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ABSTRACT

Motivated by application of signal processing techniques in financial
econometrics, we propose a novel adaptive and robust non-linear
filtering methodology to estimate the systematic risk of an invest-
ment arising from exposure to general market movements. There
are extensive evidence that the asset returns exhibit non-normalities
due to fat tails, excessive kurtosis, and asymmetry of the financial
data. Gaussian sum filters (GSF) are attractive estimators for state-
estimation in such non-Gaussian problems. However, due to the high
computational cost of the GSF when applied to non-Gaussian risk es-
timation problems, no GSF has yet been investigated in the context
of financial econometrics. The paper addresses this gap. To tackle
this non-Gaussian problem, we introduce the interactive Gaussian
sum filter (IGSF) by representing the non-systematic part of the risk
in the Fama-French multi-factor model with the Gilbert-Elliott (GE)
model. Due to incorporation of the GE-model, the proposed IGSF is
a computationally attractive adaptive filter with an interactive multi-
ple model (IMM) collapsing style. In other words, the number of
Gaussian components is controlled utilizing a modified Bayesian
learning technique, which is used to collapse the Gaussian mixture
representation of the non-systematic risk into an equivalent Gaussian
term at each filtering cycle.

Index Terms— Fama-French Factor Model, Gaussian-Sum Fil-
ter, Gilbert-Elliott Model, IMM Algorithm, Non-Gaussian Noise.

1. INTRODUCTION

The objective of the paper is to dynamically estimate the system-
atic risk in financial econometrics using the Fama-French (FF) factor
model with non-normal error distributions. The non-linear nature of
the financial returns and the lack of an efficient non-Gaussian state-
estimation algorithm with affordable complexity for such applica-
tions, motivate this paper. Since the 2008 financial crises which is
the worst crises since the Great Depression of the 1930s, a signifi-
cant focus has been given to the measurement of the systematic risk
of an investment which cannot be eliminated through diversification.
Recently, there has also been a surge of interest in applying signal
processing tools for risk modeling/forcasting problems in financial
applications [1-6]. In particular, we are interested in application of
the estimation and tracking theory using factor models [7-10] for
such risk management problems [11].

In the context of financial econometrics, the most well-known
measure of the systematic risk is referred to as “Beta”, which is a
measure of the risk arising from exposure to general market move-
ments. The most commonly models used in practice to represent
Beta are the single-factor Capital Asset Pricing Model (CAPM) [12],
and the multi-factor FF-model [13]. Although the CAPM model is
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still widely used, empirical tests show that a single factor model is
not sufficient to quantify the systematic risk, leading to significant
degradation in the achievable performance of the estimation algo-
rithm. Conventionally, state-estimation algorithms represent the as-
set returns with a constant Beta which provides an estimate of the
average risk in relation to the risk of the overall market [14]. The
Ordinary Least Squares (OLS) regression is, therefore, classically
used to estimate the constant Beta both in the CAPM [15, 16] and
the FF [9] frameworks. Although assuming a constant Beta is papu-
lar in the financial literature, it is questionable in practice and comes
with a great downfall, i.e., data frequencies and time intervals are
ignored. As a result, much attention has recently been devoted to de-
velop and use time-varying beta models [17-20]. Current research
is, however, broadly centered around developing dynamical state-
estimation algorithms in the CAPM framework. Application of dy-
namical estimators to multi-factor models, specially the FF-model,
is still in its infancy. The paper addresses this gap.

Contributions: The paper proposes a Gaussian sum filter (GSF)
with an interacting multiple model (IMM) collapsing step obtained
by modeling the observation noise with Gilbert-Elliott (GE) model.
As far as we know, no one has used the multiple model collapsing
methodology in this fashion and this is the first time to make a con-
nection between GE-model and IMM estimators. The second contri-
bution of the paper is non-Gaussian filtering of systematic risk (Beta)
via the proposed interactive Gaussian sum filter (IGSF). In particu-
lar, we focus on filtering an FF-model with non-Gaussian statistics.
The IGSF resolves the computational burden of the GSF, and allows
for this particular class of non-Gaussian problems in the financial
econometrics to have a solution. The paper applies a new signal pro-
cessing technique in a new application, this is a breakthrough in both
signal processing and finance.

To better position the contributions of the paper, Table 1 pro-
vides a classification of the existing estimation methodologies in the
context of financial econometrics. It is observed that very limited
research has been devoted to the problems belonging to Category
(v), i.e., developing state-estimators for risk management with non-
Gaussian statistics. Although several important financial algorithms
are developed based on the normality assumption, due to fat tails of
asset returns [21], excessive kurtosis, and asymmetry of the finan-
cial data [22], this assumption has been firmly rejected in empirical
studies [26]. In fact, there are extensive evidence [27, 28] that fi-
nancial returns exhibit non-normalities. Dealing with Non-Gaussian
error distributions is, therefore, the fundamental statistical problem
when developing dynamical estimators for the FF-model. The fo-
cus of the current filtering methodologies is on developing robust
estimators against outliers [21] by regularizing the Kalman filter
(KF). However, regularized estimators require numerical iterations
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Risk Model Beta Model Statistics Estimator
(Observation-Model) | (State-Model)

(i) CAPM Constant Gaussian OLS [15,16]

(ii) CAPM Time-varying Gaussian OLS [17]-[18]
(iii) CAPM Constant Non-Gaussian Si?ﬁlllg]]_zs[g%ator
(iv) Fama-French Time-varying Gaussian KF [23-25]

(v) Fama-French Time-varying Non-Gaussian | Regularized KF [9]

Table 1. Classification of filtering methodologies for Systematic risk estimation.

and their performance critically depends on the convergence, accu-
racy and, complexity of the underlying optimization problem. An
attractive alternative solution for estimating the systematic risk is
the GSF [30] which outperforms the KF-based algorithms and has
reduced complexity than the particle filter. Due to its exceptional
properties, the GSF has found several applications in fields as di-
verse as target tracking [31-33], space surveillance [34], computer
vision [35], and geoscience [36]. However, due to high computa-
tional cost of the GSF when applied to non-Gaussian risk estimation
problems, the GSF has not yet been applied for this particular class
of problems. To address this problem, we propose to incorporate the
GE-model [37,38] model to represent the non-systematic part of the
risk in the FF-framework. The GE is a classical model in commu-
nication systems for describing burst error patterns in transmission
channels, and it has been widely used to model the intermittent ob-
servations over communication networks. We use the GE-model in
a different and intuitively pleasing way to model the non-Gaussian
noise. We develop the IGSF by incorporating an intelligent Bayesian
adaptation technique to collapse the resulting Gaussian sum at each
cycle into an equivalent single Gaussian term. The IGSF extends [39]
by performing an IMM collapsing step instead of the multiple-model
collapsing step.

2. NON-GAUSSIAN MODELING IN FF-MODEL

In this section, we develop a non-Gaussian state-space model for
dynamical (time-varying) estimation of Beta. The state variables are
the market Beta (31, size Beta 3 ]is) , and value Beta 3 ](CV). The FF con-
stitutes the observation-model, and the GE forms the non-systematic
risk (noise model).

A. FF-based State-Space Model
The FF-model of a portfolio or an asset is given by [13]

(€]

(f)

Tk_"'(f =y +( (_ (f)),ﬁk-‘rskﬂ,is)-‘r?{kﬁ;iv)-i-lfk,

where k denotes the time 1ndex 7 is the return of an asset, r;;

is the risk-free return, and rk is the return on the market portfo-

lio. Summation {7y — r,if )} is the excess return of an asset, while
{ri) — 77} is the excess return of the market. The additional pa-
rameter o, represents the excess expected return of the asset over
the market index. Term Sy (small minus big (SMB)) is the average
return on three small portfolios minus the average return on three
big portfolios. Term Hj, (high minus low (HML)) is the average re-
turn on two value portfolios minus the average return on two growth
portfolios [13]. Eq. (1) is used as the observation model, represented
in the conventional form as

2z = Hyxy + v,

(@)
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where based on Eq. (1), the observation is defined as zx, = 1, — r,if >,
the observation model is defined as Hy = [1, (r}, o _ ,(cf)), Sk, Hul,
and the state vector is given by @, = [au, Bk, ,(CS>, ]iv)]T, We for-
mulate the state model as
(1-¢)a &
_ (1-¢")5 &
xy, =Pxr_1+ 1_ ¢<S))6(S) + £,ES> s 3)
(1- ¢(V))/B<V> {](cv)

where @ is a diagonal matrix of the reverting factors, i.e., ® =
diag(¢™, ¢, ¢ ™M) Terms 3, 3O, and V) are the constant
means of the three betas. The state model given by Eq. (3) can ac-
commodate different time-varying Betas depending on the values of
the underlying factors: (i) Random Coefficient Model (RCM): where
o= ¢(S> = ¢(V) =0. The RCM assumes that each beta fluctuates ran-
domly around a mean value; (ii) Random Walk Model (RWM): where
o= qu(S) = ¢(v) =1,and f= B<S) = B(V) =0, and; (iii) Mean Revert-
ing Model (MRM), where the reverting factors and constant means
are non-zero. Next, we model the observation noise v in Eq. (2).

B. Gilbert-Elliott as Non-Systematic Risk Model
Term vy, in the FF-model is the part of the return to the asset
which can not be modeled and is typically referred to as the non-
systematic risk. As stated previously, we propose to model the non-
systematic risk v by GE-mode, which is able to account for the
non-normality of the Beta in the FF-framework. The GE-model is
a 2-state Markov-chain with a “good” (G) and a “bad” (B) state.
In the context of risk management, we model the good state (G)
with a Gaussian distribution p* (1) = N (v, R™M) which is the
probability distribution function (PDF) of the nominal/background
systematic risk. The bad state (B) is modeled with p(2) (vk) which is
the PDF of the dominant heavy-tailed Gaussian noise. In this paper,
we consider a Gaussian density p'® (1) = N (v®, R®) with a
large variance/covariance, i.e., (R(Z) > R(l)), to model B. The pro-
posed model serves as an approximation to the fundamental Middle-
ton Class-A noise model which has been used extensively to model
physical noise arising in radio and acoustic channels. The observa-
tion noise vy, is completely defined by the mode transition governed
by the following homogeneous Markov chain
@ _ | 1—g g

P[]

1=b @

where P(miG) |m§£)1) = g is the transition probability from state
B to state G, and P(m )|m(G)1) = b is the transition proba-

bility in the reverse directlon from state G to state B. Note that

(G) = {ms, = G} is the event that mode G is in effect at iteration
k. Eq (4) models a discrete stochastic process and governs the ob-
servation noise jumps when it switches from the good state to the bad



sate and vise-versa. The value of the Eq. (4) for time-varying Beta
estimation is that the fat-tails in the FF-framework can be explicitly
included through regime jumps. Besides, using Eq. (4), IMM-based
algorithms can be developed to filter the systematic risk. The hid-
den Markov chain underlying the GE-model which represents the
probability transition between the two Gaussian components, differ-
entiates it from the e-contaminated models. This new class of GE-
based models have the ability to describe a non-Gaussian noise en-
vironment in different practical applications, such as target tracking
in the presence of glint noise, spread-spectrum communication sys-
tems, and outlier rejection in image processing applications.

3. DYNAMICAL ESTIMATION OF NON-GAUSSIAN BETA

As a result of using the GE-model, we are dealing with a hybrid
system with two behavioral modes (good state G and bad state B).
However, in contrary to the conventional multiple-model adaptive
estimation algorithms [40], both behavioural modes share the same
state-model (Eq. (3)). On the other hand, the parameters of the ob-
servation model (Eq. (3)) differs from one to another, i.e., one mode
uses the distribution p* (1) of the good state while the other is
based on the distribution p‘® (1) of the bad state. The modes of
the hybrid system evolve according to the Markov chain (Eq. (4))
describing the GE-model. To better motivate our filtering method-
ology, we note two points here: First, although there are extensive
evidence that the asset returns exhibit non-normalities, GM model-
ing has not yet been considered for representing the non-systematic
risk in the FF-framework. However, in light of Wiener theory of ap-
proximation, any non-Gaussian density can be approximated with
a GM. Second, there is no GSF or IMM algorithm developed for
time-varying state estimation for asset management based on fac-
tor models as the complexity of such algorithms assumed to become
exhaustive over time in the financial literature. The IGSF through
a modified Bayesian adaptation which incorporates the transition
probability of the underlying GE-model, obtains the optimal (in the
minimum mean square error (MSE) sense) single Gaussian approx-
imation of the posterior distribution. Incorporation of GE-model in
the collapsing step results in a totally novel algorithm with constant
complexity.

A. The IGSF Filter with Parallel Filters

In order to estimate the state vector, one approach is to imple-
ment an IMM algorithm with two parallel filters: (i) A KF matched
to the good state with p() (1) as the non-systematic risk (obser-
vation noise), and; (ii) A second KF matched to the bad state with
p@ (vk) as the non-systematic risk. The IMM algorithm recursively
runs these two filters in parallel and computes the overall estimate by
forming a weighted average of the two state estimates. Each cycle
of the IMM algorithm consists of four major steps: (i) Interaction,
where the previous estimate of all filters are mixed together to be
used as the initial conditions for the current iteration; (ii) Filtering,
where m. KFs run in parallel and form intermediate state-estimates;
(iii) Mode-probability evaluation, where the probability of each be-
haviour mode is computed based on the innovation sequence of the
individual filters, and; (iv) Combination step to compute the overall
state estimate by forming a weighted average of the local state esti-
mates. Next, we propose an alternative solution which instead uses
an internal IMM-style step to collapse the Gaussian mixture repre-
sentation of the predictive observation into a single Gaussian density.
This allows a single Kalman recursion to be implemented at each it-
eration.
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B. The IGSF Filter with a Single Coupled Filter

Given the record of measurements Zr = [27,...2f]7 =
{Zx_1, z1}, the goal of the IGSF is to compute the mean-squared-
error (MSE) of the filtered estimate &y, = E{xk|Zy} of the
state vector xy. Intuitively speaking, the IGSF approximates the
predicted measurement density f(zk|®k, Zr—1) with a Gaussian
mixture (GM) consisting of (m. = 2) components by implementing
m. interconnected and coupled KFs. First we note that, model-
ing the non-systematic risk with the GE-model results in a GM
representation for predicted measurement density. In other words,
f(zk|@r, Zr—1) is expressed as a linear combination of (m. = 2)
Gaussian terms, one corresponds to the density of the good state
while the other one corresponds to the density of the bad state. The
predicted measurement is

f(zrlzr, Zp—1) = Zf(zk\:ck, Z1, FO(FP |2k, Zir).

1=1
(5)
The overall state estimate at each iteration is then computed by col-
lapsing this Gaussian sum into a single Gaussian using an IMM-type
adaptive Bayesian law. In this regard, the paper establishes a close
relationship between the IMM algorithm and collapsing Gaussian
sums. This observation is intuitively pleasing in nature and can pro-
vide new insights into further developments in this context. The main
difference between the proposed IGSF and the IMM algorithms is
incorporation of the Gaussian mixture collapsing step. Specifically,
there is a difference in terms of how the weights are calculated in the
IGSF in comparison to the IMM algorithms, as will be covered later.
Computation of (5) requires the following two terms:
1. Mode-Matched likelihood Functions: The observation likelihood
conditioned on F, ,il) (the first term on the right hand side (RHS) of
Eq. (9)), is a Gaussian density as follows

f(zklmlwzkfh]:lil)) :N(ﬁlil\zgfpsl(gl))a (6)

where local predictive measurement z,i” and its associated local con-
ditional covariance S,(f‘)k are computed through the Kalman filter
matched to each mode as follows

5 (1)
Zklk—1

sy =

Hi@pp o+ 00, 0]

and H.Py, H! +R). @®)
A Gaussian sum like the one in Eq. (5) can not be easily accommo-
dated in a recursive Kalman like filter. Thus, it has to be replaced by
an equivalent Gaussian term. By applying the smoothing property of
the conditional expectation operator on the predicted measurements
(resulting from each member of the GE-model), we obtain the best
mean-square approximation of the Gaussian sum as a single Gaus-
sian, i.e., f(zk|®r, Zr-1) = N (Zkjk—1, Sk), where

(|21} = BB FOY Zion)

Zk|k—1

> 2 pF |2k @, Zien)- ©
i=1

Similarly, the error covariance is computed as

Sk = E{(zk — Zrjp—1)(zx — £k|k—1)T|Zk—1}

me

~ (1 l N . NG -
= Zwl(c)[sl(c + (z;(q)k,l—Zk\kfl)(zg(g‘)k,l—zk\kfl)q- (10)
1=1



2. Adaptive Weights: We develop the weight update step of the IGSF
by establishing an intuitively pleasing connection between the IGSF
and the IMM algorithm. More specifically, the m. Gaussian compo-
nents in the IGSF are analogous to m. behaviour modes of the IMM,
therefore, w,il) which is the weight for the /th component of the
IGSF is analogous to the probability of behaviour mode F ® in IMM
which is computed assuming that mode F*) describes the true sys-
tem behavior at iteration k. In the IGSF, the weights of each compo-
nent is updated via a modified Bayesian law. The modified Bayesian
law is derived using the GE-model and the observation innovation
sequence, and by applying the Bayes’ rule [30]. More specifically,
the weight wff) corresponding to the /th component can be inter-
preted as the conditional density p(F, ,il) | Z};) corresponding to com-
ponent F, ,il), defined as

(2| F, Zi )p(F | Zi-)

) 2 0 /
w,’ = p(F | Zk) = 11
k p( k| k) p(zk|Zk—1) ( )
Noting that
l ot l j j
P(F1Zk1) = Y p(FIFD OpFED 2, (12)

j=1
L 1 1
and p(zx| Ze-1) = > p(zel Y, Zi-0)p(F| Zia). (13)
j=1
Eq. (11) can be expressed as follows
17D Ze1) 5550 P F P 2 )

w® = : _
S p(=kl FY Zeoa)p(F | Zk-1)

(14)
In order to compute Eq. (14), three terms are required: (i) Term
p(F, Igl) |F, ,(i) 1) which is provided by the transition matrix of the GE-
model; (i) Term p(zx|Z_1, FO) = N (P, SO which is the

augmented likelihood function of component F), where r,(f) =

ZE — zA,(Clﬁkil is the innovation vector (obtained from Eq. (7)) and

S,(:) is defined in Eq. (8), and; (iii) Term p(]-',il_)1 | Z—1) reflects the
prior knowledge regarding the weights before the new measurement
zj, becomes available. The point estimates (£, and Py, ) are com-
puted by forming a weighted sum of those m. local Gaussian filters.

4. SIMULATIONS

Empirical tests are performed on real historical data from 100 ran-
domly selected stock returns to evaluate the performance of the pro-
posed IGSF. The stock/market returns and other required parameters
are obtained from the center for research in security prices (CRSP)
database, and the Fama-French datasets. As the focus of the paper
is on application of GSFs for modeling of the observation noise, a
single RWM state model is used in all the implemented algorithms.
The stock returns from the first 120 months are used as training data
to form the required parameters and the next 60 months are used as
the test data to evaluate the performances. The initial state value xo,
and the constant means of the state variables are computed using an
OLS algorithm. The parameters of the state-space model, i.e., the
covariance of the state noise Q and the observation noise variances
of the GE-model, are computed in advance using maximum likeli-
hood algorithm [39]. The coefficient of variation of the root mean
squared error, CV(RMSE), is used to evaluate the performance of

906

0.24

KF
0.22}% —

—oe= IMM

CV(RMSE)
o o o
B b &

[=}
[
N

0.1

0.08 L L
0 10 20 30 40 50 60

Filtering Iteration (k)
Fig. 1. The CV(RMSE) comparison between the KF; IMM filter,
and; the IGSF. The filtering iterations are corresponding to monthly
returns.

the proposed IGSF algorithm. The CV(RMSE) is computed as fol-

lows CV(RMSE) = % ZZ:I (rk — fk)2/f, where 7, is the esti-
mated asset return, and 7 is the mean of the asset return. Fig. 1 plots
the average CV(RMSE) results computed based on three algorithms:
(i) Kalman filter with Gaussian observation noise; (ii) The IMM fil-
ter, and; (iii) The proposed IGSF. It is observed that the proposed
IGSF provides superior performance over its counterparts. Averaged
over time and all stocks, the CV(RMSE) of the IGSF is reduced
by 18.11% in comparison to the KF. This significant improvement
shows the potential application of GSFs and multiple-model signal
processing techniques for time-varying state estimation in financial
econometrics. Multiple-model representation of the state evolution
and collapsing a Gaussian sum model of the predictive distribution
will be the focus of our future work to further improve the perfor-
mance of the IGSF.

5. CONCLUSION

Motivated by the fact that asset returns exhibit extensive non-
normalities in the context of financial econometrics, we propose
the IGSF which is a GSF with an IMM collapsing step. The IGSF is
derived by modeling the observation noise with GE-model. This is
the first time to make a connection between GE-model and the IMM
estimators. The IGSF utilizes a self-learning mechanism to resolve
the computational burden of the GSF, and allows for this particular
class of non-Gaussian problems in the financial econometrics to
have a solution.
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