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Abstract—In graph signal processing, signals are processed
by explicitly taking into account their underlying structu re,
which is generally characterized by a graph. In this field, graph
filters play a major role to process such signals in the so-called
graph frequency domain. In this paper, we focus on the design
of autoregressive moving average (ARMA) graph filters and
basically present two design approaches. The first approachis
inspired by Prony’s method, which considers a modified error
between the modeled and the desired frequency response. The
second approach is based on an iterative method, which finds
the filter coefficients by iteratively minimizing the true error
(instead of the modified error) between the modeled and the
desired frequency response. The performance of the proposed
design algorithms is evaluated and compared with finite impulse
response (FIR) graph filters. The obtained results show that
ARMA filters outperform FIR filters in terms of approximation
accuracy even for the same computational cost.

I. I NTRODUCTION

I N today’s society, signals with irregular structure are abun-
dant, e.g., data from social networks, brain signals, traffic

information, and so on. Graph signal processing (GSP) is the
tool to handle such signals, and it basically extends classical
digital signal processing to signals that live on the vertices of
irregular graphs [1], [2]. As for temporal signals, a Fourier-
like transform for graph signals is defined, which decomposes
a graph signal into the different harmonic modes of the graph
[3] and which allows to analyze and process a graph signal in
the so-called graph frequency domain [4]. Together with the
graph Fourier transform (GFT), graph filters yield a key tool
to process the graph spectrum, i.e., to amplify or attenuate
different graph frequencies. Relevant applications of graph
filters are graph signal denoising [5], smoothing [6], signal
classification [7], signal recovery [8] and graph clustering [9].

Since graph filtering directly in the frequency domain
is computationally expensive, finite impulse response (FIR)
graph filters have been devised to implement this operation
directly in the vertex domain. Such FIR graph filters are
expressed as a polynomial in a so-called graph shift operator,
e.g., the adjacency matrix [3], the discrete graph Laplacian
matrix [1], or any modification of those matrices. Popular
FIR graph filter design approaches are based on the linear
least squares (LLS) method [4] and Chebyshev polynomials
[10]. However, to accurately match a specified graph frequency
response, FIR filters require a high filter order leading to a high
implementation cost.

As an alternative to FIR graph filters, infinite impulse
response (IIR) or autoregressive moving average (ARMA)
graph filters have been proposed [11], [12]. These filters are
characterized by a rational frequency response, which brings
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more degrees of freedom to the design. Existing works on
ARMA graph filters mainly focus on a distributed implementa-
tion, which only leads to the modelled frequency response after
an infinite number of iterations [11], [12] and limits the design
space due to the required convergence constraints. To fully
exploit the benefits of the rational frequency response, in this
paper, we focus on a centralized ARMA filter implementation
and hence the filter design is not hampered by the convergence
issues of a distributed implementation. In a centralized fashion,
the ARMA filter output can be simply computed by solving a
linear system of equations, e.g., by using first order methods
[13], or conjugate gradient (CG) [14].

Under the proposed centralized filter implementation, we
propose in this paper two ARMA filter design strategies.
The first approach is inspired by Prony’s method [15], where
a modified error between the modeled and the desired fre-
quency response is minimized. The second approach, on the
other hand, minimizes the true error iteratively followingthe
Steigliz-McBride idea [15]. As initial condition, we could
use the solution from the first approach, thereby potentially
improving the approximation accuracy of that solution.

Numerical tests validate our findings. We show that the
ARMA filters outperform FIR filters in terms of approximation
accuracy not only for the same number of filter coefficients,
but also for the same filter implementation cost.

II. PRELIMINARIES

In this section we recall some basic concepts of signal pro-
cessing on graphs. We start with the graph Fourier transform
(GFT) and its relation to the graph shift operator. Then, we
review FIR graph filters and present their design challengesin
approximating a desired frequency response.

A. Graph Fourier Transform (GFT)

Consider an undirected graphG = (V , E) with V the set of
N nodes or vertices andE the set of edges between the nodes.
The local structure of the graph is captured by the adjacency
matrixA or the discrete graph LaplacianLd = D−A, where
D is the degree matrix. BothA and Ld are candidates for
the so-called graph shift operatorS, an operator that forms
the basis for processing graph signals, as we will see later
on. Other candidates forS can be the normalized Laplacian
Ln=D−1/2LdD

−1/2, or any of their modifications like the
translated normalized LaplacianLn − I.

We will indicate with the vectorx the graph signal, i.e., a
signal living on the graphG, where each valuexi is associated
to the nodevi. Being a symmetric matrix,S enjoys an eigen-
value decompositionS = UΛUT, with U the eigenvector
matrix containing as columns the so-called graph modesu1 up
to uN andΛ a diagonal matrix containing as diagonal entries
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the so-called graph frequenciesλ1 up to λN . To obtain the
graph frequency representation ofx, the eigenvector matrix
U is used to transform the signal into the Fourier domain.
Specifically, the GFT̂x of x and its inverse are, respectively,
x̂ = UTx and x = Ux̂. For a deeper analysis of the GFT
and graph signal processing in general, we refer the interested
reader to [1] and [3].

B. FIR Graph Filters

Filtering a graph signalx can be carried out in the frequency
domain as

ŷ = h(Λ)x̂,

where x̂ and ŷ represent the GFT of the input signalx and
output signaly, respectively, andh(Λ) is a diagonal matrix
containing the frequency response on its diagonal. In the vertex
domain, this operation can be represented by

y = Hx,

where H = Uh(Λ)UT. Hence, in the vertex domain, a
graph filter is a linear operator that is diagonalizable by the
graph Fourier transformation matrixU. However, to carry
out the graph filtering operation as above, an eigenvalue
decomposition of the graph shift operatorS is required, which
complicates the filtering operation.

To alleviate this burden, the FIR graph filter has been
proposed as a way to directly implement a graph filter in
the vertex domain. An FIR graph filterG of order K can
be expressed as aK-th order polynomial in the graph shift
operator

G = g(S) =
∑K

k=0 gkS
k, (1)

with gk the filter coefficients andg(.) aK-th order polynomial
function. Using the recursionSkx = S(Sk−1x), the imple-
mentation cost of the FIR graph filter is of orderO(KE), with
E = |E| the number of edges. Clearly, the linear operatorG is
diagonalizable byU sinceG = Ug(Λ)UT and as such it is a
valid graph filter. Then-th diagonal entry ofg(Λ) is the graph
frequency response at eigenvalueλn and it is denoted in short
as ĝn. As a result, the relation between the graph frequency
reponsêgn and the filter coefficientsgk is given by

ĝn =
∑K

k=0 gkλ
k
n. (2)

Assuming now that the desired frequency response at fre-
quencyλn is given byĥn, we want to designgn such that

ĥn ≈ ĝn =
∑K

k=0 gkλ
k
n, (3)

for every graph frequencyλn. When the graph frequencies
are known, the above problem can be solved using the LLS
method, under the condition that all eigenvalues are different
[4], [16]. However, since estimating the graph frequencies
again entails some additional complexity, FIR filters are of-
ten designed without any explicit knowledge of the graph
frequencies and given a desired frequency responseĥ(λ) in a
continuous range of frequencies[λmin, λmax]. Such a problem,
named universal design, can again be solved using the LLS
method by discretizing[λmin, λmax] into a finite set of graph
frequencies. Alternatively, we can fit Chebyshev polynomials

Algorithm1: Conjugate gradient

1 Input: y(0), x, coefficientsa, b
2 accuracy evaluationε, maximum iterationT
3 Compute: xQ, Py(0) (computed asSky(0) = S(Sk−1y(0)))
4 d(0) = r(0) = xQ −Py(0), δ(0) = δnew = r(0)T r(0)

5 Iteration: while i < T and δnew > ε2δ(0)

6 ω(i) = δnew

d(i)T Pd(i)

7 y(i+1) = y(i) + ω(i)d(i), r(i+1) = r(i) − ω(i)Pd(i)

8 δold = δnew , δnew = r(i+1)T r(i+1)

9 ϕ(i+1) = δnew

δold
, d(i+1) = r(i+1) + ϕ(i+1)d(i)

10 i = i+ 1

11 Return: y(i+1)

to ĥ(λ) leading to a closed-form expression for the coefficients
gk [10].

III. ARMA G RAPH FILTERS

To improve the approximation accuracy compared to the
FIR graph filter, we now consider applying an ARMA filter to
the signalx. For an ARMA graph filter, the graph frequency
response at frequencyλn, can be written as [12]

ĝn =

∑Q

q=0 bqλ
q
n

1 +
∑P

p=1 apλ
p
n

, (4)

whereap are the coefficients of the autoregressive part and
bq are the coefficients of the moving average part. Stability is
guaranteed if

1 +
∑P

p=1 apλ
p
n 6= 0, ∀n. (5)

A. ARMA Implementation

Although many distributed ARMA graph filter implemen-
tations have been proposed [11], [12], they are all iterative in
nature and require specific convergence constraints to be sat-
isfied. In this paper, we want to fully exploit the power of the
ARMA filter and avoid any additional design constraints. That
is why we focus here on a centralized ARMA implementation.

Given the graph signalx and a set of (stable) filter coef-
ficients ap and bq, the filter outputy can be obtained in the
frequency domain as

ŷn =

∑Q

q=0 bqλ
q
n

1 +
∑P

p=1 apλ
p
n

x̂n. (6)

Bringing the denominator to the other side, grouping the
equations∀n, and applying the inverse GFT, we obtain the
matrix-vector form

(I+
∑P

p=1 apS
p)y = (

∑Q

q=0 bqS
q)x. (7)

By defining the matricesP = I +
∑P

p=1 apS
p and Q =

∑Q

q=0 bqS
q, we can express (7) in the compact formPy =

Qx. Based on this expression, we can computey by cal-
culating the right hand-side denoted asxQ = Qx (which
corresponds to pre-filteringx with an FIR graph filter of
order Q) and by solving the linear systemPy = xQ. The
latter can be done using techniques like first order methods
[13] or conjugate gradient (CG) [14], which can be efficiently
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implemented, especially whenS is sparse, i.e., when the
graph is sparse [17]. In this work, we consider the CG
method to implement the ARMA graph filter in the vertex
domain. With reference to Algorithm 1, the CG approach
has a computational complexity that scales linearly with the
number of edgesE, as was the case for the FIR filter. If we
assume that the CG is arrested afterT iterations, the overall
implementation cost of the ARMA graph filter is of order
O((PT +Q)E).

B. ARMA Design Problem

In the filter design phase, we would like to find the ARMA
coefficientsap andbq such that a desired frequency response
ĥn is matched. The latter can be either a low-pass frequency
response for clustering or bandlimiting graph signals, a heat
kernel-like response which is encountered in Tikhonov de-
noising and interpolation, or a Wiener-like frequency response
useful for processing stationary graph signals. Thus, given the
desired frequency responseĥn, we would like to find the filter
coefficientsap and bq that best approximatêhn. Specifically,
we would like to reduce the error

en = ĥn −

∑Q

q=0 bqλ
q
n

1 +
∑P

p=1 apλ
p
n

, (8)

for each frequencyλn. Note that when solving this problem,
we do not explicitly take the stability constraint (5) into ac-
count since most unconstrained solutions satisfy this constraint
directly.

As for the FIR filter, a universal design is generally con-
sidered without explicit knowledge of the graph frequencies
and given a desired frequency responseĥ(λ) in a continuous
range of frequencies[λmin, λmax]. In that case, the interval
[λmin, λmax] is simply discretized into a finite set of graph
frequencies.

IV. ARMA D ESIGN METHODS

This section contains our proposed ARMA graph filter
design methods, starting with a method inspired by Prony’s
method, which is subsequently improved with an iterative
approach.

A. Prony’s Method

In Prony’s method, instead of focussing on the erroren, a
modified errore′n is considered, where

e′n = ĥn

(

1 +
∑P

p=1 apλ
p
n

)

−
∑Q

q=0 bqλ
q
n. (9)

This modified error is linear in the coefficientsap andbq and
hence the LLS method can be used to reduce the modified
error. This is explained in more detail next.

Stackinge′n in the vectore′ = [e′1, . . . , e
′
N ]T and ĥn in the

vectorĥ = [ĥ1, . . . , ĥN ]T as well as defining the filter coeffi-
cient vectorsa = [1, a1, . . . , aP ]

T andb = [b0, b1, . . . , bQ]
T,

(9) can be expressed as

e′ = ĥ ◦ (ΨP+1a)−ΨQ+1b (10)

= [ΨP+1 ◦ (ĥ1
T
P+1)]a−ΨQ+1b, (11)

whereΨK+1 is theN × (K + 1) Vandermonde matrix with
entries[ΨK+1]n,k+1 = λk

n, 1P+1 is a (P + 1) × 1 all one
vector, and◦ represents the element-wise Hadamard product.

Minimizing the error in (10) can now be solved efficiently
using the LLS method, which boils down to

min
a,b

‖[ΨP+1 ◦ (ĥ1
T

P+1),−ΨQ+1]

[

a

b

]

‖2, s.t. a0 = 1.

(12)
Note that instead of jointly solving (12) fora andb, we could
as well only solve it fora by projecting outb using the
orthogonal projection matrixP⊥

ΨQ+1
= IN − ΨQ+1Ψ

†
Q+1,

whereA† denotes the pseudo-inverse ofA. This would lead
to the same solution fora, but gives us the opportunity to
use different methods to findb, e.g., we could findb by
minimizing the original error (8) instead of the modified
error (9) since both errors are linear inb. This last would
resemble the well-known Shanks’ method for temporal signals.
However, since the performance of Shanks’ method is close
to the one of Prony’s method, we will only simulate Prony’s
method in the simulations section.

B. Iterative Method

Prony’s method focusses on minimizing the modified er-
ror (9), which is of course not equivalent to the original
error (8). To alleviate this issue, in this section, we will devise
an iterative method to directly minimize the original error(8).

To ease the notation, let us introduce the notationsβn =
∑Q

q=0 bqλ
q
n andαn = 1+

∑P

p=1 apλ
p
n, and rewrite the original

error (8) as

en = ĥn −
βn

αn

. (13)

Then, by definingγn = 1/αn, we also obtain

en = ĥn − βnγn = [ĥnαn − βn]γn, (14)

which is linear inαn, βn andγn, if each of them is treated
as a separate variable. Specifically, note that ifγn is fixed,en
becomes linear inαn andβn. This will be our starting point
to minimizeen iteratively.

Before we detail the algorithm, let us rewrite (14) in vector
form as

e = [ĥ ◦α− β] ◦ γ, (15)

where α = [α1, . . . , αN ]T, β = [β1, · · · , βN ]T, γ =
[γ1, · · · , γN ]T, ande = [e1, . . . , eN ]T. Now, letα(i) andβ(i)

denote the estimates of the vectorsα andβ, respectively, in the
i-th iteration. A value forγ can then be found as an element-
wise inversion ofα(i), which we will label asγ(i). Using this
value forγ in (15), we obtain the updated error

e = γ(i) ◦ (ĥ ◦α)− γ(i) ◦ β, (16)

which is now linear in the unknown variablesα and β.
Minimizing this error then leads to the updated valuesα(i+1)

andβ
(i+1). This procedure is then repeated until a desirable

solution is obtained.
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Fig. 1. RNMSE of the different filter design methods for different orders
K (such thatP + Q = K) in approximating an ideal low-pass frequency
response. We consider a universal design by gridding the spectrum of [0, 2]
in N = 100 grid points. For the ARMA filter, the orderQ is shown in the
plot.

One thing that we ignored in the previous description is that
α andβ are directly related toa andb, which means we need
to express (16) as

e = A(i)a−B(i)b, (17)

where A(i) = (γ(i)1T
P+1) ◦ΨP+1 ◦ (ĥ1

T
P+1) and

B(i) = (γ(i)1T
Q+1) ◦ΨQ+1. Using this error, the filter

coefficients at the(i + 1)-th iteration, denoted asa(i+1) and
b(i+1) are found by solving

min
a,b

‖[A(i),−B(i)]

[

a

b

]

‖2 s.t. a0 = 1. (18)

Since the matrix[A(i),−B(i)] has sizeN × (P +Q+ 2) a
necessary condition for solving (18) isP +Q+ 1 ≤ N .

Note that for γ(0) = 1, the iterative approach leads to
Prony’s method (12), which will often be considered as an
initialization of the iterative method.

V. NUMERICAL RESULTS

In this section, we compare our ARMA graph filters with
FIR graph filters. In our simulations we make use of GSPBox
[18]. We consider two different scenarios. First, we compare
how well each graph filter approximates a desired frequency
response under a universal setting (the graph frequencies are
not known). Second, we compare the filter designs when
implemented on an Erdős Rényi graph [19], where we consider
the CG algorithm to implement the ARMA graph filter. For
both cases we considerN = 100 and useS = Ln as the graph
shift operator. The desired frequency response is an ideal low-
pass filter with cut-offλc = 1. We measure the approxima-
tion accuracy with the root normalized mean squared error
(RNMSE) between the desired frequency responseĥn and the
designed frequency responseĝn.

Filter design comparison. In this scenario, we assume
the graph frequencies are not known and we discretize the
interval [0, 2] into N = 100 uniformly spaced grid points.
In Fig. 1, we show the RNMSE for Prony’s method and the
iterative method. Specifically, the depicted RNMSE is related
to the best combination of orders(P,Q) for each particular
K such thatP +Q = K. The iterative approach is initialized
with the solution of Prony’s method, to show its potential

K
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
N

M
SE

 

10-1

100
Erdős Rényi

ARMA(Conjugate gradient)
FIR-LLS

Fig. 2. RNMSE of the ARMA filter implementations on an Erdős Rényi graph
with N = 100, p = 0.1. The ARMA filter is implemented using CG with
a complexity that is smaller than or equal to the FIR filter implementation
(PT +Q ≤ K).

in improving the approximation accuracy. Additionally, asa
benchmark, a FIR filter of orderK is designed with LLS
(FIR-LLS) and Chebyshev polynomials (FIR-Chebyshev). For
both FIR designs, the RNMSE is higher, except forK ≤ 5.
Further, the FIR approximation accuracy does not improve
whenK increases. It is remarkable that the iterative approach
outperforms the FIR design by several orders, where the latter
has a comparable performance only forK ≤ 3. This shows
that ARMA graph filters are more suitable for applications
demanding a high approximation accuracy, such as in filter-
banks.

Implementation comparison. Here, we implement the
universally designed ARMA filter using CG on an Erdős Rényi
graph with link probabilityp = 0.1 and we again use the
universally designed FIR filter as a benchmark. We assume the
ARMA filter has been designed using the iterative approach
whereas the FIR filter has been designed using LLS. The filter
is applied to a white input an the desired frequency response
is compared to the division of the filter output and the input
in the frequency domain. In Fig. 2, we show the performance
of the ARMA filter when the CG is halted afterT iterations
such thatPT + Q ≤ K holds, i.e., the ARMA filter has
a smaller or the same implementation cost compared to the
FIR filter. The results show again that the ARMA filter has
a lower approximation error than the FIR filter. Because we
here compare these two filters for a similar implementation
complexity, the RNMSE gap is smaller as in the first scenario.

VI. CONCLUSIONS

In this work, we have presented two ARMA graph filter
design approaches. The first approach is inspired by Prony’s
method which solves a modified error between the modeled
and the desired frequency response. The second one minimizes
iteratively the original error instead of the modified one and
can also be initialized with the solution from the first method.
Our theoretical findings are evaluated by numerical results. In
a direct comparison with state of the art FIR graph filters,
ARMA filters have shown to improve the approximation
accuracy of FIR graph filters.
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[19] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

597


