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Abstract—In graph signal processing, signals are processed more degrees of freedom to the design. Existing works on
by explicitly taking into account their underlying structure, ~ARMA graph filters mainly focus on a distributed implementa-
which is generally characterized by a graph. In this field, gaph  {jon \which only leads to the modelled frequency responte af

filters play a major role to process such signals in the so-cigd o . . 7 .
graph ?reéuencyj domain. "ﬁ' this paper, wegfocus on the design &N infinite number of iterations [11], [12] and limits the dps

of autoregressive moving average (ARMA) graph filters and Space due to the required COnVergence ConStraintS. To fU"y
basically present two design approaches. The first approacis exploit the benefits of the rational frequency responsehim t
inspired by Prony’s method, which considers a modified error paper, we focus on a centralized ARMA filter implementation
between the modeled and the desired frequency response. Theyq pance the filter design is not hampered by the convergence

second approach is based on an iterative method, which finds . - . . . .
the filter coefficients by iteratively minimizing the true error issues of a distributed implementation. In a centralizedifan,

(instead of the modified error) between the modeled and the the ARMA filter output can be simply computed by solving a

desired frequency response. The performance of the propode linear system of equations, e.g., by using first order method

design algorithms is evaluated and compared with finite implse [13], or conjugate gradient (CG) [14].

response (FIR) graph filters. The obtained results show that = pqer the proposed centralized filter implementation, we

ARMA filters outperform FIR filters in terms of approximation . . . . .

accuracy even for the same computational cost. propose in this paper tvyo ARMA filter design strategies.
The first approach is inspired by Prony’s method [15], where
a modified error between the modeled and the desired fre-

. INTRODUCTION quency response is minimized. The second approach, on the
N today’s society, signals with irregular structure arerabuother hand, minimizes the true error iteratively followitige
dant, e.g., data from social networks, brain signals, traffSteigliz-McBride idea [15]. As initial condition, we could

information, and so on. Graph signal processing (GSP) is thse the solution from the first approach, thereby potentiall

tool to handle such signals, and it basically extends aaksiimproving the approximation accuracy of that solution.

digital signal processing to signals that live on the vesiof Numerical tests validate our findings. We show that the

irregular graphs [1], [2]. As for temporal signals, a Fourie ARMA filters outperform FIR filters in terms of approximation

like transform for graph signals is defined, which decomposaccuracy not only for the same number of filter coefficients,

a graph signal into the different harmonic modes of the grapht also for the same filter implementation cost.

[3] and which allows to analyze and process a graph signal in

the so-called graph frequency domain [4]. Together with the Il. PRELIMINARIES

graph Fourier transform (GFT), gfaph filters y!eld a key tool In this section we recall some basic concepts of signal pro-

to process the graph spectrum, i.e., to amplify or attenugte

. : I ssing on graphs. We start with the graph Fourier transform
different graph frequencies. Relevant applications ofpbra GFT) and its relation to the graph shift operator. Then, we
filters are graph signal denoising [5], smoothing [6], sign '

classification [7], signal recovery [8] and graph clustgrie]. eview FIR graph filters and present their design challemges

Since graph filtering directly in the frequency domairzilpprommatlngadeswed frequency response.
is computationally expensive, finite impulse response YFIR )
graph filters have been devised to implement this operatifn Graph Fourier Transform (GFT)
directly in the vertex domain. Such FIR graph filters are Consider an undirected gragh= (V, ) with V the set of
expressed as a polynomial in a so-called graph shift operaty nodes or vertices an€l the set of edges between the nodes.
e.g., the adjacency matrix [3], the discrete graph Laptacidhe local structure of the graph is captured by the adjacency
matrix [1], or any modification of those matrices. Populamatrix A or the discrete graph Laplacidiy = D — A, where
FIR graph filter design approaches are based on the lin@aris the degree matrix. BotA and Ly are candidates for
least squares (LLS) method [4] and Chebyshev polynomiake so-called graph shift operat8; an operator that forms
[10]. However, to accurately match a specified graph frequenthe basis for processing graph signals, as we will see later
response, FIR filters require a high filter order leading t@gh h on. Other candidates fd8 can be the normalized Laplacian
implementation cost. L,=D~/2L¢D~1/2, or any of their modifications like the

As an alternative to FIR graph filters, infinite impulseranslated normalized Laplacidi, — I.
response (lIR) or autoregressive moving average (ARMA) We will indicate with the vectox the graph signal, i.e., a
graph filters have been proposed [11], [12]. These filters aignal living on the grapl§, where each value; is associated
characterized by a rational frequency response, whictgbrirto the nodev;. Being a symmetric matrix$ enjoys an eigen-

) _ o _ value decompositiors = UAUT, with U the eigenvector
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the so-called graph frequencies up to Ay. To obtain the _Algorithm1: Conjugate gradient
graph frequency representation »f the eigenvector matrix 1 Input:  y©, x, coefficientsa, b o
U is used to transform the signal into the Fourier domain. 2 _ acc“racz’o)e"a'“a“oa max':‘”(”g) eratior(l” o
Specifically, the GFTk of x and its inverse are, respectively, j Compute: s "o (iomp”teiaﬁ) yé(o)iigiw Yoo o
% =UTx and x = Ux. For a deeper analysis of the GFT . i e o 25(0) -rer

. . A . 5 Iteration: whilei < T and$ > e4d
and graph signal processing in general, we refer the irttefes
7
8
9

w(®) = .
VT pa®
reader to [1] and [3]. g+ = y(ﬁi w®d®, pl+1) = () _ (O pa)

gold — gnew  snew — r+D)T R (i+1)

QU = &0 g(i+1) = p(i+1) 4 p(i+1) g
i=i+1
Return: y(+D

B. FIR Graph Filters

Filtering a graph signat can be carried out in the frequency 12
domain as

¥ = h(A)%,

wherex andy represent the GFT of the input signaland 10 ﬁ(/\) leading to a closed-form expression for the coefficients
output signaly, respectively, anch(A) is a diagonal matrix gx [10].

containing the frequency response on its diagonal. In theexe

domain, this operation can be represented by I1l. ARMA G RAPH FILTERS

y = Hx, To improve the approximation accuracy compared to the
o ’ ) ) FIR graph filter, we now consider applying an ARMA filter to
where H = Uh(A)U". Hence, in the vertex domain, athe signalx. For an ARMA graph filter, the graph frequency

graph filter is a linear operator that is diagonalizable by thesponse at frequency,, can be written as [12]
graph Fourier transformation matrikJ. However, to carry 0
Zq:O by A7,

out the graph filtering operation as above, an eigenvalue
. B - B B P b
decomposition of the graph shift opera®is required, which 1+ szl ap\h
herea, are the coefficients of the autoregressive part and

complicates the filtering operation.
To alleviate this burden, the FIR graph filter has beeff -~ : -
iy are the coefficients of the moving average part. Stability is

n Quaranteed if

g n = (4)

proposed as a way to directly implement a graph filter
the vertex domain. An FIR graph filte& of order K cal
be expressed as A-th order polynomial in the graph shift 1+ ZP—1 apAl £0, Vn. (5)
operator P '

— — K k
G =9(8) =20 95", @ A ARMA Implementation

with g;. the filter coefficients and(.) a K-th order polynomial  ajthough many distributed ARMA graph filter implemen-
function. Using the recursio*x = S(S"~'x), the imple- (ations have been proposed [11], [12], they are all itegsitiv
mentation cost of the FIR graph filter is of ord@(K E), with  natyre and require specific convergence constraints totbe sa
E = |€| the number of edges. Clearly, the linear oper&ids jsfied. In this paper, we want to fully exploit the power of the
diagonalizable byU sinceG = Ug(A)U™ and as such it is a ARMA filter and avoid any additional design constraints. Tha
valid graph filter. Thes-th diagonal entry ofi(A) is the graph i why we focus here on a centralized ARMA implementation.
frequency response at eigenvaljgand it is denoted in short  Gjven the graph signat and a set of (stable) filter coef-

asgn. As a result, the relation between the graph frequengients a, andb,, the filter outputy can be obtained in the
reponsej, and the filter coefficientg; is given by frequency domain as

I = Yrmo KN 2) D Sy Pt
Yn = Tn
1+ 25:1 apAh
. X« Bringing the denominator to the other side, grouping the
hn = gn = 1o gk (3) equationsvn, and applying the inverse GFT, we obtain the

for every graph frequency,,. When the graph frequenciesmamx'vedor form

are known, the above problem can be solved using the LLS (L+ 31 apSP)y = (X0 bgS9)x. @)
method, under the condition that all eigenvalues are differ

[4], [16]. However, since estimating the graph frequencié® defining the matrices? = I+ 3" a,S” and Q =
again entails some additional complexity, FIR filters are OE?:() b,S?, we can express (7) in the compact folry =

ten designed without any explicit knowledge of the grap@x. Based on this expression, we can computdy cal-
frequencies and given a desired frequency respé(]ls)ein a culating the right hand-side denoted a5 = Qx (which
continuous range of frequenciP§uin, Amax]. Such a problem, corresponds to pre-filteringe with an FIR graph filter of
named universal design, can again be solved using the Lbfler Q) and by solving the linear systeRy = xg. The
method by discretizing\min, Amax] iNto a finite set of graph latter can be done using techniques like first order methods
frequencies. Alternatively, we can fit Chebyshev polyndsnia[13] or conjugate gradient (CG) [14], which can be efficigntl

6

Assuming now that the desired frequency response at fre-
quencya, is given byh,,, we want to desigry,, such that
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implemented, especially wheS8 is sparse, i.e., when thewhereWy ., is the N x (K + 1) Vandermonde matrix with
graph is sparse [17]. In this work, we consider the C@ntries[W g 1],xt1 = A°, 1pyq is @ (P +1) x 1 all one
method to implement the ARMA graph filter in the vertewector, ando represents the element-wise Hadamard product.
domain. With reference to Algorithm 1, the CG approach Minimizing the error in (10) can now be solved efficiently
has a computational complexity that scales linearly with thusing the LLS method, which boils down to

number of edge#’, as was the case for the FIR filter. If we

assume that_ the CG is arrested aﬂé'rteratiops, the overall i ||[®p,; 0 (fllzT:H), — W] Lﬂ I2, st ap=1.
implementation cost of the ARMA graph filter is of order =ap (12)

OUPT +Q)E). Note that instead of jointly solving (12) fer andb, we could
. as well only solve it fora by projecting outb using the
B. ARMA Design Problem orthogonal projection matri)PéQH =Iy — ¥ ¥q,
In the filter design phase, we would like to find the ARMAyhere AT denotes the pseudo-inverse Af This would lead
goeﬁicientSa,, andb, such that a desired frequency responsg the same solution fon, but gives us the opportunity to
hy is matched. The latter can be either a low-pass frequengse different methods to find, e.g., we could findb by
response for clustering or bandlimiting graph signals, at h&yinimizing the original error (8) instead of the modified
kernel-like response which is encountered in Tikhonov dgrror (9) since both errors are linear i This last would
noising and interpolation, or a Wiener-like frequency @%® resemble the well-known Shanks’ method for temporal signal
useful for processing stationary graph signals. Thus,ngille  However, since the performance of Shanks’ method is close

desired frequency responag, we would like to find the filter {5 the one of Prony’s method, we will only simulate Prony’s
coefficientsa, andb, that best approximatg,,. Specifically, method in the simulations section.
we would like to reduce the error

Zquo qu%

P p’
1+Z":1 apAn Prony’s method focusses on minimizing the modified er-
for each frequency,. Note that when solving this problem,ror (9), which is of course not equivalent to the original
we do not explicitly take the stability constraint (5) inte-a error (8). To alleviate this issue, in this section, we widhise
count since most unconstrained solutions satisfy thistcain$  an jterative method to directly minimize the original er¢8}.
directly. To ease the notation, let us introduce the notatiGps=

~As for the FIR filter, a universal design is generally co_nzgzzo b A1 anday, = 1+le;1 a, AP, and rewrite the original
sidered without explicit knowledge of the graph frequescigyor (8) as

en = hy — (8) B. Iterative Method

and given a desired frequency respongg) in a continuous . Ba
range of frequencied\min, Amax]. In that case, the interval en =l — —. (13)
[Amin, Amax| 1S Simply discretized into a finite set of graph "
frequencies. Then, by definingy,, = 1/, we also obtain
IV. ARMA D ESIGNMETHODS en = hn = BnYn = [hnatn — Bl vn, (14)

This section contains our proposed ARMA graph filtefyhich is linear ina,, 5, and~,, if each of them is treated
design methods, starting with a method inspired by Pronysg g separate variable. Specifically, note that,its fixed, e,,
method, which is subsequently improved with an iterativigacomes linear imv,, and 3,,. This will be our starting point

approach. to minimizee,, iteratively.
Before we detail the algorithm, let us rewrite (14) in vector
A. Prony’'s Method form as
In Prony’s method, instead of focussing on the ewpra e= [ﬁ oa—fon, (15)
modified errore!, is considered, where
. where a = J[ai,...,an]T, B = B, 68T, v =
P D Q ) Y ) ) X R
611, = h” (]' + Zp:l a]’/\£1,> - Zq:(} bq)\fr]l (9) ["}/17 s 7’)/N}T, ande = [61, ey €N]T. NOW, |eta(1) and,B<Z)

d denote the estimates of the vectarand3, respectively, in the
iiéH‘ iteration. A value fory can then be found as an element-
wise inversion of(®, which we will label asy(®. Using this
value for+ in (15), we obtain the updated error

This modified error is linear in the coefficienig andb, an
hence the LLS method can be used to reduce the modif
error. This is explained in more detail next.

Stackinge;, in the vectore’ = [¢],.. ., e)y]T andh,, in the

vectorh = [hy, ..., hy]T as well as defining the filter coeffi- e =~ o(hoa)—~® 16
cient vectorsa = [1,a1,...,ap]T andb = [by, b1, ...,bg]", v7e(hea)—yep, (16)
(9) can be expressed as which is now linear in the unknown variablas and S3.
. i ; <+1)

e =ho(¥psa) — g, b (10) MInIm(IﬁI_ril)g thls_ error then Ie_ads to the updated v_alué&fF _

. and g8 . This procedure is then repeated until a desirable
= [Wppro(bhlpy)a—¥ouib, (1) solution is obtained.
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Fig. 1. RNMSE of the different filter design methods for diéfiet orders Fig. 2. RNMSE of the ARMA filter implementations on an Erd&arigi graph
K (such thatP + @ = K) in approximating an ideal low-pass frequencywith N = 100, p = 0.1. The ARMA filter is implemented using CG with
response. We consider a universal design by gridding thetrsipe of [0,2] a complexity that is smaller than or equal to the FIR filter lempentation
in N = 100 grid points. For the ARMA filter, the orde® is shown in the (PT + Q < K).

plot.

One thing that we ignored in the previous description is thit improving the approximation accuracy. Additionally, as

« andg are directly related ta andb, which means we need P€nchmark, a FIR filter of ordef is designed with LLS
to express (16) as (FIR-LLS) and Chebyshev polynomials (FIR-Chebyshev). For

both FIR designs, the RNMSE is higher, except for< 5.

e=A"a—-Bb, (17)  Further, the FIR approximation accuracy does not improve
where A6 — (,\/(i)]_E_H) oWp, o (fllg_'_l) and WhenK increases. It is remarkable that the iterative approach

outperforms the FIR design by several orders, where therlatt
has a comparable performance only figr < 3. This shows
that ARMA graph filters are more suitable for applications
demanding a high approximation accuracy, such as in filter-
min [|[A©, ~BO] ﬁ 2 st a=1.  (18) banks. _ _ _
ab b Implementation comparison. Here, we implement the
Since the matriXA ), ~B()] has sizeN x (P +Q +2) a universa!ly dgsigned ARMA filter using CG on an Erdés Rényi
necessary condition for solving (18) B+ Q + 1 < N. gra_1ph with I|nk_ probabllltyp = 0.1 and we again use the
Note that for~(© =1, the iterative approach leads tounlversa_lly designed FIRflIf[er asa b_enchma_lrk. We assume the
Prony’'s method (12), which will often be considered as MRMA filter has b_een designed using the iterative approgch
initialization of the iterative method. whereas the FIR filter has been designed using LLS. The filter
is applied to a white input an the desired frequency response
V. NUMERICAL RESULTS is compared to the division of the filter output and the input
in the frequency domain. In Fig. 2, we show the performance

In this section, we compare our ARMA graph filters W'trbf the ARMA filter when the CG is halted aftér iterations

FIR graph filters. In our simulations we make use of GSPBO@ﬁch thatPT + Q < K holds, i.e., the ARMA filter has

[18]. We consider two _dn‘ferent scenarios. F'rSt! We comepay gpaller or the same implementation cost compared to the
how well each graph filter approximates a desired frequen

. . 1CNENR filter. The results show again that the ARMA filter has
response under a universal setting (the graph frequenmes

K d he filter desi h lower approximation error than the FIR filter. Because we
mgle;%\ﬁ?ga c?r?g?\nEr‘ dévseRC’e?:;ipg?fpk: [ig]ﬂ tv%erss\;\l/%n:or\:\éi é@re compare these two filters for a similar implementation
the CG algorithm to implement the ARMA graph filter. Forcomplexny, the RNMSE gap is smaller as in the first scenario.
both cases we consid@&f = 100 and useS = Ly, as the graph
shift operator. The desired frequency response is an ideal |
pass filter with cut-off\, = 1. We measure the approxima- VI. CONCLUSIONS
tion accuracy with the root normalized mean squared error
(RNMSE) between the desired frequency respdnsand the  In this work, we have presented two ARMA graph filter
designed frequency respongg design approaches. The first approach is inspired by Prony’s

Filter design comparison. In this scenario, we assumemethod which solves a modified error between the modeled
the graph frequencies are not known and we discretize taed the desired frequency response. The second one misimize
interval [0,2] into N = 100 uniformly spaced grid points. iteratively the original error instead of the modified onelan
In Fig. 1, we show the RNMSE for Prony’s method and thean also be initialized with the solution from the first matho
iterative method. Specifically, the depicted RNMSE is edat Our theoretical findings are evaluated by numerical resliits
to the best combination of orde(®, Q) for each particular a direct comparison with state of the art FIR graph filters,
K such thatP + @Q = K. The iterative approach is initialized ARMA filters have shown to improve the approximation
with the solution of Prony’s method, to show its potentiahccuracy of FIR graph filters.

B = (y1%,,) 0o ®g,1. Using this error, the filter
coefficients at thei + 1)-th iteration, denoted as(+!) and
b(+1) are found by solving
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