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ABSTRACT
The alternating direction method of multipliers has become in recent
years the most widely used proximal method for signal processing.
In this paper, we lay the groundwork for a new notion of proximity
and use it to illustrate that the method (ADMM) is actually somewhat
of a maladroit rearrangement of a new, more practical procedure that
generalizes the Douglas-Rachford algorithm. Compared to ADMM,
the algorithm that we propose enjoys not only a more sensible form,
but also a more general convergence result.

Index Terms— ADMM, Douglas-Rachford, proximal methods

1. INTRODUCTION

The alternating direction method of multipliers (ADMM) is a very
popular approach for decomposing a complex optimization problem
into an iterative procedure involving a pair of manageable problems.
Being proximal in nature, the two problems can often themselves be
decomposed into problems that can be tackled in a parallel manner,
making the method especially useful in modern, distributed settings.
The method has found wide application, for example, in distributed
implementations of regression and classification. Examples of such
treatments include [1] and [2]. The method is remarkably effective,
and even rivals specialized solutions. See [3] for a survey.

There are several versions of ADMM, and it is well known that
some can be derived from the Douglas-Rachford algorithm (DR) [4].
In this work, we revisit this idea. Through a new notion of proximity
that we develop in this paper, we show that a very general version of
ADMM arises from a new version of DR that we also propose.

Our algorithm offers both practical and theoretical advantages.
Compared to ADMM, it runs more efficiently, affording relaxation
without requiring additional memory, and under assumptions that
can be verified without detouring through duality, converges more
generally, allowing for infinite dimensions and inexact steps.

1.1. Related work and contributions

Our paper is unavoidably mathematical. At the surface, it touches on
convex analysis, and at a deeper level, on monotone operator theory.
For a brief review, see [5, Sec. 2]; for a complete treatment, see [6].
Most relevant are Problem 4, Proposition 14, and Theorem 20 in [5],
which our study completely generalizes.

Our investigation develops the notion of generalized proximity,
a concept that we have flirted with before [7] and recently used for
dimensionality reduction [8]. Without refinement, the idea was also
used by Combettes and Pesquet [9], who, while describing ADMM,
coined the notation that we employ herein for the general operator.
(The concept should not be confounded with the proximal mapping
relative to a metric [6, Prop. 24.24], which has the same notation.)
Although the idea is not new, no precedent has related the idea to the
operation of infimal postcomposition—an instrumental operation in
the development of our algorithm.

In this paper, we use infimal postcomposition to reformulate the
problem that ADMM solves. Such a reformulation was inspired by
Yan and Yin, who proposed it to study the many ways of applying
ADMM [10]. Their analysis, however, does not explicitly yield our
algorithm, nor is it framed by a theory of proximity.

Our key finding is that under the assumption behind our theory,
infimal postcomposition is ensured to produce a proper convex lower
semicontinuous function. Such a guarantee (which recently became
a textbook result [6, Cor. 25.44 (i)]) was also given by Becker and
Combettes [11], but under a different assumption, based on duality.
In contrast, our assumption is totally primal.

Two popular ways exist for proving the convergence of ADMM.
One, due to Gabay, involves DR and a Fenchel dual problem [4], and
the other, due to Fortin and Glowinski, utilizes the Lagrangian [12].
These strategies are based on duality theories. For a treatise on the
convergence of ADMM, see [13]. Our theory promotes a third way.
Similar to Gabay’s strategy, it allows us to obtain ADMM from DR.
But our treatment is more direct, dealing only with a primal problem.

Let us point out our contributions:

• We generalize the problem that DR solves, including both its
qualification condition and objective. See Problem 1.

• We describe scenarios in which the qualification condition holds.
This is Proposition 2—also a generalization.

• We introduce a new theory of proximity, furnishing several new
results, such as Theorem 7 (our key finding mentioned earlier),
useful for deriving our algorithm. See Section 3.

• Our algorithm, which generalizes DR, is given in Theorem 8.
• We show how existing versions of ADMM can be recovered

from our algorithm. See Section 5.

This paper is expository in nature. We focus on dispensing the
results, omitting lengthy proofs.

We stress that our theory of proximity may not only be useful for
developing our algorithm; it may also have broad implications for
convex analysis. An immediate consequence of our work is that the
methods that our algorithm subsumes inherit our convergence result,
and therefore converge more generally than previously known.

1.2. Some notation

Before we begin our study, it is useful to introduce a bit of notation.
Our notation is rather standard. We use N for the set of nonnegative
integers, and F , G, and H for real Hilbert spaces; we use ‖ · ‖ for
the norms induced by the inner products on these spaces, and Id for
the identity operators on the spaces; by Γ0(H) we understand the
class comprising every proper convex lower semicontinous function
from H to (−∞,+∞]; we use ker for the null space of a mapping,
and dom for the effective domain of a function; we use cone for the
conical hull, int for the interior, and ri for the relative interior of a
set; and we recognize B(G,H) as the space of all bounded linear
operators from G to H. We will introduce other notation as needed
throughout the course of our study.
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2. PROBLEMS

While ADMM is widely known to the signal processing community,
DR has received less attention. To understand the advantages of our
method, it is important to understand how the two approaches relate
to each other in the context of the different problems that they solve.

The purpose of both approaches is to minimize a sum of two
functions by treating only one function at a time. Until now, ADMM
has been preferred over DR for linearly constrained problems.

DR originated as a procedure for solving linear equations [14],
and Varga gave an early account with relaxation [15]. The nonlinear
form of the method, which solves the problem

min
x∈H

f(x) + g(x), (1)

where f and g belong to Γ0(H), is due to Lions and Mercier [16].
Eckstein and Bertsekas generalized the approach, adding relaxation
and inexact steps [17]. Combettes improved this version, weakening
the assumptions for convergence [18], and together with Pesquet,
introduced it to the signal processing community [5]. Other versions
(incorporating inertia [19], for example) have also surfaced.

ADMM was conceived by Glowinski and Marroco for solving
nonlinear problems [20]. For solving the problem

min
(y,z)∈F×H

f(y) + g(z) s.t. Ay = z, (2)

where g is still as in (1), but f ∈ Γ0(F), and A ∈ B(F ,H), the
method is due to Gabay and Mercier [21]. Proving its convergence,
Gabay showed that the method can be derived by applying DR to the
dual problem [4]. Following this approach, Eckstein and Bertsekas
developed the ADMM analog to their version of DR [17], assuming,
in addition to finite dimensions, that A is a full column rank matrix.
Fortin and Glowinski established the convergence of ADMM using
the Lagrangian [12]. Boyd et al. thusly proved another version of the
method [3], tailored to the problem

min
(y,z)∈F×G

f(y) + g(z) s.t. Ay +Bz = c, (3)

where f and A remain unchanged from (2), but g ∈ Γ0(G), and
B ∈ B(G,H) and c ∈ H. Boyd et al. also mentioned how to add
relaxation, and the outcome was considered by Nishihara et al. [22].
Whereas Boyd et al. and Nishihara et al. restricted their attention to
finite dimensions, Davis and Yin redeveloped the method from DR,
establishing a relaxed version of ADMM in infinite dimensions [23].
As is the case with DR, other adaptations of ADMM—such as one
combining inertia and relaxation [24]—have also been proposed.

Of all these variations, the algorithm of Combettes and Pesquet
enjoys the most general convergence result. But the inability of this
method to directly handle (3) has, ostensibly, made it less appealing
even than the approach described by Boyd et al., which does, albeit
only explicitly in finite dimensions.

Our goal is to generalize DR, making it conducive to problems
that ADMM solves, while keeping the general convergence result.

2.1. A more general problem for DR

In this paper, we develop a version of DR that expressly handles the
following problem, which generalizes Problem 4 in [5]:

Problem 1. Let f be a function in Γ0(F), and g a function in Γ0(G).
Let A be an operator in B(F ,H), and B an operator in B(G,H).
Finally, let c, d, and e be vectors inH. Suppose that

f + ‖A · ‖2 and g + ‖B · ‖2 are strongly convex (4)

and that the following so-called qualification condition is satisfied:

cone(Adom f +B dom g − c) is a closed subspace. (5)

The objective is to solve the problem

min
(y,z)∈F×G

f(y) + g(z) s.t. Ay +Bz = c = d+ e.

Remark. There is a reason for expressing the constant c as d + e.
Unlike ADMM, our algorithm will depend on d and e separately.

Problem 4 in [5] is a special case of our problem with A = Id,
B = − Id, and c = 0. In this case, (4) holds automatically.

In general, (4) holds in various cases. Consider f + ‖A · ‖2 for
instance. This function is strongly convex provided that f or ‖A · ‖2
manifests the property. For the latter, this property is equivalent to
A being bounded below, or in finite dimensions, to A being a full
column rank matrix.

For the qualification condition, we can establish the following
result, which generalizes Proposition 14 in [5]:

Proposition 2. Condition (5) holds in any of the following cases:

1) int(Adom f) ∩ (−B dom g + c) 6= ∅ or(
− int(B dom g)

)
∩ (Adom f − c) 6= ∅.

2) f is finite and A is surjective, or g is finite and B is surjective.

3) H is finite dimensional and
ri(Adom f) ∩

(
− ri(B dom g) + c

)
6= ∅.

Proposition 14 in [5] is a special case of this result withA = Id,
B = − Id, and c = 0. In this case,A andB are inevitably surjective.

Since it includes problems to which ADMM applies, Problem 1
covers many practical examples. We stress that the conditions in the
problem are not hard to satisfy, as the next example illustrates.

Example 3. Consider the following signal recovery problem:

min
y∈L2(Ω)

‖Φy − v‖2 + α‖y‖L1(Ω,w),

where Lp(Ω, w) is the space of Lebesgue measurable real-valued
signals and ‖y‖Lp(Ω,w) = (

∫
Ω
|y(t)|pw(t) dt)

1
p < +∞ for p ≥ 1.

Whenw is equal to 1 everywhere, the space is the usualLp(Ω) space
of real-valued functions and the norm is the usual Lp norm, ‖ · ‖Lp .
In the example, w is a bounded continuous function that is bounded
below away from zero, Ω is a bounded open subset of Rn, the scalar
α is positive, and Φ is a bounded linear operator from L2(Ω) to a
real Hilbert space containing v.

We can express the example in the form of Problem 1 by setting
F , G, and H to L2(Ω), defining f = ‖Φ · −v‖2 and g = α‖ · ‖L1

together with (Ay)(t) = y(t)w(t) for t ∈ Ω and B = − Id, and
letting c = 0. It follows that all the stipulations in Problem 1 hold.
In particular, (4) holds because A and B are bounded below, and (5)
holds because g is finite and B is surjective.

3. GENERALIZED PROXIMITY

In this section, we develop our notion of generalized proximity and
connect it to infimal postcomposition. Unless mentioned otherwise,
we will assume the context of the following problem:

Problem 4. Let γ be a positive real number, and x a vector in H,
and let f be a function in Γ0(F), and A an operator in B(F ,H).
Suppose that

f + ‖A · ‖2 is strongly convex.
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The objective is to solve the problem

min
y∈F

γf(y) +
1

2
‖Ay − x‖2.

This problem generalizes the problem that defines the proximal
mapping. In fact, we can prove that Problem 4 must always have a
unique solution. We denote this solution by

proxAγf x,

which generalizes the proximal mapping, defined according to

proxγf = proxId
γf .

The proximal mapping, which was formulated by Moreau [25],
possesses several attractive properties. One that will be useful to us
is the implication of a proximal point solving (1). Specifically, we
have the following result [5, Prop. 18 (iii)]:

Lemma 5. Consider (1) in the context of Problem 4 in [5], and let
x∗ be a solution to (1). Then,

x∗ = proxγg x =⇒ x∗ = proxγf (2x∗ − x).

This relation is inherent in DR, and we can easily recognize it by the
form that the iterates take. See [5, Th. 20].

The generalized operator inherits many properties of the vanilla
operator (continuity, for example). But it also manifests new ones,
such as allowing a local inversion of the possibly non-injective A.
We formalize this property in the following lemma:

Lemma 6. Let y be a vector in F . Suppose that

f(y) ≤ f(y + ∆y) for every ∆y in kerA.

Then,
AproxAγf x = Ay =⇒ proxAγf x = y.

Proof. By the left side of the implication, the proximal point must
be equal to y plus a vector ∆y in kerA. To justify the implication,
we will prove that ∆y = 0. Suppose for contradiction that ∆y 6= 0.
Then, by the definition of the proximal mapping,

γf(y) +
1

2
‖Ay − x‖2 > γf(y + ∆y) +

1

2
‖A(y + ∆y)− x‖2

(where the inequality is strict because the proximal point is unique).
Since A∆y = 0 and γ > 0, we end up with f(y) > f(y + ∆y),
contradicting the assumption in the statement of the lemma.

3.1. Infimal postcomposition

An operation that is interestingly related to generalized proximity is
infimal postcomposition. In this study, we will apply this operation
with respect to an affine operator. Still in the context of Problem 4,
let c be a vector inH. The operation is defined by

(A ·+c) . f(x) = inf
y∈F

Ay+c=x

f(y), x ∈ H,

where we understand that inf ∅ = +∞. Functions that result from
this operation have nice properties, such as [6, Prop. 12.36 (i)]

dom
(
(A ·+c) . f

)
= Adom f + c. (6)

We can also establish the following important fact:

Theorem 7. In the context of Problem 4, it holds that

(A ·+c) . f ∈ Γ0(H).

Theorem 7 is important because it confirms that functions that
result from infimal postcomposition belong to the class of functions
with which we are concerned. Moreover, proximal points relative to
such functions are well defined. In fact, we can show that they can
be expressed by

proxγ((A·+c).f) x = AproxAγf (x− c) + c, x ∈ H. (7)

Combined with Lemma 6, this relation is useful in generalizing DR.

4. GENERALIZING DR

To obtain our algorithm, we will first re-express Problem 1. Looking
at the problem, we notice that to any pair of vectors y and z satisfying
the constraint, we can associate a vector x inH such that

x = Ay − d (8)

and
x = −Bz + e. (9)

Now consider finding an x∗ associated to a solution to the problem.
For each x inH, it suffices to retain among the values of y satisfying
(8), the vectors minimizing f , and similarly, among the values of z
satisfying (9), those minimizing g. The problem, then, is to find an
x for which a retained pair of y and z (if it exists) minimizes f + g.
This nested procedure can be expressed as

min
x∈H

(A · −d) . f(x) + (−B ·+e) . g(x). (10)

Recalling both (6) and Theorem 7, and turning to Problem 4 in [5],
we see that Problem 1 can be solved using Theorem 20 in [5].

The point of this strategy is that the resulting algorithm can be
described using generalized proximity so that it produces a solution
to Problem 1. The benefit of the approach is significant: while the
decision space is H, the method yields a solution in F × G. Such
an approach is especially practical in contexts of machine learning,
whereH is finite dimensional and F and G are infinite dimensional;
such is the case in nonlinear classification. See, for example, [8].

We now present our algorithm. The following result generalizes
Theorem 20 in [5]:

Theorem 8. Let γ be a positive real number, and let (λn)n∈N be a
sequence in (0, 2). Let (an)n∈N and (bn)n∈N be two sequences in
F and G, respectively. Suppose that

(i) Problem 1 has at least one solution, (y∗, z∗);

(ii)
∑
n∈N λn(2− λn) = +∞;

(iii)
∑
n∈N λn(‖Aan‖+ ‖Bbn‖) < +∞.

Take any x0 inH, and for every n in N, repeat

zn = prox−Bγg (xn − e) + bn,

yn = proxAγf
(
2(−Bzn + e)− xn + d

)
+ an, and

xn+1 = xn + λn(Ayn +Bzn − c).

Then,

(a) (xn)n∈N converges weakly to some point x inH,

(b) prox−Bγg (x− e) = z∗ and

proxAγf
(
2(−Bz∗ + e)− x+ d

)
= y∗,
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and ifH is finite dimensional and an → 0 and bn → 0, then

(c) yn → y∗ and zn → z∗.

Proof. Applying [5, Th. 20] to (10), we obtain Theorem 8 through
(7) after redefining an and bn in [5, Th. 20] as Aan and −Bbn,
respectively. What remains to show is that (b) and (c) hold.

Recalling (7) and (9), we must, according to [5, Th. 20], have

−B prox−Bγg (x− e) + e = −Bz∗ + e.

However, since g(z∗) ≤ g(z∗ + ∆z) for any ∆z in kerB (since
otherwise z∗ would not be optimal), there is only one possibility for
z∗ according to Lemma 6. Through Lemma 5, we obtain a similar
result for y∗. The conclusion is that (b) holds.

Finally, ifH is finite dimensional, then weak convergence is the
same as strong convergence, so xn → x. By the continuity of the
proximal mapping, and since an → 0 and bn → 0, we reach (c).

Our algorithm converges like DR. Through an and bn, it allows
for inexact steps, and through λn, it allows for relaxation.

With A = Id, B = − Id, and c = d = e = 0, Theorem 8
reduces to Theorem 20 in [5]. In the next section, we will see how
we can also recover several other algorithms.

5. RELATION TO ADMM

Our algorithm leads to the following version of ADMM:

Theorem 9. In the context of Theorem 8, consider this procedure:
Take any u0 inH and any z0 in G, and for every n in N, repeat

yn = arg min
y∈F

(
f(y) +

1

2γ
‖Ay +Bzn − c+ γun‖2

)
+ an ;

zn+1 = arg min
z∈G

(
g(z) +

1

2γ
‖Ayn +Bz − c+ γun

+ (λn − 1)(Ayn +Bzn − c)‖2
)

+ bn+1;

un+1 = un +
1

γ

(
Ayn +Bzn+1 − c

+ (λn − 1)(Ayn +Bzn − c)
)
.

Then, (yn)n∈N and (zn)n∈N converge as in Theorem 8.

Proof. Our plan is to switch the order of yn and zn in Theorem 8 by
using a new iterate un with carefully chosen x0 and b0.

We begin by defining

un =
1

γ
(xn +Bzn − e), n ≥ 1.

Then, having initialized u0 and z0, let x0 = γu0 − Bz0 + e and
b0 = z0 − prox−Bγg (x0 − e). It follows that

yn = proxAγf
(
2(−Bzn + e)− xn + d

)
+ an

= proxAγf (−Bzn + c− γun) + an,

and with

xn+1 = xn + λn(Ayn +Bzn − c)
= γun −Bzn + e+ λn(Ayn +Bzn − c),

it follows that

zn+1 = prox−Bγg (xn+1 − e) + bn+1

= prox−Bγg
(
γun −Bzn + λn(Ayn +Bzn − c)

)
+ bn+1

= prox−Bγg
(
Ayn − c+ γun

+ (λn − 1)(Ayn +Bzn − c)
)

+ bn+1.

Since

γun+1 −Bzn+1 + e = xn+1

= γun −Bzn + e+ λn(Ayn +Bzn − c),

it follows that

un+1 = un +
1

γ

(
λn(Ayn +Bzn − c) +B(zn+1 − zn)

)
= un +

1

γ

(
Ayn +Bzn+1 − c

+ (λn − 1)(Ayn +Bzn − c)
)
.

Finally, by expressing the proximal points as optimization problems,
we obtain the algorithm in the theorem.

Theorem 9 corresponds to a version of ADMM that combines
the techniques in [3, Secs. 3.4.3 and 3.4.4]. Note that the un update,
unlike the xn update in Theorem 8, requires memory: it depends on
both zn and zn+1. This is the cost of relaxation in ADMM, and is
an artifact of the ADMM formalism.

Remark. We saw in the proof of Theorem 9 that b0, which appears
nowhere in the description of the algorithm, depends on u0 and z0.
Since a particular b0 does not influence the requirement on (bn)n∈N
(that is, (iii) in Theorem 8), we can disregard b0.

We now use Theorem 9 to recover four versions of ADMM:

1) If we fix an = 0, bn+1 = 0, and λn = 1 for every n in N, then
we recover the version of Boyd et al. [3, eqs. (3.2)–(3.4)].

2) With A = Id, B = − Id, and c = 0, and an, bn+1, and λn set
as in 1), we reach the version of Parikh and Boyd [26, Sec. 4.4].

3) For the case where B = − Id and c = 0, we obtain the version
of Eckstein and Bertsekas [17, Th. 8].

4) Choosing a0 so that y0 = 0, setting z0 = 0, letting λ0 = 1, and
fixing an = 0 and bn = 0 for n ≥ 1, we arrive at the version of
Davis and Yin [23, Algorithm 2].

We emphasize that these special cases enjoy both the context
of Problem 1 and the convergence described in Theorem 8 and are
therefore more straightforward and general than previously reported.
In particular, validating the assumptions for convergence does not
require a detour through duality, and convergence does not require
finite dimensions or the injectivity of A.

6. CONCLUSION

In this paper, we have introduced a theory of proximity and used it to
generalize DR, making it more attractive than ADMM, both in form
and convergence. From this generalization, we recovered ADMM,
imparting to it the primal context and general convergence result of
our algorithm. We believe that our work shows that there is merit in
breaking away from ADMM and paying closer attention to DR.
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