
Incremental CFS Clustering on Large Data
Liang Zhao∗†, Zhikui Chen∗, Yi Yang†‡§

∗School of Software Technology, Dalian University of Technology, Dalian 116600, China.
†Department of Electrical and Computer Engineering, University of British Columbia, Vancouver V6T1Z4, Canada.

‡School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China.
§Corresponding author:yang cissy@163.com

Abstract—As a popular data mining tool, clustering focuses
on revealing underlying patterns embedded in data. However,
most existing clustering methods mainly deal with static data,
which may not be suitable for analyzing large data in dynamic
environments. To tackle this problem, this paper proposes an in-
cremental clustering method based on the CFS, clustering by fast
search and find of density peaks, to process large dynamic data.
In the proposed method, multiple representatives are identified
for each cluster to integrate new objects into previous clustering
patterns at first. Then the convex hull theory is employed to
modify the representatives accordingly. To further improve the
generality and effectiveness, one-time cluster adjustment strategy
is explored. Extensive experiments on several real-world image
datasets demonstrate that the proposed method outperforms
state-of-the-art methods for clustering large data.

Index Terms—CFS, incremental clustering, objects assignment,
clusters adjustment

I. INTRODUCTION

As a popular data mining tool, clustering, or cluster analysis,
has been recognized as an favorable technique for discovering
the underlying information embedded in data. In the past
decades, numerous clustering algorithms have been proposed.
While they provide effective clustering results for data anal-
ysis, most of them are only designed to deal with static
data [1,2]. For large data clustering, one challenge is that
the data is too large to be loaded in memory. Furthermore,
data are increasingly appearing in dynamic manners, such as
blogs, web pages, transaction records and time series. When
new objects are collected, clustering methods that utilize the
stationary nature of data to find a globally optimal solution
have to process the whole dataset to update changes in clus-
ters, involving significant redundant computations. Therefore,
to address the above two challenges, incremental clustering
methods are preferred to process data chunk by chunk.

The characteristics of large data, including high volume
and dynamically evolving [3], require incremental clustering
methods to rapidly partition continuously arriving objects and
effectively update the cluster structures. In the literature, many
incremental clustering methods have been proposed to fulfill
such requirements [12]. One group of methods is K-centroids
based incremental clustering [4,5]. They employ traditional
K-centroids methods to assign a new arriving object to the
nearest cluster represented by the center, and the correspond-
ing adjustment is made. Simplicity is their major character-
istic. However, they have to predefine the number of clusters

and are unsuitable for nonspherical data. Hierarchical-based
incremental clustering [6,7] can deal with nonspherical data,
as well as less susceptible to initialization, but restructuring
cluster hierarchies makes them slow to converge. Another
advanced group of incremental clustering is density-based
methods [8,9]. They can detect clusters with arbitrary shapes
and handle updates in an incremental manner. However, tuning
input parameters of the methods are challenging and the time
complexity of updating multiple regions is high. Recently,
some incremental affinity propagation clustering algorithms,
such as IAPKM and IAPNA, were proposed in [10] to handle
dynamic data. By updating the messages, they adjust the
current clustering results according to new arriving objects.
However, there are a few concerns of these methods, e.g.,
IAPKM cannot adjust the number of clusters dynamically, and
IAPNA requires high memory usage. For processing large data
that may not be well separated, many methods employ soft or
fuzzy clustering [11], such as matrix factorization, fuzzy c-
means and fuzzy c-medoids, to handle data objects. Though
they can capture the natural structure of a dataset more closely,
they require predefining the number of clusters.

To tackle the above problems, we extend a recently pro-
posed clustering algorithm for static data, clustering by fast
search and find of density peaks (CFS)[13], to process large
dynamic data in this paper. Firstly, in the proposed method,
multiple representatives are identified for each existing cluster
by introducing a maximum min-distance mechanism, which
can capture the physical shape and geometry of clusters.
After that, new arriving objects are integrated into current
patterns according to the representatives, which are modified
based on the convex hull theory after integrations, to detect
clusters with arbitrary shapes. Further, to dynamically adjust
the cluster structures (number of clusters), one-time cluster
adjustment strategy is employed to split clusters with multiple
dominant patterns and merge clusters with the same dominant
pattern. The performance of the proposed method is evaluated
on three real-world image datasets. And the experimental
results demonstrate that the proposed method outperforms the
compared methods in terms of the efficiency and effectiveness,
supporting that they are suitable for clustering large data.

II. INCREMENTAL CFS CLUSTERING

Like the traditional CFS clustering algorithm [13], an incre-
mental CFS should also have the characteristics of detecting

687978-1-5090-5990-4/17/$31.00 ©2017 IEEE GlobalSIP 2017

clusters with arbitrary shapes and adjusting the number of
clusters dynamically. Moreover, it should process new objects
based on the existing clustering patterns and not re-implement
CFS clustering on the whole dataset. Given a sequentially
collected dataset S = {Xt}Tt=1, in which Xt = {xt

i}
nt
i=1

consists of nt objects and each object xt
i contains m features,

the main requirements of incremental CFS clustering can
be described as follows: i) the new set of objects Xt at
time stamp t should be assigned to the existing clustering
result Rt−1 according to the set of all available objects
St−1 = X1∪X2∪X3∪...∪Xt−1 at time stamp t−1; and ii) the
cluster structures should be updated dynamically to form final
patterns with regard to all available objects St = St−1 ∪ Xt

at time stamp t. Both requirements pose great challenges on
incremental CFS clustering.

In this paper, we propose two strategies to address the
above challenges. (1) A new multiple representatives based
partitioning that is not sensitive to the previous local density
ρ and the minimum distance δ of objects is designed to
assign new objects to current clustering results efficiently.
(2) An enhanced cluster adjustment strategy, which employs
one-time cluster splitting-merging, to partition clusters with
multi-patterns and integrate clusters with the same pattern
dynamically. They are presented in the following sub-sections.

A. Multiple Representatives based Partitioning

Suppose that the clustering result Rt−1 for dataset St−1 at
time stamp t−1 has k clusters Rt−1 =

{
rt−1
1 , rt−1

2 , ..., rt−1
k

}
.

To integrate the dataset Xt = {xt
i}

nt
i=1 at time stamp t into

the previous result Rt−1, we have to calculate local density ρ
and minimum distance δ for all new objects. Since the new
objects are at initial level, the local density ρi for each xt

i is
equal to 0. So the minimum distance δi of it can be defined
as:

δi = min(dist(xt
i, r

t−1
j)), j ∈ {1, 2, ..., k}. (1)

Herein, dist(xt
i, r

t−1
j) indicates the distance between the

object xt
i and the cluster rt−1

j . And the new object will be
assigned to the cluster that is nearest to it. As discussed in
[11], one centroid cannot capture the underlying structure of
a cluster sufficiently. In order to detect nonspherical clusters
in incremental CFS clustering, the multiple representatives
of a cluster are selected based on maximum min-distance to
assign new data points. The selection of representatives in each
cluster rt−1

j = {yt−1
l }nj

l=1 is presented in following steps:
Assuming the center of cluster rt−1

j is ct−1
j , the first

representative object is selected as

RSett−1
j1 =argmax

yt−1
l

(dist(yt−1
l , ct−1

j)), l ∈ {1, 2, ..., nj}. (2)

After that, the remaining representative objects
{RSett−1

jo }Nr
o=2 are identified one by one based on Eq.

(6),

RSett−1
jo = argmax

yt−1
l

/∈RSett−1
j

(min dist(yt−1
l , q)), q ∈ RSett−1

j ,

(3)

in which RSett−1
j is the set of current representatives. And it

is updated by adding the new selected representative. In this
way, the representatives can be distributed evenly in the data
space to avoid converging to local optimum.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of the selection of representative points for each cluster.
After the initial clustering by CFS, the representatives are identified in (a)-(f).

Fig. 1 gives an example to illustrate the selection of repre-
sentative points. As shown in Fig. 1(a), the first representative
presented in the square node is selected in cluster1, because
it is the farthest point from the cluster center, represented
by the triangle node, compared to others. After that, the rest
representative points that have the maximum min-distances to
the previous representatives are identified according to Eq. (3)
(see Figs. 1(b), 1(c), 1(d) and 1(e)). As a result, all the clusters
can be represented as convex hulls, which can describe the
structures of clustering results, as observed in Fig. 1(f).

When the cluster structures are obtained, a new object will
be assigned to the cluster that contains the nearest representa-
tive to it. Fig. 2 presents the new point assignment according to
one centroid and multiple representatives. For a new arriving
point Np belonging to cluster3, it is wrongly assigned to
cluster1 whose center is nearest to it (see Fig. 2(a)), while
the representative point A of cluster3 can draw Np back to
its own cluster (see Fig. 2(b)).

(a) (b)

Fig. 2. Illustration of the new points assignment according to (a) one centroid
and (b) multiple representatives for incremental clustering.

After the new data object xt
i is integrated, the structure of

the corresponding cluster rt−1
j is changed and its representa-

tives should be updated. Assuming the number of objects in

688

cluster rt−1
j is nj , the number of representatives is Nr, the

nearest representative to xt
i is rs ∈ RSett−1

j . Two strategies,
that can extend the physical shape and geometry of clusters,
are developed to update the set of representatives.

• When Nr is not smaller than θnj , θ ∈ (0, 1) is a trade-
off parameter used to balance the percentage of repre-
sentatives, the Eq. (3) is used to calculate the maximum
value of minimum distances between p ∈ {xt

i, rs} and
q ∈ RSett−1

j \{rs}. If xt
i achieves the maximum value,

the representative object rs is replaced by xt
i, meanwhile

it is added to the candidate representatives set CaSt−1
j .

• When Nr is smaller than θnj , the object p ∈ CaSt−1
j ∪xt

i

that has the maximum value
∑

dist(p, q), q ∈ RSett−1
j

is selected as a new representative in cluster rt−1
j .

B. One-time Cluster Adjustment Strategy

As observed in Fig. 3(a) that, the dataset consists of three
clusters, while the initial batch of data St−1 only contains
objects in cluster1 and cluster3 (see Fig. 3(b)). By im-
plementing CFS clustering on St−1, two clusters, A and
B, are generated. B is only comprised of data points in
cluster3, but A is comprised of the data points in cluster3
and cluster1 owing to the incompleteness of St−1. When
new points arriving, they are partitioned to the corresponding
clusters based on the representatives, as shown in Fig. 3(c).
Note that the points o, m and n of cluster2 in original
dataset are wrongly assigned to clusterB, because no cluster
describes the structure of cluster2 in St−1. Fig. 3(d) presents
the finial incremental clustering results by ICFSMR. It can
be seen that, the cluster3 is divided into two parts, which
are merged with cluster1 and cluster2 respectively. Hence,
how to adjust the structure of clustering result to make it as
reasonable as possible is important.

(a) (b)

(c) (d)

Fig. 3. The evolution of the clustering result. (a) shows the original dataset,
(b) shows the first batch of data, (c) shows the result of new points assignment,
and (d) shows the finial clustering result.

We proposes an enhanced cluster adjustment strategy, which
employs one time splitting and merging of clusters when the

number of new arriving objects exceeds the threshold λ ∈
(0,+∞) of percentage of the total. Given the clustering results
Rt = {rt1, rt2, ..., rtk} at time stamp t, the processes of splitting
for each cluster rtj = {ytl}

nj

l=1 is described in following steps.
The cutoff distance dc of cluster rtj is calculated to achieve the
local density ρl and the corresponding δl and γl for all points
{ytl}

nj

l=1. By sorting {γl}
nj

l=1 in ascending order {γal
}nj

l=1, in
which al indicates the subscript of γl, the centers of new
clusters can be selected based on Eqs. (4) and (5).

ual
=

∑l
p=1 γap + (nj − l)γal

l
. (4)

ual
=

ual+1

ual

=
l ∗

(∑l+1
q=1 γaq + (nj − (l+1))γal+1

)
(l + 1) ∗

(∑l
p=1 γap + (nj − l)γal

) . (5)

Herein, ual
is the jumping degree between point ytal

and
ytal+1

.When reversing the series of jumping degrees U =<
ua1 , ua2 , ..., uanj−1 >, the first ual

, l ∈ {2, 3, ..., nj − 1}, that
meets ual

> ual−1
is defined as the borderline. And the points

{ytal+1
,...,ytanj

} are selected as the candidate cluster centers.
If there are more than one candidate centers, the remaining
points are assigned as CFS clustering to split current cluster
rtj , otherwise no new cluster is generated.

After the cluster splitting, the merging processes for new
clusters are implemented. We construct the connected graph
of clusters to find the connected components, which indicate
that the clusters in the same component should be merged
together. The construction of connected graph is as follows.
First, we define the structure distance for each cluster in Eq.
(6), where σj

f and µj
f are the standard deviation and mean

value of attribute f in cluster j, respectively.

s dis(rtj) =

√∑m

f=1

(
σj
f/µ

j
f

)2

∗
∑m

f=1

(
µj
f

)/
m. (6)

For two clusters rtu and rtv, we also define the minimum
distance between them by

m dis(rtu, r
t
v) = min dist(p, q), p ∈ RSettu, q ∈ RSettv. (7)

If m dis(rtu, r
t
v) is smaller than s dis(rtu)/2 and

s dis(rtv)/2 simultaneously, an edge between them is added.
When no edge can be added between clusters, the connected
graph with multiple components is obtained. The clusters in
the same component are merged to generate the final clustering
result Rt = {rt1, rt2, ..., rtk}.

III. EXPERIMENTS

A. Experimental Settings

The performance of the proposed method is evaluated on
three real-world image datasets (MNIST [11], Olivetti Faces1

and CIFAR-102). And the proposed method is compared
with other two representative incremental clustering methods,
IAPNA and IMMFC [10, 11], which have been reported to be

1http://www.datatang.com/data/11904
2http://www.cs.utoronto.ca/ kriz/cifar.html

689

more effective and efficient than others. The popular evaluation
criteria normalized mutual information (NMI) [11] is used to
evaluate the effectiveness, while the computational time is used
to evaluate the efficiency of the algorithms.

B. Results and Analysis

In the experiment, each data set is divided into five parts.
The first part is used as initial objects, and equal number of left
objects are added by four times. For the MNIST and CIFAR-
10 datasets, we conduct experiments with chunk size being
0.5% of the entire dataset size, and the first five clustering
results are selected for analysis. The results are presented in
TABLES I and II.

TABLE I
NMI PERFORMANCE COMPARISONS BETWEEN IAPNA [10], IMMFC [11]

AND OUR METHOD ON THE IMAGE DATA SETS.

Data set Method 1st 2nd 3rd 4th 5th

MNIST
IAPNA 0.335 0.388 0.444 0.440 0.414
IMMFC 0.324 0.277 0.269 0.273 0.244
Our Method 0.491 0.413 0.441 0.442 0.439

Olivetti
Faces

IAPNA 0.322 0.326 0.370 0.470 0.518
IMMFC 0.449 0.438 0.453 0.438 0.415
Our Method 0.590 0.525 0.547 0.530 0.525

CIFAR-10
IAPNA 0.125 0.126 0.106 0.102 0.108
IMMFC 0.136 0.111 0.100 0.096 0.085
Our Method 0.175 0.125 0.151 0.138 0.128

TABLE II
COMPUTATIONAL TIME (IN SECONDS) COMPARISONS BETWEEN IAPNA

[10], IMMFC [11] AND OUR METHOD ON THE IMAGE DATA SETS.

Data set Method 1st 2nd 3rd 4th 5th

MNIST
IAPNA 2.180 4.363 8.544 15.03 23.59
IMMFC 56.86 74.02 83.68 71.87 92.42
Our Method 0.918 0.725 7.254 1.585 1.666

Olivetti
Faces

IAPNA 0.569 2.589 6.062 13.14 22.31
IMMFC 23.22 31.19 21.85 30.25 33.10
Our Method 0.793 0.551 7.286 1.102 1.184

CIFAR-10
IAPNA 2.104 9.182 24.85 48.82 81.45
IMMFC 53.07 65.12 59.09 62.65 81.83
E ICFSMR 2.926 1.922 20.05 3.781 4.389

From TABLE I, we can see that our method almost pro-
duces the highest MNI values on all image sets while the
NMI values of IAPNA and that of IMMFC are comparable.
Sometimes, IAPNA achieves larger NMI values than the other
two methods, e.g. 3rd and 2nd data chunks on MNIST and
CIFAR-10, respectively, but overall IMMFC performs better
than IAPNA on the data set of Olivetti Faces.

TABLE II shows that our mwthod requires significantly less
time than other two methods to adjust the current clustering
patterns when new objects arrive, though it needs some
additional overhead for new pattern generation sometimes, as
noted in the 3rd experiment on all data sets. The computational
time of IAPNA increases with the data being added chunk by
chunk, because the new arriving objects make the message
passing on all available data. Since the required training time
for IMMFC is high, it has the maximum time overhead on all
image sets.

In summary, the proposed method performs better than the
compared two methods not only in terms of the NMI, but
also in terms of the computational time, which demonstrates
that our proposed incremental CFS clustering is promising for
clustering large dynamic data.

IV. CONCLUSION

In this paper, we focus on extending CFS into incre-
mental clustering for large dynamic data. The difficulties in
incremental CFS clustering are first pointed out, and then
two strategies are developed correspondingly. Firstly, multiple
representatives, which can capture the physical shape and
geometry of the clusters, are identified to describe the patterns
of clustering. However, new data arrives continuously, the
structure and the number of clusters may be changed, thus
the one-time cluster splitting-merging strategy is employed
to adjust clusters automatically. Experiments conducted on
three real-world image datasets demonstrate that the proposed
method is superior to the compared methods and promising
for clustering large data.

V. ACKNOWLEDGEMENT

This full work of this paper has been submitted to IEEE
Transactions on Knowledge and Data Engineering.

REFERENCES

[1] A. Jain, ”Data clustering: 50 years beyond k-means,” Pattern Recognition
Letter, vol.31, no.8, pp.651-666, 2010.

[2] R. Xu and D. Wunsch, ”Survey of clustering algorithms,” IEEE Trans-
actions on Neural Networks, vol.16, no.3, pp.645-678, 2005.

[3] L. Zhao, Z. Chen, Y. Hu, G. Min and Z. Jiang, ”Distributed feature
selection for efficient economic big data analysis,” IEEE Transactions
on Big Data, 2016, DOI: 10.1109/TBDATA.2016.2601934.

[4] S. Chakraborty and N. K. Nagwani, ”Analysis and study of incremental
k-means clustering algorithm,” High Performance Architecture and Grid
Computing, Springer Berlin Heidelberg, pp.338-341, 2011.

[5] G. F. Tzortzis and A. C. Likas, ”The global kernel-means algorithm
for clustering in feature space,” IEEE Transactions on Neural Networks,
vol.20, no.7, pp.1181-1194, 2009.

[6] N. Sahoo, J. Callan, R. Krishnan, G. Duncan and R. Padman, ”Incremental
hierarchical clustering of text documents,” in Proc. the 15th International
Conference on Information and Knowledge Management, ACM, 2006,
pp.357-366.

[7] P. A. Vijaya, M. N. Murty and D. K. Subramanian, ”Leaders-subleaders:
an afficient hierarchical clustering algorithm for large dats sets,” Pattern
Recognition Letters, vol.25, no.4, pp.505-513, 2004.

[8] S. Singh and A. Awekar, ”Incremental shared nearest neighbor density-
based clustering,” in Proc. the 22nd ACM international conference on
Information & Knowledge Management, ACM, 2013, pp.1533-1536.

[9] A. M. Bakr, N. M. Ghanem and M. A. Ismail, ”Efficient incremental
density-based algorithm for clustering large datasets,” Alexandria Engi-
neering Journal, vol.54, no.4, pp.1147-1154, 2015.

[10] L. Sun and C. Guo, ”Incremental affinity propagation clustering based
on message passing,” IEEE Transactions on Knowledge and Data Engi-
neering, vol.26, no.1, pp.2731-2744, 2014.

[11] Y. Wang, L. Chen and J. P. Mei, ”Incremental fuzzy clustering with
multiple medoids for large data,” IEEE Transactions on Fuzzy Systems,
vol.22, no.6, pp.1557-1568, 2014.

[12] L. Zhao, Z. Chen, Z. Yang, Y. Hu and M. S. Obaidat, ”Local simi-
larity imputation based on fast clustering for incomplete data in Cyber-
Physical Systems,” IEEE Systems Journal, 2016, DOI: 10.1109/JSYS-
T.2016.2576026.

[13] A. Rodriguez and A Laio, ”Clustering by fast search and find of density
peaks,” Science, vol.344, no.6191, pp.1492-1496, 2014.

690

