unknown what type of signal(s), processing, and

prediction algorithms are best-suited for our application.

The purpose of this study was to systematically evaluate

how a variety of physiological sensors affect our ability to

predict energy cost. We wanted to investigate which raw

signals contain salient information for this application, so we

selected very simple processing and prediction algorithms.

This study is the first step toward using multiple physiolog-

ical sensors to predict the energy cost of individuals using

robotic lower-limb assistive devices in real time.

II. METHODS

Ten healthy subjects (8 male, 2 female, age (mean±SD):

27.4±4.5 years, height: 1.76±0.09 m, weight: 69.1±9.9 kg)

participated in this experiment, after giving informed consent

to a University of Michigan IRB-approved protocol. Each

subject completed two experimental sessions in which they

performed a variety of physical activities at various speeds

and/or intensities (Table I). The first experimental session

consisted of sitting, standing, level walking, incline walk-

ing, and backwards walking on a treadmill (Bertec Corp.,

Columbus, OH); the second session consisted of sitting,

standing, running on a treadmill, cycling on a stationary

bike (Matrix Fitness, Cottage Grove, WI), and stair-climbing

on a stairmill (Matrix Fitness, Cottage Grove, WI). Due to

equipment malfunction, Subject 1 did not complete the stair-

climbing activity. For each activity, subjects stood quietly

for 6 minutes, performed each speed/resistance condition

for 6 minutes in a random order, and then sat quietly for

6 minutes. Subjects rested for approximately 10 minutes

between activities. All changes between speeds were con-

sidered instantaneous step changes. During data collection,

subjects wore a variety of sensors, detailed in Fig. 2. All

sensor signals were time-synchronized during collection.

TABLE I

EXPERIMENTAL ACTIVITIES.

Task Speed Intensity

Sitting - -

Standing - -

Level Walking

0.6 m/s -

0.9 m/s -

1.2 m/s -

Incline Walking

0.6 m/s 4◦

1.2 m/s 4◦

0.6 m/s 9◦

1.2 m/s 9◦

Backwards Walking
0.4 m/s -

0.7 m/s -

Running

1.8 m/s -

2.2 m/s -

2.7 m/s -

Cycling

70 rpm Resistance 1

70 rpm Resistance 3

70 rpm Resistance 5

100 rpm Resistance 1

Stair Climbing

- 60 W

- 75 W

- 90 W

We calculated whole-body energetic cost (in Watts) from

V̇O2
(ml/min) and V̇CO2

(ml/min) using the Brockway equa-

tion [13], and normalized the data to subject body mass

(W/kg). The average of the final 3 minutes of breath mea-

surements at each condition established the ‘ground truth’

energetic cost for that condition. For each activity, the ground

truth energetic cost of the standing bout at the beginning of

the trial was subtracted off to yield net energetic cost.

All sensor data were interpolated and re-sampled at 1kHz

using nearest-neighbor interpolation. Signals were subse-

quently downsampled to 250 Hz. We calculated accelerome-

ter magnitudes by computing the vector norm of the x, y,

and z axes of each tri-axial accelerometer. We generated

EMG linear envelopes by band-pass filtering the raw EMG
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Fig. 2. Oxygen consumption (V̇O2
) and carbon dioxide production (V̇CO2

)
were measured using a portable respirometer. Heart rate (HR) was measured
using a wireless heart rate monitor strapped around the chest. Surface
electromyography (EMG) electrodes recorded bilateral muscle activity from
8 lower limb muscles: gluteus maximus (GMAX), biceps femoris (BF),
semitendinosis (ST), rectus femoris (RF), vastus lateralis (VL), medial gas-
trocnemius (MGAS), soleus (SOL), and tibialis anterior (TA). Electrodermal
activity (EDA), peripheral skin temperature and accelerations of the wrist
were recorded using bilateral wrist sensors. Inertial measurement units
(IMUs) placed on the chest, left hip, and ankles measured 3-axis limb
accelerations. Blood oxygen saturation (SpO2), was measured by a pulse
oximeter secured to the subject’s left earlobe.

signals between 30-350 Hz, full-wave rectifying, and low-

pass filtering with a cutoff frequency of 5 Hz. Each subject’s

EMG linear envelopes were normalized to peak activation

level obtained across all activities. Accelerometer magnitudes

and EMG linear envelopes were time-averaged using a

backwards-looking sliding window average with a window

length of 10s. These features and window length were chosen

based on previous analyses, detailed in [31].

We separated the collected signals into two categories

based on their properties. Global signals (heart rate, elec-

trodermal activity, skin temperature, and oxygen saturation)

provide information about the physiology of the body as

a whole, and have slower time dynamics. Local signals

(accelerometry and EMG) provide information about one

individual limb segment or muscle, and have fast dynamics

associated with the periodicity of the gait cycle. For each sub-

ject, we calculated five multiple linear regression models that

predicted ground truth energetic cost from different subsets

of signals using MATLAB’s regress function (Table II).

The models were trained and tested using the data collected

during all activities (excluding sitting and standing).

III. RESULTS

To evaluate the salience of each signal subset, we calcu-

lated the coefficient of determination (R2) between estimated

energetic cost and ground truth energetic cost for each

subject and each signal subset. The average R2 values across

subjects are presented in Table II. We used each of the

five regression models trained for each subject to simulate

estimated energetic cost for all activities. We calculated the

root mean squared error (RMSE) between each model’s

estimated energetic cost and the ground truth energetic cost.

We averaged the RMSE values for Subsets 1-5 across sub-

jects and performed a repeated-measures ANOVA analysis

(α = 0.05) using SPSS Statistics 22 (IBM, Armock, NY);

we conducted post hoc multiple comparison tests with a

Bonferroni correction (Fig. 3). Estimated energetic cost data

from a representative subject are presented in Fig. 4.

TABLE II

SIGNAL SUBSETS USED TO TRAIN MULTIPLE LINEAR REGRESSION

MODELS AND AVERAGE R2 VALUES ACROSS SUBJECTS (N=10).

Local Global R2

Breath Skin Mean
# Meas. Acc. EMG HR EDA SpO2 Temp. ±SD

1 x
0.76
±0.05

2 x x x x
0.79
±0.09

3 x x
0.91
±0.04

4 x x x x x x
0.95
±0.02

5 x x x x x x x
0.95
±0.02

0

0.8

1.6

Breath
Meas.

Global
Signals

Local
Signals

Global &
Local

Signals

All
Signals

R
M

S
E

*
*

*

*Indicates p < 0.05

1 2 3 4 5

Fig. 3. Average±SD RMSE across subjects for Subsets 1-5 (see Table II).
Statistically significant differences are indicated with brackets.

IV. DISCUSSION

Training various multiple linear regression models with

different signal subsets allowed us to draw preliminary

conclusions regarding what types of data from physiological

sensors are relevant to predict energy cost across a variety

of physical activities. The regression model trained with

Subset 1 contained only breath measurements obtained via

indirect calorimetry. Although indirect calorimetry is the

‘gold-standard’ method for estimating energy cost, the re-

gression model only achieved R2=0.76±0.05 (average±SD).

Regression models trained with global signals only (Subset

2) and local signals only (Subset 3) both performed better

than breath measurements. The regression model trained with

Subset 4, which contained both local and global signals,
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Fig. 4. Net energetic cost data vs. time for all activities are shown for one representative subject (LW=level walking, IW=incline walking,
BW=backwards walking, R=running, C=cycling, SC=stair-climbing). We concatenated data from each task for analysis, so data are presented
continuously in time. In reality, subjects rested between tasks. Energetic cost estimates from regression models trained with various signal subsets (see
Table II) are shown in blue; ground truth energetic cost is shown in red; breath measurements (from indirect calorimetry) are shown in yellow.

achieved R2=0.94±0.02. Adding breath measurements to

the model (Subset 5) only modestly improved performance

(R2=0.95±0.02).

We used the various regression models to simulate esti-

mated energetic cost data for each subject (one representa-

tive subject is shown in Fig. 4). There was no significant

difference between the calculated RMSE of the breath mea-

surements (Subset 1) and the estimate generated from global

signals only (Subset 2) (Fig. 3). This result is likely explained

by the relatively long time dynamics of the global signals,

visible in Fig. 4. Using a combination of global and local

signals (Subset 4) resulted in significantly lower RMSE than

Subsets 1-3. In addition, there was no statistically significant

difference between the RMSE of Subsets 4 and 5. Although

these are preliminary findings, these results suggest that it

may be possible to completely replace the mask with a

combination of portable sensors, while achieving nearly the

same accuracy in estimating energy cost. In this study, using

a combination of global and local signals in a linear regres-

sion model reduced the variability (RMSE) in the estimated

energy cost by more than two-fold, compared to indirect

calorimetry (0.63±0.08 and 1.41±0.17, respectively).

There is a great deal of insight that can be gained from

simple processing and prediction algorithms. By comparing

different subsets of data, we were able to understand the

salience of various physiological signals. Then, using a linear

regression model trained with a combination of global and

local signals, we successfully predicted energy cost for 10

subjects performing 6 activities with R2 values between

0.91 and 0.96. In the future, we will use our results from

the simple algorithms to explore additional data processing

algorithms and more complex prediction algorithms.

This study tested only a small group of young, healthy

individuals performing a small subset of physical activities.

These findings may not generalize to older individuals or

individuals with movement disorders, and it will be necessary

to test these populations in the future. Additionally, we

did not include data from any sedentary activities in our

predictive algorithm. Most people spend the majority of time

performing sedentary or light-intensity activities, so it will

be important to incorporate these activities into future work.

V. CONCLUSION

As the development of assistive robotic devices continues

to advance, the potential to restore ambulatory function to

individuals with movements disorders continues to grow.

However, for these devices to gain widespread clinical use,

it is necessary to develop and improve automated tuning

processes to relieve the burden on patients and clinicians.

Current ‘body-in-the-loop’ optimization algorithms rely on

respiratory measurements to quantify a user’s energetic cost,

which limits their use in real-world environments. This study

presents a first step toward estimating energetic cost using

a variety of portable, wearable physiological sensors. This

work has the potential to result in clinically-relevant tuning

algorithms, as well as open the door to new physiologically-

inspired control strategies for assistive robotic devices.
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