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ABSTRACT

In this paper, we propose a decentralized bundle method (DBM)
to solve a convex but nonsmooth consensus optimization problem
defined over a network. At each iteration, each agent first refines
a piecewise linear approximation of its local cost function by sam-
pling a new subgradeint. Then the agent solves a quadratic program
(QP) of minimizing the approximated cost function, regularized with
a quadratic term that is constructed from its neighbors’ iterates. A
serious step test is conducted to determine whether to accept the so-
lution of the QP as the agent’s new iterate or not, and thus guarantees
sufficient descent. To reduce costs of storing subgradients and solv-
ing the QP subproblems, we further apply a subgradient aggregation
technique to bound the number of stored subgradients and thus the
dimension of the subproblems. Numerical experiments demonstrate
the superior convergence speed of the proposed decentralized bundle
method over existing algorithms.

Index Terms— Decentralized consensus optimization, non-
smooth optimization, bundle method

1. INTRODUCTION

Consider a bidirectionally connected network withn agents that
solves a decentralized consensus optimization problem

min
x∈Rd

1

n

n∑
i=1

fi(x). (1)

Herefi : Rd → R is a convex but nonsmooth local cost function
that is only available to agenti, and we do not assume any special
structure offi. Our goal is to develop a decentralized first-order
algorithm such that all the agents obtain an optimal consensual solu-
tion to (1), while every agent is only allowed to communicate with
its neighbors.

A general nonsmooth optimization problem, whose cost func-
tion is without any special structure, is challenging even in the cen-
tralized setting. Most subgradient-based methods suffer from slow
convergence. To develop an efficient decentralized algorithm that
only evaluates cost functions and their subgradients, we resort to the
bundle method, which uses multiple subgradients from previous it-
erations and is practically much faster than other subgradient-based
methods. However, the original bundle method is centralized and
is not implementable over a decentralized network. Therefore, we
make simple yet necessary changes and develop a novel decentral-
ized bundle method (DBM) to solve (1).

1.1. Related works

Existing algorithms for solving (1) include distributed subgradient
method (DSM) [9], distributed dual averaging (DDA) [10], decen-

tralized alternating direction method of multipliers (DADMM) [11],
and PG-EXTRA [12]. At each iteration of DSM, each agent cal-
culates the weighted average of its local iterate and its neighbors’,
and then performs a local subgradient step [9]. In DDA, each agent
maintains a dual variable, which is updated by adding a new subgra-
dient to the weighted average of its local dual variable and its neigh-
bors’. The new iterate is computed by the projection of the dual
variable on a predefined proximal function. To obtain an exact con-
sensual solution, both DSM and DDA have to use diminishing step-
sizes such that their convergence rates are unfavorable. DADMM
rewrites (1) to a constrained form and solves it in the primal-dual
domain [11]. Though DADMM has fast and exact convergence to
the optimal solution, at each iteration, each agent must minimize its
local cost function regularized by a quadratic proximal term, which
is often time-consuming. PG-EXTRA is designed for the case that
every local cost function is the summation of a smooth term and a
nonsmooth but proximable term [12]. At each iteration, each agent
performs an EXTRA step [13] on the smooth term, and then com-
putes a proximal mapping on the nonsmooth term. PG-EXTRA is
simple, fast and exact, but is unable to handle the setting that all the
local cost functions are general nonsmooth.

The bundle method is a celebrated approach to solving central-
ized nonsmoooth optimization problems [2]. The algorithm itera-
tively generates a piecewise linear approximation of the cost func-
tion, called as the cutting plane model from historic subgradient sam-
ples, and then minimizes the cutting plane model plus a quadratic
regularization term to find the next iterate. To address the issue
that the model size increases linearly with the number of the his-
toric subgradients, the subgradient aggregation strategy proposes to
select and store only a limited number of affinely independent sub-
gradients [8]. It is theoretically proved that under mild conditions,
the bundle method has a cluster point which is optimal [3]. Variants
to improve the bundle method include the one that tunes the weight
of the quadratic regularization term so as to utilize second-order in-
formation of the cost function [4], and the one that replaces the linear
cutting plane model by a quadratic model [5].

The power of the bundle method to handle nonsmooth problems
has not been explored in the decentralized setting. A relevant work
is the bundle-based decomposition algorithm that minimizes a sepa-
rable cost function with linear constraints [6]. The constrained pri-
mal problem is dualized to a possibly nonsmooth dual form, which
is solved by the classic bundle method. This algorithm is naturally
implementable in a master-slave computing network, other than the
decentralized network considered here [7].

1.2. Our contribution and paper organization

This paper proposes a decentralized bundle method (DBM) to solve
decentralized consensus optimization problems where the cost func-
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tions are general nonsmooth. To address the challenges of decen-
tralized computation, we introduce novel cutting plane models and
serious step tests, which include not only local information, but also
neighboring iterates. Comparing with DSM and DDA, DBM has
faster convergence according to numerical experiments. Comparing
with DADMM, at every iteration of DSM, every agent only needs
to solve a limited-size quadratic program (QP), other than an often
complicated optimization problem. Since DBM does not require any
special structure of the cost functions, it is able to solve problems
that PG-EXTRA cannot handle.

2. ALGORITHM DEVELOPMENT

2.1. Centralized Bundle Method Revisited

We begin with introducing the centralized bundle method that mini-
mizes a convex but possibly nonsmooth functionf : Rd → R. The
algorithm generates two sequences of variables, an iterate sequence
{xk} and a sample sequence{yk}, as well as a sequence of func-
tions{f̂k} containing piecewise linear approximations off . At the
k-th iteration, the bundle method has the following steps.
Step 1.Sample a subgradientsk ∈ ∂f(yk) of the cost functionf at
the current sampling pointyk, and then update the piecewise linear
approximation as

f̂k(y) = max{f̂k−1(y), f(yk) +
〈
sk,y − yk

〉
}. (2)

Observe thatf̂k is a lower bound forf . The bound is tight at
{yt, t = 0, 1, · · · , k}, and gets tighter whenk increases.
Step 2.Obtain the next sampling point by solving

yk+1 ∈ arg min
y∈Rd

f̂k(y) +
µ

2
||y − xk||2, (3)

whereµ > 0 is a constant parameter. The cost function of (3) is the
summation of the piecewise linear approximation and a quadratic
proximal term defined at the current iteratexk. Sincef̂k can be un-
bounded (to−∞) even iff is lower bounded, we use proximal mini-
mization off̂k, instead of directly minimizing it. The computational
complexity of solving the quadratic program (QP) (3) is determined
by the structure of the piecewise linear approximationf̂k, which is
tightly connected withk, the number of historic sampling points.
Step 3.Define

δk := f(xk)−
[
f̂k(yk+1) +

µ

2
||yk+1 − xk||2

]
. (4)

If δk is smaller than a threshold̄δ, the algorithm is terminated and
outputsxk. Otherwise, the algorithm makes the following test

f(xk)− f(yk+1) ≥ mδk, (5)

wherem ∈ (0, 1) is a constant. If (5) holds, the algorithm performs
a serious step and the iteratexk+1 = yk+1. Otherwise, the algo-
rithm performs a null step and the iterate stays atxk+1 = xk.

To see the implications of the stopping criterionδk < δ̄, observe

δk =f(xk)−
[
f̂k(yk+1) +

µ

2
||yk+1 − xk||2

]
(6)

≥f(xk)−
[
f̂k(xk) +

µ

2
||xk − xk||2

]
≥ 0.

Here the first inequality is because thatyk+1 minimizesf̂k(y) +

(µ/2)||y−xk||2, and the second inequality comes from thatf̂k(xk)
is a lower bound off(xk). Thus, the necessary condition forδk = 0

is thatxk has already been a minimizer of the approximationf̂k

(also the minimizer of its proximal mapping) and that the approxi-
mationf̂k is exact atxk; namely,xk is a minimizer off . Thus,δk

is a metric to characterize the distance from the current iterate to the
optimal solution. The stopping criterionδk < δ̄ guarantees thatxk

is close enough to the optimal solution that we are looking for.
If δk ≥ δ̄, the proximal mapping of̂fk denoted asyk+1 does not

necessarily make sufficient progress in minimizingf . For example,
somewhat surprisingly, even ifxk is already a minimizer off , it
is not necessarily the proximal mapping off̂k if f̂k is not a good
approximation tof at xk. Thus, the serious step test (5) directly
comparesf atyk+1 andxk. The threshold is selected so thatyk+1

makes sufficient descent inf compared to it is atxk. If the test
succeeds, we setxk+1 = yk+1 and no longer needxk. But even
if the test fails,yk+1 still helps improve the bounding quality of the
piecewise linear approximation by inserting another linear function
into f̂k+1 that equalsf atyk+1.

2.2. Decentralized bundle method (DBM)

Now we move to the decentralized setting where each agenti has
access to a local nonsmooth functionfi. The network is modeled
as an undirected graphG = {V, E}, whereV is the set of agents
and E is the set of edges. Agenti’s neighbor set is denoted as
Ni = {j|(i, j) ∈ E}. Slightly different to its centralized counter-
part, for each agenti, DBM generates three sequences of variables,
an iterate sequence{xk

i }, an sample sequence{yk
i } and a dual se-

quence{pk
i }, as well as one sequence of functions{f̂k

i } containing
piecewise linear approximations offi. At thek-th iteration, agenti
works as follows.
Step 1. Sample a subgradientsk

i ∈ ∂fi(y
k
i ) of the cost function

fi at the current sampling pointyk
i , and then update the piecewise

linear approximation as

f̂k
i (yi) = max{f̂k−1

i (yi), fi(y
k
i ) +

〈
sk

i ,yi − yk
i

〉
}. (7)

This step is exactly the same as the one in the centralized algorithm.
Step 2.Obtain the next sampling point by solving

yk+1
i ∈ arg min

yi∈Rd
f̂k

i (yi) +
〈
pk

i ,yi

〉
+

µi

2
||yi − zk

i ||2. (8)

whereµi > 0 is a constant parameter,pk
i is a dual variable, and

zk
i =

∑

j∈Ni∪{i}
wijx

k
j (9)

is the weighted sum of agenti’s neighboring iterates withW =
[wij ] being the weight matrix that we will discuss below. The dual
variablepk

i is updated from

pk
i = pk−1

i + µi(x
k
i − zk

i ). (10)

Observe that (8) is different to (3) in two aspects. First, agenti essen-
tially handles the approximated local Lagrangian functionf̂k

i (yi) +〈
pk

i ,yi

〉
, other thanf̂k

i (yi) itself. Since solely minimizinĝfk
i (yi)

often biases from the optimal consensual solution, the dual variable
term is appended to compromise among the agents. Second, the
proximal pointxk

i is replaced byzk
i . This is also for combining

neighboring iterates so as to guide the algorithm to the optimum.
Similar to DSM, DDA and PG-EXTRA, DBM can use a sym-

metric weight matrixW following the Laplacian-based constant
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Algorithm 1 Decentralized Bundle Method (DBM) at Agenti

1: Initialize constants̄δ > 0, m ∈ (0, 1), µi > 0, {wij}, as well
as variablesx0

i andp0
i . Define functionf̂−1

i (yi) = fi(x
0
i ).

2: for k = 0, 1, . . . do
3: Compute the auxiliary variablezk

i by (9).
4: Update the dual variablepk

i by (10).
5: Picksk

i ∈ ∂fi(y
k
i ), form f̂k

i (y) by (7), solveyk+1
i by (8).

6: If δk
i in (12) is less than̄δ, STOP and RETURNxk

i .
7: if (13) holds,then
8: Run the serious stepxk+1

i = yk+1
i .

9: else
10: Run the null stepxk+1

i = xk
i .

11: end if
12: end for

edge or Metropolis-Hastings rules [1]. However, we find easy-to-
implement asymmetric weight matrices, as long asKer(In−W) =
span(1) also perform well in practice. For example, we can use

wij =
1

2
if j = i;

1

2|Ni| if j ∈ Ni; 0 otherwise. (11)

Step 3.Define

δk
i =fi(x

k
i ) +

〈
pk

i ,xk
i

〉
+

µi

2
||xk

i − zk
i ||2

−
[
f̂i(y

k+1
i ) +

〈
pk

i ,yk+1
i

〉
+

µi

2
||yk+1

i − zk
i ||2

]
. (12)

If δk
i is smaller than̄δ, agenti terminates the algorithm and outputs

xk
i . Observe that this stopping criterion includes the iterates of agent

i’s neighbors. Ifδk
i ≥ δ̄, agenti makes the following test

fi(x
k
i ) +

〈
pk

i ,xk
i

〉
−

[
fi(y

k+1
i ) +

〈
pk

i ,yk+1
i

〉]
≥ mδk

i , (13)

wherem ∈ (0, 1) is a constant. If the inequality (13) holds such
thatyk+1

i brings sufficient descent on the local Lagrangian function
fi(yi) +

〈
pk

i ,yi

〉
, then agenti performs a serious stepxk+1

i =

yk+1
i . Otherwise, agenti performs a null step:xk+1

i = xk
i .

DBM run by agenti is outlined in Algorithm1. When there is
only one agent, it reduces to the centralized bundle method.

2.3. Stopping Criterion

To understand the stopping criterion, rewrite (1) to

min
{xi∈Rd}

1

n

n∑
i=1

fi(xi), s.t.xi =
∑

j∈Ni∪{i}
wijxj , ∀ i. (14)

The equivalence between (1) and (14) when the network is connected
and the weight matrixW satisfiesKer(In −W) = span(1). The
augmented Lagrangian of (14) is

L{µi}({xi}, {pi}) =
1

n

n∑
i=1

fi(xi) +

n∑
i=1

〈pi,xi −
∑

j∈Ni∪{i}
wijxj〉

+

n∑
i=1

µi

2
‖xi −

∑

j∈Ni∪{i}
wijxj‖2, (15)

If the stopping criterionδk
i < δ̄ is met at agenti, we have

fi(x
k
i ) +

〈
pk

i ,xk
i

〉
+

µi

2
||xk

i − zk
i ||2

<δ̄ +
[
f̂i(y

k+1
i ) +

〈
pk

i ,yk+1
i

〉
+

µi

2
||yk+1

i − zk
i ||2

]

=δ̄ + min
yi

{f̂k
i (yi) +

〈
pk

i ,yi

〉
+

µi

2
||yi − zk

i ||2}

≤δ̄ + min
yi

{fk
i (yi) +

〈
pk

i ,yi

〉
+

µi

2
||yi − zk

i ||2}. (16)

The second line is from the definition ofδk
i in (12), the third line is

from the definition ofyk+1
i in (8), and the last line holds sincêfk

i is
a lower bound forfk

i .
When the stopping criteria are met at all agents, taking the aver-

age of (16) overi = 1, 2, · · · , n, we derive that

1

n

n∑
i=1

(
fi(x

k
i ) +

〈
pk

i ,xk
i

〉
+

µi

2
||xk

i − zk
i ||2

)
(17)

<δ̄ +
1

n

n∑
i=1

min
yi

{fk
i (yi) +

〈
pk

i ,yi

〉
+

µi

2
||yi − zk

i ||2}

≤δ̄ + min
{yi}

{ 1

n

n∑
i=1

(
fk

i (yi) +
〈
pk

i ,yi

〉
+

µi

2
||yi − zk

i ||2
)
}.

According to the definition of the augmented Lagrangian defined
by (15) and that ofzk

i defined by (9), (17) indicates

L{µi}({xk
i }, {pk

i }) < δ̄ + min
yi

L{µi}({yi}, {pk
i }), (18)

meaning that{xk
i } are close enough to the minimizers of the aug-

mented Lagrangian at the current dual variables{pk
i }.

3. IMPLEMENTATION ISSUES

3.1. Solution of(8)

The main computational burden of the decentralized bundle method
occurs in solvingyk+1

i from (8). Below we will derive its dual form,
which is a standard QP. Fort ≤ k, define the error betweenfi(yi)

and thet-th linear piece off̂k
i , which is f(yk

i ) +
〈
sk

i ,yi − yk
i

〉
,

evaluated at the pointyi = xk
i as

et
i = fi(x

k
i )−

[
fi(y

t
i) +

〈
st

i,x
k
i − yt

i

〉]
≥ 0. (19)

Then we can rewritêfk
i (yi) as

f̂k
i (yi) = max

t=0,...,k
{fi(y

t
i) +

〈
st

i,yi − yt
i

〉} (20)

= max
t=0,...,k

{fi(x
k
i )− et

i −
〈
st

i,x
k
i − yt

i

〉
+

〈
st

i,yi − yt
i

〉}

= max
t=0,...,k

{fi(x
k
i )− et

i +
〈
st

i,yi − xk
i

〉
}.

Therefore, (8) is equivalent to

min
yi,ri

ri +
〈
pk

i ,yi

〉
+

µi

2
||yi − zk

i ||2 (21)

s.t. ri ≥ fi(x
k
i )− et

i +
〈
st

i,yi − xk
i

〉
, t = 0, 1, . . . , k.

Defineαt
i ∈ R+ as the optimal Lagrange multiplier of (21) that

corresponds to the constraint at timet and collect all the multipliers
in a vectorαi ∈ Rk+1

+ . The Lagrangian function of (21) is

L(yi, ri, αi) =

(
1−

k∑
t=0

αt
i

)
ri +

〈
pk

i ,yi

〉
+

µi

2
||yi − zk

i ||2

+

k∑
t=0

αt
i

[
fi(x

k
i )− et

i +
〈
st

i,yi − xk
i

〉]
. (22)
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Algorithm 2 Update ofJk+1
i

1: Solve (26) to obtain{αt
i}t∈Jk

i
.

2: Let Jk′
i = {t ∈ Jk

i : αt
i > 0}.

3: Use Wolfe’s algorithm to find a set of affinely independent sub-
gradients{st′

i , t′ ∈ Jk′
i } and weights{βt′

i , t′ ∈ Jk′
i } such that∑

t′∈Jk′
i

βt′
i st′

i =
∑

t∈Jk
i

αt
is

t
i.

4: UpdateJk+1
i = {t′ ∈ Jk′

i : βt′
i > 0} ∪ {k + 1}.

Denote(yk+1
i , rk

i ) as the optimal primal solution of (21). According
to the KKT condition, for the optimal dual variableαi, we have both
∂L(yk+1

i , rk
i , αi)/∂rk

i = 0 and∂L(yk+1
i , rk

k , αi)/∂yk+1
i = 0.

Thus, we have

k∑
t=0

αt
i = 1 and αt

i ≥ 0, (23)

yk+1
i = zk

i − 1

µi

(
k∑

t=0

αt
is

t
i + pk

i

)
. (24)

Since(yk+1
i , rk

i ) is the optimal primal solution, the optimal dual
variableαi is the minimizer of the LagrangianL(yk+1

i , rk
i , αi) un-

der the condition (23). Using this fact and substituting (24) into the
Lagrangian, we know thatαi is the minimizer of

min
αi∈∆k+1

1

2µi
‖

k∑
t=0

αt
is

t
i + pk

i + µi(x
k
i − zk

i )‖2 +

k∑
t=0

αt
ie

t
i, (25)

where∆k+1 = {αi ∈ Rk+1
+ |∑k

t=0 αt
i = 1} is a simplex. Observe

that (25) is a standard QP and can be solved with various toolboxes,
given thatk + 1, the dimension ofαi, is limited. After solving
(25), the optimal solutionyk+1

i of (8) is obtained by substituting the
optimalαi into (24).

3.2. Subgradient Aggregation

In the decentralized bundle method, the problem scale of (25) grows
with the number of iterations. Meanwhile, it requires to save all
the previous subgradients{st

i} and linearization errors{et
i} for t =

0, 1, · · · , k. To address these issues, we adopt the subgradient ag-
gregation technique that has been proved to be efficient in the cen-
tralized bundle method [8]. The basic idea of the subgradient aggre-
gation technique is that most of the subgradients and linearization
errors are redundant when the number of sampling points is large
enough. Thus, instead of solving (25), we consider

min
αi∈∆

|Jk
i
|

1

2µi
‖

∑

t∈Jk
i

αt
is

t
i + pk

i + µi(x
k
i − zk

i )‖2 +
∑

t∈Jk
i

αt
ie

t
i, (26)

whereJk
i ⊂ {0, 1, · · · , k} and∆|Jk

i | is the simplex defined within
a |Jk

i |-dimensional space, with|Jk
i | ≤ d + 2.

The update ofJk+1
i from Jk

k is given by Algorithm2. First,
solve (26) to obtain{αt

i}t∈Jk
i

. Second, throw away thoseαt
i = 0

and constructJk′
i = {t ∈ Jk

i : αt
i > 0}. Third, find a set of affinely

independent subgradients{st′
i , t′ ∈ Jk′

i } and the corresponding
weights{βt′

i , t′ ∈ Jk′
i } such that

∑
t′∈Jk′

i
βt′

i st′
i =

∑
t∈Jk

i
αt

is
t
i.

This can be done by using Wolfe’s algorithm to find the zero within

0 50 100 150 200 250 300 350 400
Iteration
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100

101

DSM
DDA
PG-EXTRA
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DBM with SA

Fig. 1. Optimality gap versus the number of iterations.

the convex hull of{st′
i − ∑

t∈Jk
i

αt
is

t
i, t

′ ∈ Jk′
i }, where the so-

lution is represented by{st′
i , t′ ∈ Jk′

i } and{βt′
i , t′ ∈ Jk′

i } [14].
Since the subgradients fall in thed-dimensional space, we know that
|Jk′

i | ≤ d+1. Finally,Jk+1
i is set as{t′ ∈ Jk′

i : βt′
i > 0}∪{k+1},

and its cardinality is no larger thand + 2.
With the subgradient aggregation technique, the problem scale

of (25) is limited tod + 2, the cardinality ofJk
i . Meanwhile, agent

i only needs to store historicst
i andet

i for all t ∈ Jk
i . This way, the

computation and storage burdens become affordable.

4. NUMERICAL EXPERIMENTS

We consider the binary classification problem in the numerical ex-
periments. Givenn pairs of data{ai, yi}, whereai ∈ Rd is a fea-
ture vector andyi ∈ {−1, 1} is the associated label. Definefi(x) =
max{0, 1 − yi 〈ai,x〉} as the nondifferentiable hinge loss function
associated withi-th pair, which is possessed by agenti. To gener-
ate the experimental data, the feature vectors{ai}n

i=1 are randomly
sampled from a unit ball inRd and the ground truthx0 ∼ N(0, Id).
The labels are generated from{yi = sign(〈ai,x0〉)}n

i=1, followed
by randomly flipping5% signs.

We compare the proposed decentralized bundle method (DBM)
and that with subgradient aggregation (DBM with SA) with the ex-
isting algorithms DSM, DDA and PG-EXTRA to minimizef(x) =
(1/n)

∑n
i=1 fi(x). We letn = 100 and the network is a10 × 10

grid; d = 3. For DBM and DBM with SA, we setµi = 2, δ̄ = 0,
m = 0.8, and the weight matrix[wij ] as in (11). DSM, DSA and
PG-EXTRA use the Laplacian-based constant edge weight matrix.
The diminishing stepsizes of DSM and DSA, as well as the constant
stepsize of PG-EXTRA, are hand-tuned to the best.

Fig. 1 plots the optimality gap defined bymaxi{f(xk
i ) − f∗},

wheref∗ = minx f(x), versus the number of iterationsk. Observe
that DBM and DBM with SA demonstrate much faster convergence
than the three existing algorithms. The solutions of the two DBM
algorithms are two-magnitude more accurate than those of DSM and
DSA. PG-EXTRA also works well in this particular problem; how-
ever, as we have indicated, it is unable to handle general nonsmooth
cases. The curves of DBM and DBM with SA are almost identical,
showing the effectiveness of the subgradient aggregation technique.
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