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Abstract—Graph Signal Processing (GSP) is a promising
framework to analyze multi-dimensional neuroimaging datasets,
while taking into account both the spatial and functional depen-
dencies between brain signals. In the present work, we apply
dimensionality reduction techniques based on graph represen-
tations of the brain to decode brain activity from real and
simulated fMRI datasets. We introduce seven graphs obtained
from a) geometric structure and/or b) functional connectivity
between brain areas at rest, and compare them when performing
dimension reduction for classification. We show that mixed
graphs using both a) and b) offer the best performance. We also
show that graph sampling methods perform better than classical
dimension reduction including Principal Component Analysis
(PCA) and Independent Component Analysis (ICA).

Index Terms—Neuroimaging, fMRI, Graph Signal Processing,
Classification, Dimensionality Reduction

I. INTRODUCTION

Analyzing neuroimaging data is a major challenge due
to several intrinsic limitations of neuroimaging datasets (i.e.
high sensitivity to noise, large number of dimensions for few
observations per subject, etc.). While many discoveries in neu-
roscience have been made using massively univariate statistics,
there has been a recent paradigm shift towards the application
of multivariate analysis and machine learning to “decode”
brain functions [1]. The relevance of considering multivariate
dependencies in brain signals is further justified by the rapidly
growing literature on the application of network science and
graph theory for studying brain connectivity [2]. Surprisingly,
few analysis methods take into account both the multivariate
aspect and connectivity features of the brain, such as structural
connectivity (white matter tracts), functional connectivity (i.e.
statistical dependencies between signals over time) or simply
geometrical relationships between observations.

A promising avenue to address this important gap resides
in Graph Signal Processing (GSP) [3]. GSP is an emerging
subfield of signal processing whose objective is to take into
account the underlying graphical structure of multivariate data,
in order to generalize common signal processing techniques
(such as filtering, deconvolution, denoising, or time-frequency
analysis) to irregular graph/network domains. GSP is built on
the idea that the eigenvectors of the graph Laplacian matrix are

analogous to Fourier modes, and can thus be used to provide a
spectral representation of signals defined on a graph, through
the so-called Graph Fourier Transform operator (GFT). In this
paper, we evaluate the application of GSP for the analysis of
neuroimaging data. More specifically, we assess whether GSP
can lead to more accurate supervised classification, as well as
whether GSP can be used for dimensionality reduction.

Methods for GSP are still under active research, with
applications such as the analysis of temperature sensor data [4]
or epidemiology [5]. Also, GSP-based methods have recently
been applied to neuroimaging using fMRI [6] and EEG/MEG
data [7], [8], [9]. Huang and collaborators [6] have applied
graph frequency analysis to fMRI data in order to observe
how brain activity changes during a learning task. Graph
frequency analysis allows to study spatial variation of the
signal, with low graph frequencies representing smooth and
regular variations across the brain network, whereas high graph
frequencies represent important spatial variations, described
by the authors as randomness. After decomposing fMRI data
into graph frequency bands, Huang et al. observed that during
learning, low graph frequencies correlate with the learning rate
at the start of the training, while higher frequencies correlate
with participants’ familiarity with the task.

Other studies have applied GSP techniques to EEG/MEG
signals, for instance for noise suppression [8], dimensional-
ity reduction [7], [8], [10] and classification [7], [10]. The
authors of the latter article compared classification accuracy
when building graphs using different connectivity measures.
They showed that projecting the data into the eigenspace
associated with the graph strongest eigenvalues in order to
reduce dimensions leads to better classification results than
Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) [7]. While these studies provide promising
results suggesting a positive impact of GSP to EEG/MEG
analysis, an important drawback is the lack of geometrical
information in the construction of the graph edges.

In the present paper, we aim to evaluate whether GSP
can positively impact classification after dimensionality re-
duction in functional MRI (fMRI) datasets. We propose to
study the influence of different types of graphs on brain
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signal classification, taking into account either geometrical or
statistical dependencies between voxels, or both. To do so, we
use the Graph Fourier Transform (GFT) to decompose brain
signals into spectral components, compare several methods for
dimensionality reduction of the decomposed signals (namely,
graph sampling or statistical selection), and compare the
performance of these methods to state-of-the-art reduction
techniques such as PCA and ICA. We perform our experiments
on two datasets, a simulated fMRI dataset and a real open
source fMRI dataset [11].

II. METHODS

A. Graph Signal Processing

Throughout this paper, we consider a weighted graph G,
consisting of a set V of vertices indexed from 1 to N
(V = {v1, . . . , vN}), and of an adjacency matrix W, such
that Wij ∈ R+ denotes the weight between vertices vi and
vj . We consider symmetric (∀i, j : Wij = Wji) graphs. In
the following sections, we introduce several graphs built from
geometrical and/or statistical properties of the fMRI signals.

The Laplacian matrix of a graph is defined by L = D −
W, where D is the diagonal matrix of degrees defined by
∀i : Dii =

∑
j Wij . Being symmetric and real-valued, L can

be decomposed as L = FΛF>, where F is an orthonormal
matrix, F> is its transposed matrix, and Λ is the diagonal
matrix of eigenvalues, in ascending order.

A signal over G is a vector x ∈ RN interpreted as scalars
observed on each vertex. Its Graph Fourier Transform (GFT)
is given by x̂ = F>x. The first coordinates of x̂, associated
with the lower eigenvalues in Λ, are called low frequencies
(LF) and its last are called high frequencies (HF).

As far as our application case is concerned, vertices corre-
spond to regions of interest in the brain. We denote by X a
matrix of all measures obtained during rest periods (containing
M columns and N lines) obtained from all subjects. These
measures are distinct from the ones we aim to classify,
and serve as a baseline that incorporate average statistical
dependencies which are used to build the graphs. We denote by
X:m ∈ RN the m-th observation (column) and by Xi: ∈ RM
the i-th row of X, corresponding to all measures at vertex vi.

B. fMRI dataset

We use an fMRI data provided openly by Haxby et al.
2001 [11]. This dataset consists of fMRI scans of 6 subjects
during a visual stimulation experiment. For each subject, 1452
volumes of size 40 × 64 × 64 (voxel size 3.5 × 3.75 × 3.75
mm) were recorded every 2.5 seconds. The experiment is a
block design with 12 sessions in which 8 types of stimuli
(human faces, houses, cats, chairs, scissors, shoes, bottles
and scrambled images) were presented during blocks of 24
seconds separated by 12 seconds of rest. Further details on the
experiment are described in [11]. Volumes were normalized in
MNI space. We restrict our analysis to two contrasts: Face vs
House and Cat vs Face.

C. Simulated fMRI data

We simulate fMRI datasets of size 53 × 63 × 46 × 421
(corresponding to 3 mm3 isotropic voxels, and a volume
repetition time of 2 seconds) with NeuRosim [12], an R-
software package. The activations of 6 areas are simulated
depending on two conditions. The areas are modeled as
spheres whose centers correspond to the MNI coordinates
of brain areas known to be involved in visual processing.
We use a baseline obtained from the Haxby dataset (the
averaged data from the rest conditions of subject 2). The
experimental design is a block design with 12 blocks of 22
seconds per condition, separated by 10 seconds of rest. A one
minute rest period is also included at half the experiment. The
haemodynamic response is simulated using the Balloon model
with the parameters described in [13]. We simulate noise as
a mixture of Rician system noise, temporal noise of order 1,
spatial noise, low-frequency drift, physiological noise (due to
heart and respiration rates) and task-related noise, as described
in [12].

A total of 86 “subjects” are simulated by randomly varying
the coordinates of the spheres, the activation magnitude of
each area, and the signal-to-noise ratio (from 1.4 to 4.8). We
calculate 20 simulations for each “subject”, resulting in 1720
simulations in total.

D. Data preprocessing

Both fMRI datasets are analyzed with nilearn and scikit-
learn [14]. All data is normalized in MNI space and parcellated
into 444 symmetrical regions of interest using the BASC
atlas [15]. We compute the coordinates of the baricenters of
the ROIs to obtain geometrical relationships between ROIs.
The fMRI data are high-pass filtered at 0.01Hz, and no
spatial smoothing is applied. The data used for classification
is the raw BOLD signal of the 444 regions: for Haxby, 9
volumes in each block are used in the analysis resulting in
108 volumes per condition. For the simulated data, the first
volume of each block is removed to account for the delayed
haemodynamic response, therefore 10 volumes in each block
are used, resulting in 120 volumes per condition.

E. Graph construction

We consider seven different graphs for each sub-
ject/simulation. Two graphs model the geometric structure of
the brain (Full and Geometric) by setting weights using a
Gaussian kernel (with empirically determined parameters) of
the Euclidian distance between the barycenters of the 444 brain
areas. The Full graph is fully connected and the Geometric
only connects close brain areas (distance inferior to a radius,
empirically determined), the weights of edges between distant
brain areas being set to 0.

Three other graphs model the functional connectivity at
rest between the brain areas, using different connectivity
measures: absolute values for Correlation and Covariance,
and the method by Kalofolias [16] to infer a graph Laplacian
matrix L from signals, assuming smoothness of the observed
signals on the inferred graph.

619



Finally, two other graphs mix both the structure and con-
nectivity of the brain: the Semilocal graph connects only close
brain areas (as the Geometric graph) but its weights correspond
to the covariance between those brain areas. The Fundis graph
is defined in [7] as a product of distance and connectivity.

The following equations sum up these graphs, where
d (vi, vj) denotes the Euclidean distance between vertices vi
and vj according to their spatial coordinates; σ, α, β and θ
are empirically determined parameters; X is the matrix of
all measurements; Y is an optimization parameter with same
dimensions as X; and L denotes the set of Laplacians:

Geometric graphs:
Full: W

(full)
ij = exp

(
−d(vi,vj)

2

2σ

)
Geometric: W

(geo)
ij =

{
W

(full)
ij if d (vi, vj) < α

0 otherwise
Functional graphs:
Absolute correlation: W

(corr)
ij = |corr (Xi:,Xj:) |

Absolute covariance: W
(cov)
ij = |cov (Xi:,Xj:) |

Kalofolias:

L(kal) = arg min
L∈L,Y

M∑
m=1

‖X:m −Y:m‖22 + β(Y:m)>LY:m

Mixed graphs:

Semilocal: W
(semi)
ij =

{
W

(cov)
ij if d (vi, vj) < α

0 otherwise

Fundis: W
(fun)
ij = exp

(
−

(
1−W(corr)

ij

)2

2θ − d(vi,vj)
2

2σ

)
We use the eigenvectors of the Laplacian matrices of these

graphs to perform GFT of the acquired signals, but also to
reduce dimension using graph sampling methods, as explained
in the following paragraphs. All GSP operations were done
using the Matlab and Python versions of the GSP toolbox [17].

F. Dimensionality reduction

In our experiments, we consider different methods of dimen-
sionality reduction. In particular we compare graph sampling
(GS) to other graph-free methods: PCA, ICA, and selection of
the K best components using analysis of variance (ANOVA).

GS is a method adapted from [18] to select the vertices
where the signal energy is the most concentrated. To do so, we
compute the graph weighted coherence for a frequency band
of interest delimited by indices (fmin, fmax), and extract the
K vertices achieving maximum scores. The graph weighted
coherence for vertex vi is defined as

∑fmax

k=fmin
F2
ik. We restrict

our analysis to either only low frequencies (LF) (below N/2)
of high frequencies (HF) (above N/2).

We also apply a method to perform graph frequencies sam-
pling [7], where we select K eigenvalues (HF/LF/ANOVA),
then project the signals to keep only the corresponding com-
ponents. We present the results for K = 50 components.

G. Classification

Classification is performed to disentangle brain signals
originating from different conditions using different methods:

linear Support Vector Machine (SVM), k-nearest neighbors
(k = 15) and logistic regression with l1 penalty. To avoid
excessive over-fitting and given the block design, cross-
validation is performed across different sessions, leaving two
sessions out: 16% of the data is used as test data, the remaining
as training. Classification is performed on the fMRI data (all
data or reduced data: PCA/ICA/ANOVA/GS) and on the signal
projected in the graph Fourier domain using GFT (reduced
data HF, LF and ANOVA). After dimension reduction, data is
standardized. All the procedure — standardization, dimension
reduction (for PCA, ICA and ANOVA when applied) and
classification — is cross-validated in a pipeline. We only detail
SVM cross-validated accuracy scores due to lack of space.
Results for other classifiers follow the same trend.

For the simulated fMRI data, classification is performed for
each simulation. We average the results of 20 simulations per
“subject”, resulting in one value for each. The classification
of the full brain fMRI data serves as reference.

H. Statistics
We perform a statistical analysis of accuracy scores across

methods in order to estimate the significance of accuracy
gain/loss. Non-parametric Friedman tests for repeated mea-
sures (an analysis of variance by ranks) are computed to
identify differences between the conditions. Wilcoxon tests
are used as post-hoc tests (Bonferonni adjusted for multiple
comparisons). For the Haxby dataset, the same statistical tests
are performed for exploratory purposes, however they should
be interpreted with caution since the sample size is small.

III. RESULTS

We present classification results for the raw data using
all 444 areas, to define a reference for further comparisons.
For the Haxby dataset, Face vs. House classification achieves
on average an accuracy of 88.4% ± 4.4, and Cat vs. Face
achieves 69.8% ± 6.8. For the simulated data, accuracy ranges
from 55.9% to 95.9%. In order to compare our results with
the Haxby dataset, two groups of simulated “subjects” are
determined : Easy (accuracy > 80%) comprised of 40 simu-
lated subjects (average 89.8 % ± 4.0), and Difficult (accuracy
between 55% and 80%) comprised of 46 simulated subjects
(average 67.0 % ± 6.4).

A. Dimensionality reduction
Several GSP-based methods for dimensionality reduction

have been compared. Classification results for all methods are
presented in Table I.

We observe that for all graph types but the Kalofolias
graph and the Full graph, high frequencies are more relevant
for the classification than low frequencies (classification is
close to chance level in most cases). Moreover, the Semilocal
graph stands out from the other graph types and reaches
better scores in both groups (72.5%, 90.9%). The Semilocal
graph was selected for further analysis. When comparing the
optimal number of dimensions, GS yields the best accuracy
when selecting 30 components for the Difficult group and 50
components for the Easy group (see Figure 1).
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TABLE I
ACCURACY OF THE CLASSIFICATION FOR ALL GRAPH-BASED SAMPLING

METHODS (IN %) FOR THE TWO DIFFICULTY GROUPS. STARRED NUMBERS
INDICATE BEST SCORES IN THEIR CATEGORY.

Graph GFT GFT GFT GS GS
Types LF HF ANOVA LF HF

Difficult
Full 54.8% 51.1% 66.0% 52.0% 51.3%

Geometric 56.7% 64.8% 64.8% 50.5% 65.2%
|Correlation| 52.4% 66.8% 64.7% 50.9% 60.3%
|Covariance| 52.4% 67.6% 65.2% 51.2% 66.2%
Kalofolias 61.6% 51.9% 65.9% 61.6% 51.9%
Semilocal 53.8% 69.5% 65.6% 50.3% 72.5%*

Fundis 54.9% 64.2% 65.1% 49.7% 62.8%
Easy

Full 65.1% 60.0% 88.9% 49.6% 60.6%
Geometric 71.3% 79.4% 86.0% 57.8% 79.1%

|Correlation| 59.5% 86.5% 86.9% 53.5% 75.2%
|Covariance| 57.2% 87.0% 88.8% 52.8% 84.8%
Kalofolias 88.2% 54.2% 89.4% 87.5% 52.6%
Semilocal 61.3% 87.9% 88.6% 52.3% 90.9%*

Fundis 67.4% 77.5% 86.7% 52.4% 77.5%

Fig. 1. Classification performance for the Semilocal graph depending on the
number of dimensions. Comparison of the graph sampling method (gray) and
the graph K-best (black) for the two groups: Easy and Difficult.

B. Comparisons of GSP, PCA, ICA and ANOVA

The performance of GS to state-of-the-art reduction tech-
niques such as PCA, ICA and ANOVA are then compared for
simulated and real fMRI data. Table II presents the results.

TABLE II
COMPARISON OF GRAPH SAMPLING (Semilocal GRAPH), PCA, ICA AND
ANOVA. CLASSIFICATION ACCURACY WITH 50 COMPONENTS FOR THE

SIMULATED AND HAXBY DATASETS.

Method Simulation Haxby
Easy Difficult Face-House Cat-Face

PCA 88.8% 65.5% 82.7% 63.6%
ICA 90.2% 65.3% 84.4% 67.0%

ANOVA 92.1% 67.3% 85.5% 65.5%
Graph sampling 90.9% 72.5% 88.2% 69.0%

For the simulated fMRI data, the classification with GS is
significantly more accurate in the Difficult group than PCA
(Z = 5.9, p < 0.001), ICA (Z = 5.9, p < 0.001) and ANOVA
(Z = 5.9, p < 0.001). In the Easy group, classification is
significantly more accurate for the ANOVA (PCA: Z = 4.4,
p < 0.001; ICA: Z = 5.5, p < 0.001; and GS: Z = 3.7, p <
0.001). Classification with GS is significantly more accurate

than PCA (Z = 5.2, p < 0.001), but not than ICA (Z = 2.0,
p = 0.05).

For the Haxby dataset, the classification with GS produces
the most accurate results for both conditions. However, those
differences do not reach statistical significance (PCA: Z = 2.3,
p = 0.022 uncorrected, ICA: Z = 1.5, p = 0.126 uncorrected,
ANOVA: Z = 1.5, p = 0.126 uncorrected).

IV. CONCLUSION

In this work, we tested the contribution of Graph Signal
Processing to brain signal analysis. We constructed graphs that
model the geometric and/or the functional dependencies of
brain activity on simulated and real fMRI data, and compared
classification accuracy for difference choices of graphs and
dimensionality reduction techniques. We showed that applying
graph sampling to a semilocal graph could select meaningful
vertices for classification, without any prior hypothesis on the
categories to distinguish, and led to a significant improvement
in classification accuracy compared to PCA, ICA and ANOVA
when categories are difficult to distinguish. The semilocal
graph best fits the data structure by taking into account both
the geometric structure of the data and functional connectivity
between brain areas at rest, and improves classification and
dimensions reduction of neuroimaging data.

We observe that LF features are better for the Kalofolias
graph whereas HF features are better for the semilocal graph.
Those observations are expected since, for the Kalofolias’
method, by construction, the signals are smooth on the graph,
i.e. all their energy is carried out by the first Fourier frequen-
cies. For the semilocal graph on the opposite, while low graph
frequencies might correspond to more stable activity spread
across the brain for both categories (e.g. the gradient that
develops from occipital to more frontal areas during visual
processing), the discriminative features between considered
conditions are localized in the brain, and thus carried out
by high frequencies of geometric graphs. We believe this
observation is particularly interesting for anyone interested in
applying a similar methodology to perform classification: the
components of signals to be kept are highly dependent on the
method used to build the graph, as well as on the type of
expected discriminative features between conditions.

To conclude, GSP is a promising method to improve the
analysis of neuroimaging signals. Future work should focus
on defining appropriate graphs, since it has a strong impact
on the performance. Structural connectivity measures could
provide additional information for graph construction.
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