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Abstract—Smart metering and submetering technologies make
energy data available at the granularity of individual appliance.
Based on a real-world data set, we characterize energy con-
sumption of individual appliances, and quantify the flexibility for
demand response as realizable increase and decrease of energy
consumption. Results show significant flexibility potential in
residential appliances and substantial cost savings for customers
under time-of-use pricing.

Index Terms—data analysis, demand response, flexibility, res-
idential appliance.

I. INTRODUCTION

Deployment of advanced metering infrastructure (AMI)
enables residential demand response (DR). Smart meters and
submeters produce detailed data of electricity consumption by
end use. Such granular data opens up new opportunities to
promote residential DR programs. Measurements of individual
appliances and circuits enable better understanding of con-
sumption patterns and utilization of DR resources. However,
the methodologies that discover the underlying structure of
AMI and submeter data and convert the fine-grained energy
data into useful information to support decision-making for
DR have not been formalized.

In this paper, we study the electricity consumption behavior
of individual appliances and quantify their flexibility potentials
for offering DR. In particular, we use statistical techniques
to analyze energy consumption data of various appliances
and produce distributions of demand flexibility in individual
appliances. Such statistics can be translated into actionable
insights for DR providers to identify and select appropriate
appliances and users.

First, we characterize the consumption pattern by extracting
descriptive statistics from the appliance-level data. Specifi-
cally, the variation in the energy consumption is analyzed
across different types of appliances as well as different tem-
poral factors for individual appliances. Aiming at flexibility
estimation, we also quantify the availability and reliability of
each appliance as DR resource.

We then evaluate the flexibility potential of individual
appliances using a quantifiable definition — the increase and
decrease of energy that can be realized with user-specified
constraints [3]. The empirical flexibility is calculated for
different appliances by either shifting or shedding the load.
We note that the flexibility is not only estimated in the form
of a nominal value but also a distribution.
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Finally, a case study is provided to estimate the potential
cost saving for customers using time-of-use (TOU) rates [4].
Numerical results show significant flexibility potential in res-
idential appliances and substantial cost savings for customers
from DR participation.

There is a substantial body of literature on studying demand
and flexibility of residential appliances. Most analyses [5]–[12]
only focus on a particular type of appliance. Thermostatically
controlled loads (TCLs), such as AC, clothes washer and
dryer and water heater, receive the most attention due to their
high energy consumption and suitability for DR. Physical and
statistical models are usually adopted by fitting the avail-
able appliance-related data for flexibility quantification. Such
analyses cannot provide insights in selecting the appropriate
type of appliance to offer DR, due to the lack of comparison
between various appliances.

A few studies [3], [13] investigate and compare the demand
and flexibility of multiple residential appliances. Such analyses
usually require survey information or customer interaction to
characterize the demand flexibility. However, the requirement
of intensive inputs from customers limits the scale and diver-
sity of appliances being analyzed.

In this study, more than 20 distinct appliances are stud-
ied from their hourly energy consumption data. The cross-
appliance comparison can provide valuable insights in identi-
fication and selection of appropriate resources for DR offering.

II. DATA

A. Data Set

The data set used in this study is the hourly electricity
consumption of individual appliances. Data is collected from
345 homes with each having complete record for at least one
appliance, mainly located in Austin, Texas, in 2016 [2].

The data is pre-processed before the analysis to guarantee
reliable statistics. First, appliances owned by less than 20
users are excluded. Second, we aggregate the consumption on
different units of the same appliance. For example, if a user
has multiple AC units, then the hourly consumption of AC is
the total use of all units. Finally, for each appliance, users who
have negligible consumption (maximum hourly consumption
is less than 0.1 Wh) or incomplete record (unavailable records
are more than 100 hours in the year) are excluded.

B. Classification of Appliances

Appliances can be categorized into three types according to
operating characteristics: inflexible loads, flexible deferrable
loads, and flexible non-deferrable loads. Inflexible loads can-
not be deferred in time or curtailed during operation. Flexible
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TABLE I
APPLIANCE CLASSIFICATION AND NUMBER OF OWNERSHIP

Inflexible Flexible
Deferrable Non-Deferrable

bathroom (78), bedroom
(63), cook top (57), disposal
(92), garage (35), microwave
(149), kitchen (32), living
room (54), office (32), oven
(121), vent hood (27)

clothes washer
(193), dishwasher
(183), dryer (214),
EV (60), hot tub
(23), pool pump
(21)

AC (274),
furnace (225),
light (101),
refrigerator
(205), water
heater (27)

0.0746
0.0873
0.094
0.0967

0.1136
0.1281
0.1347

0.2453
0.4138

0.5184
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Fig. 1. Top 10 appliances ranking by average hourly energy consumption.

loads can be further divided into deferrable and non-deferrable
loads according to the temporal flexibility. Deferrable loads
can be shifted in time but not changed in magnitude while
non-deferrable loads can only be curtailed in magnitude.

The classification of the appliances analyzed in this study
is given in Table I along with the number of owners. We note
that inside and outside lights are separately monitored in the
data set. Only outside lights are assumed to be curtailable.

III. CHARACTERISTICS OF APPLIANCE ENERGY USE

A. Variation across Appliances

The purpose of analyzing consumption variation across
appliances is to identify flexibility potential and provide a pre-
liminary guidance on appropriate appliance selection when DR
is needed. To determine how much electricity each appliance
use, we first calculate the average hourly energy consumption
of individual appliances.

Let xi,j(t) be the hourly energy consumption of appliance
i for user j at time t, where t is the hour index of year 2016,
i.e., t ∈ Tyear , {1, 2, · · · , 8784}. The average hourly energy
consumption x̄i of appliance i is given by

x̄i =
1

|Tyear||Ji|
∑
j∈Ji

∑
t∈Tyear

xi,j(t) (1)

where Ji is the set of users who own appliance i.
Fig. 1 presents the top 10 energy-consuming appliances with

the average hourly energy consumption. Since the majority of
high energy-consuming appliances are flexible loads, there is
a substantial fraction of residential energy consumption can
be used to provide DR.

Since the average hourly energy consumption does not
reveal the actual electricity usage when the appliance is in
use, it alone may not be sufficient for efficient identification
and selection of DR resource when the demand reduction is
needed at a certain time. To exclude idle time of appliances,
we use the average power as another measure.

Estimating the on or off status of an appliance from hourly
energy consumption data is non-trivial. Here we use a simple
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Fig. 2. Top 10 appliances ranking by estimated average power.

criterion to detect if an appliance is actually in use. Specifi-
cally, a small threshold θ is chosen to rule out the hours when
the hourly energy consumption is below it. Mathematically,
the average power x̃i of appliance i is estimated by

x̃i =

∑
j∈Ji

∑
t∈Tyear

xi,j(t)1{xi,j(t)>θ}∑
j∈Ji

∑
t∈Tyear

1{xi,j(t)>θ}
(2)

where 1{s} is the indicator function whose value is one if the
statement s is true and zero otherwise.

The average power of the top 10 appliances is presented in
Fig. 2, where the threshold θ is set to be 0.01 kW. The rank of
appliances by average power x̃i is completely different from
that by average hourly energy consumption x̄i. When high
power appliances are in use, they can provide more flexibility
than appliances with high energy consumption.

B. Variation over Time

In general, the energy consumption of appliances changes
over time. Variation in electricity use may present daily,
weekly, or seasonal patterns due to regularity in human activ-
ities. The analysis of temporal variation in appliance demand
provides prior knowledge into load modeling and prediction,
which are essential inputs of decision making algorithms for
DR.

The analysis of temporal variation is based on the nor-
malized consumption data of each appliance. Formally, the
normalized hourly energy consumption x̄i(t) of appliance i at
time t is given by

x̄i(t) =
1

|Ji|
∑
j∈Ji

xi,j(t). (3)

According to time of day, day of week, and month of year,
temporal patterns of the normalized average hourly energy
consumption have been identified.

The effect of time of day on electricity use is observed in all
studied appliances. Daily variation in energy consumption can
reflect human activities. Here we highlight daily consumption
profiles of some representative flexible loads. Since the top
energy-consuming appliances have the most DR potential, we
choose AC, EV, light and pool pump to illustrate their variation
characteristics.

As shown in Fig 3, daily load shapes vary widely across
appliances, where diamond represents the mean value. As a
TCL, the load profile of AC bears strong similarity to the
temperature profile. This explains the observation that the
average consumption of AC reaches the peak around 5 PM and
the bottom around 7 AM. Another reason for the peak time
being around 5 PM can be the fact that the room temperature
is much higher than the desired level when people arrive at
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Fig. 3. Daily variation in energy consumption of selected flexible appliances.

home from work. The big variance at the peak might indicate
the uncertainty of time when people come back home. The
home-work commuting pattern is more obvious in the load
shape of EV charging — the majority of EV charging activities
happen during night time. Since a single charge usually does
not exceed 3 hours, substantial DR can be provided, especially
during the evening when most inflexible appliances, such as
kitchen appliances and room plugs, are being used. Lights are
mostly used during the evening, as expected. But the non-zero
consumption during the day time seems to be unnecessary, thus
being curtailable. The load shape of pool pump seems to be
similar to that of solar generation. Such similarity indicates the
possibility of aligning pool pump use with solar generation.

Compared with time of day, the other two seasonal factors
only affect a few appliances. For day of week, only clothes
washer, dryer, hot tub and some room plugs consume more
energy on the weekend than on weekdays. For example, the
average hourly energy consumption of clothes washer on
Sunday is more than 60% of that on Wednesday, while no
significant difference is observed across weekdays. Month of
year is influential on energy consumption of TCLs due to
temperature seasonality. An interesting finding of the monthly
pattern is that the electricity use of lights in December is much
higher than other months, ranging from 16% to 35%. This is
most likely caused by lighted holiday decorations.

C. Availability and Reliability

In order to estimate the demand flexibility of each appliance,
we need to quantify how much power is available for DR and
how reliable each resource is. To this end, we introduce the
concepts of availability and reliability.

The availability ai,j(t) of appliance i in home j at time t
is defined by the maximum amount of energy can be used for
DR. The value of availability ai,j(t) is equal to the hourly
energy consumption xi,j(t).
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Fig. 4. Normalized empirical reliability curve of selected flexible appliances.

The reliability ri,j(a) measures how reliable the appliance i
in home j is when DR a (in kWh) is needed. Mathematically,
we define the reliability ri,j(a) by the probability that the
random availability Ai,j of appliance i in home j exceeds the
required DR level a, i.e.,

ri,j(a) = P[Ai,j ≥ a]. (4)
Note that the reliability ri,j(a) is essentially the complemen-
tary cumulative distribution function of Ai,j , which can be
estimated by

r̂i,j(a) =
1

|Tyear|
∑
t∈Tyear

1{xi,j(t)≥a}. (5)

The normalized reliability curve r̂i(a) = 1
Ji

∑
j∈Ji

r̂i,j(a)
of selected appliances is shown in Fig. 4 with highlighted DR
levels at 0.2, 0.5 and 1.0 kWh. Decay rates vary significantly
across appliances as well as DR levels. A plausible conclusion
can be drawn is that the rank of average hourly energy
consumption has positive correlation with reliability within
certain range. For example, if we need 0.2 kWh demand
reduction, pool pump is the most reliable resource for DR
as r̂poolpump(0.2) = 0.747.

IV. FLEXIBILITY

For residential appliances, the demand flexibility indicates
how much load can be shifted or reduced within user-specified
limits. Here we adopt the quantifiable definition of flexibility
in [3]. Formally, the demand flexibility of appliance i in home
j at time t is defined as the realizable increase ∆x+i,j(t) and
decrease ∆x−i,j(t) of energy.

To estimate flexibility, we use two naive measures to repre-
sent user-specified limits. We adopt the maximum delay τmax

(in hour) to represent the consumer tolerance for deferrable
loads. The maximum curtailment ratio λmax(t) at time t is
used for non-deferrable loads. We note that the flexibility is
estimated at the normalized consumption values, i.e., ∆x̄+i (t)
and ∆x̄+i (t), with the assumption of the expected consumption
being x̄i(t) for appliance i at time t.

A. Deferrable Load

For deferrable loads, we investigate the impact of maximum
delay and time of day on flexibility. Specifically, the flexibility
is calculated by shifting the year-long load profile by the
maximum delay. Results of EV and pool pump are shown
in Fig. 5. As shown in Fig. 5(a), the flexibility grows with the
maximum delay for both appliances. When the delay bound
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Fig. 5. Flexibility of selected deferrable loads.
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Fig. 6. Flexibility (demand reduction) of light.

is tight (τmax < 3), the increase and decrease flexibility seem
to be symmetric. As the maximum delay increasing, the de-
crease flexibility is slightly greater than the increase flexibility.
Comparing Fig. 5(b) with Fig. 3, the shape of availability and
flexibility seem to be closely related: the shape of decrease
flexibility looks similar to the availability profile while the
shape of increase (in positive value) is complementary to the
availability curve. This observation implies that the availability
is a reasonable indicator of flexibility for deferrable loads.

B. Non-Deferrable Load

Since the flexibility of non-deferrable loads arises from
curtailment, the flexibility is essentially the demand reduction.
The flexibility of non-deferrable loads is thus calculated by
reducing the energy consumption by the maximum curtail-
ment. Due to space limit and numerous studies on TCLs in the
literature, we only present the result of light here. The fraction
of outside light consumption, i.e., x̄out(t)/(x̄out(t) + x̄in(t))
is used as the maximum curtailment ratio λmax(t). Fig. 6
shows the flexibility profile of light. In contract to deferrable
loads, the flexibility profile of light differs from its availability
shape in Fig. 3. This is caused by the time-varying maximum
curtailment ratio λmax(t).

We note that the flexibility is not only a nominal value
as energy increase or decrease but also a distribution. Based
on the availability and reliability of appliance demand, more
sophisticated methods can be to used to estimate flexibility

TABLE II
TIME-OF-USE PERIODS AND CHARGES ($/KWH) [4]

Period Charge
Jun.-Sept. Oct.-May

Off-Peak Sat-Sun, Mon-Fri: 10PM-7AM 0.02108 0.01959
Mid-Peak Mon-Fri: 7AM-3PM, 6PM-10PM 0.02829 0.02556
On-Peak Mon-Fri: 3PM-6PM 0.12887 0.02727
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Fig. 7. Cost savings in flexible deferrable appliances.

and schedule appliances to achieve desired DR level. In the
next section, we use a case study to illustrate the potential
savings for customers by scheduling deferrable loads.

V. OPTIMIZATION FOR CUSTOMER

TOU rate of energy consumption provides economic in-
centives for customers to shift or reduce consumption during
high-priced periods. Below we show how much saving can be
achieved by utilizing the flexibility in deferrable loads under
the TOU pricing in Table II.

Since the deferrable load can only be shifted in time, the
load profile of a task of the appliance cannot be changed.
Therefore, the scheduling problem is essentially to determine
the optimal start time of each task within the maximum delay.
Consider the kth task of appliance i in home j within the
billing period. Let {xi,j(t)}t∈[tstart

i,j,k,t
end
i,j,k] be the load profile

of this task, where tstart
i,j,k and tend

i,j,k are the original start and

end time, and xi,j(t) > θ for all t ∈
[
tstart
i,j,k, t

end
i,j,k

]
. Given the

maximum delay τmax
i,j , the optimal delay τ∗i,j,k of this task is

given by

τ∗i,j,k = argmin
τ∈{0,1,··· ,τmax

i,j }

tend
i,j,k∑

t=tstart
i,j,k

c(t+ τ)xi,j(t) (6)

where c(t) is TOU rate at time t.
Fig. 7 shows the maximum and average cost savings of

each appliance at different maximum delay values, where the
maximum and average are taking over all owners of each
appliance. As expected, the cost saving is highly positively
correlated with the flexibility. This suggests that consumers
can benefit significantly from DR participation.

VI. CONCLUSION

We present an empirical analysis of demand and flexibility
of different appliances using a real-world data set. Various
metrics are used to characterize load profiles of individual ap-
pliances. These descriptive statistics provide valuable insights
in identification and selection of appropriate appliances as DR
resource. The quantification of flexibility shows how much
power can be used and when it can be used for DR.
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