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Abstract—In this paper, we consider the problem of state
estimation and topology identification in power systems. We
assume the DC model of real power measurements with unknown
voltage phases and an unknown admittance matrix. We show
that this problem is equivalent to the blind source separation
(BSS) problem, where the mixing matrix is a weighted Laplacian
matrix. We propose two new Blind Estimation of States and
Topology (BEST) methods for this problem. The first method,
Cov-BEST, is based on utilizing the states’ second-order statistics
and the positive-definiteness of the reduced Laplacian matrix. The
second method, Generalized Laplacian Separation (GLS)-BEST,
is obtained by applying any general BSS method, followed by an
approach that resolves the inherent BSS ambiguities by utilizing
the Laplacian matrix properties. In contrast to existing methods,
the proposed methods achieve full recovery of the topology
matrix and are not limited to matrix eigenvectors estimation. The
performance of the proposed methods is evaluated for a general
network with an arbitrary number of buses and for the IEEE-14
bus system, and compared with the oracle state estimator.

Index Terms—Blind source separation (BSS), Laplacian mixing
matrix, Topology identification, State estimation, Power system
monitoring

I. I NTRODUCTION

State estimation and network topology are critical compo-
nents of modern Energy Management Systems (EMSs) for
multiple monitoring purposes, including analysis, security,
control, and stability assessment of power systems. In the
DC model, the states are the bus voltage angles, while the
grid topology includes the arrangement of loads or genera-
tors, transmission lines, transformers, and statuses of system
devices. The grid topology is an integral part of state esti-
mation and is essential for security, power market design,
scheduling of connected devices, and optimization of elec-
tricity dispatchment. Usually, it is assumed that the EMS
has precise knowledge of the grid topology [1]. However,
this knowledge may not be available and may be incorrect
due to malicious attacks [2], failure, opening and closing of
switches, and the presence of new loads and generators. Thus,
methods for state estimation and topology identification are
crucial for obtaining an accurate system model and high power
quality. Additionally, topology identification can be usedfor
identifying faults and line outages, and for cybersecurityin
the context of cyberattacks on the topology data.

Several approaches to topology identification have been
proposed in the literature. Detecting topological changeshas
been studied in [3, 4] and the conditions for the detectability of
topology errors are studied in [5]. Recently, a few papers have
addressed blind estimation of the grid topology by observing
multiple power injection measurements [6, 7], voltage and

power data obtained by phasor measurement units (PMUs)
[8], voltage measurements and their associated correlations
[9-11], historical voltage phasor measurements and partially
known grid topology [12], and electricity price based market
data [13]. The methods proposed in [6, 7, 13] can reveal
part of the grid topology, such as the grid connectivity and
the eigenvectors of the topology matrix, but they cannot
reconstruct the full topology matrix with exact scaling andtrue
eigenvalues. In addition, these methods are highly dependent
on the parameters used in the optimization process, on the
initialization step, and on the sparsity level of the states[6] or
of the topology matrix [7]. Blind source separation (BSS) [14-
19] refers to the problem of recovering signals from several
observed mixtures without prior knowledge of the sources and
the mixing system. In the last decade, modern optimization and
statistical methodologies have been shown to be powerful tools
in power system problems (see e.g. [20-25]). In this context,
applying BSS techniques for state and topology estimation
seems a promising tool.

In this work, we consider the problem of topology identifi-
cation in power systems with unknown states. We use the DC
power-flow model with active power measurements. First, we
show that this problem is equivalent to the problem of BSS
with a weighted Laplacian mixing matrix, where the weights
are determined by the branch susceptances. Then, we derive
two Blind Estimation of States and Topology (BEST) methods:
1) Cov-BEST, which uses the states’ second-order statistics
(SOS) and the positive-definiteness of the Laplacian matrix;
and 2) Generalized Laplacian Separation (GLS)-BEST, which
is based on correcting any general BSS method by using the
Laplacian matrix properties. To the best of our knowledge,
these are the first published methods that provide full recovery
of the topology, without any topology information and with
unknown states. Finally, simulations demonstrate that thepro-
posed methods are applicable for different network topologies.

In the rest of this paper vectors are denoted by boldface
lowercase letters and matrices by boldface uppercase letters.
The identity matrix of dimensionK×K is denoted byIK , and
1 and0 denote the constant one and zero vectors. The super-
scripts(·)T and(·)−1 denote the transpose and matrix inverse
operators, respectively. For a full-rank matrixA, A† denotes

the Moore-Penrose pseudo-inverse,A† △
=

(

ATA
)−1

AT .
diag(x) denotes the diagonal matrix with vectorx on the di-
agonal. Themth element of the vectora, the(m, q)th element
of the matrixA, and the(m1 : m2 × q1 : q2) submatrix ofA
are denoted byam, [A]m,q, and [A]m1:m2,q1:q2 , respectively.
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II. SYSTEM MODEL

In this section, we present the power network as a graph,
describe the DC model, and formulate the estimation problem.

A. Power systems as graphs

Power systems are characterized by buses that represent

interconnections, generators or loads, denoted by the setM
△
=

{1, . . . ,M}, and a set of edgesξ
△
= {(m, k)}, where the edge

(m, k) corresponds to the transmission line between busesm

andk. Each line is characterized by the line admittanceYm,k,
∀(m, k) ∈ ξ. Therefore, a power system can be represented
as an undirected graphG = (M, ξ), whereM is the set of
nodes (buses) andξ is the set of edges (connected transmission
lines). The cardinality|ξ| = M(M−1)

2 represents all possible
connections in the system.

An arbitrary orientation is assigned to each edgeei =
(m, k) ∈ ξ, i = 1, . . . , M(M−1)

2 , where e1 = (1, 2), e2 =
(1, 3), . . . , eM(M−1)

2
= (M,M − 1). Then, the associated

topology of the graph can be described by the oriented
incidence matrixB ∈ R

M×
M(M−1)

2 [26], where the(m, i)
element ofB is given by

[B]m,i =







1 ei = (m, k) is connected,m = source
−1 ei = (m, k) is connected,k = source
0 ei = (m, k) is not connected

, (1)

∀m = 1, . . . ,M andi = 1, . . . , M(M−1)
2 . Using the incidence

matrix, the weighted Laplacian of the graph is defined as

H
△
= BYBT , (2)

whereY is a diagonal weight matrix, in whichYi,i = Ym,k

contains the line admittance for theith edge,ei = {m, k} ∈ ξ,
i = 1, . . . , M(M−1)

2 , i.e. ∀m, k = 1, . . . ,M , such thatm < k.
Note that the matrixH defined in (2) is a real, symmetric,
and positive semidefinite matrix, which satisfies the null space
property,H1 = 0.

B. DC model and problem formulation

We consider the DC power flow model [1], which is based
on the following assumptions on the network:

• Branches are considered lossless, which results inYm,k =
bm,k, wherebm,k is the susceptance of the(m, k) branch.

• The bus voltage magnitudes,Vm, m = 1, . . . ,M , are
approximated by 1 per unit (p.u.).

• Voltage angle differences across branches are small, such
that sin(θm − θk) ≈ θm − θk, whereθm, m = 1, . . . ,M ,
are the bus voltage angles.

Under these assumptions, the active power injected at busm

satisfies

pm = −
∑M

k=1,k 6=m
bm,kVmVk sin(θm − θk)

≈ −
∑M

k=1,k 6=m
Ym,k(θm − θk), ∀m = 1, . . . ,M. (3)

Now, letp[n]
△
= [p1[n], . . . , pM [n]]

T be the vector of active

power injected andθ[n]
△
= [θ1[n], . . . , θM [n]]

T the vector of
voltage phase angles at timen, ∀n = 0, . . . , N − 1. Then,

based on the model from (3), the linearized DC model of the
network can be written as

p[n] = Hθ[n], n = 0, . . . , N − 1, (4)

where the topology matrixH is defined in (2) and is con-
sidered static for a short-period of time and under normal
operating conditions. It is assumed thatH is an unknown
deterministic matrix andθ[n], n = 0, . . . , N −1 are unknown
random states. As is customary in the BSS framework (see
e.g. [14-16]), the model in (4) is assumed to be noiseless.
Notwithstanding, in the simulations, it is demonstrated that
the developed methods are robust to the presence of noise.

Due to the null space property of the Laplacian matrix,H,
it has, at most, a rank ofM −1 and the DC model from (4) is
not invertible. Therefore, a reference bus is usually assumed to
have zero voltage phase. Without loss of generality we assume
in the following that θ1[n] = 0, ∀n = 0, . . . , N − 1. By
imposing the constraintH1 = 0 and the assumption regarding
the reference bus, the model from (4) can be rewritten as

p[n] = AH̃θ̃[n], n = 0, . . . , N − 1, (5)

where H̃
△
= H2:M,2:M , θ̃[n]

△
= [θ2[n], θ3[n], . . . , θM [n]]T ,

and A =

[

−1T
M−1

IM−1

]

∈ R
M×(M−1). The model in (5) is

equivalent to

p̃[n] = H̃θ̃[n], n = 0, . . . , N − 1, (6)

where p̃[n]
△
= A†p[n] and H̃ is called the 1st-reduced

Laplacian (see e.g. p. 161 in [26] and [27]). Under the
assumption that there are no unobservable islands in the
grid, the reduced topology matrix,̃H, is a full-M − 1-rank
matrix and, thus, can be identified. In addition, sinceH is
a positive semidefinte Laplacian matrix, then,H̃ is also a
symmetric, positive semidefinte matrix with nonpositive off-
diagonal elements and is a diagonally dominant matrix, i.e.
0 ≤

∑M−1
m=1 [H̃]k,m, ∀k = 1, . . . ,M − 1.

III. SYSTEM IDENTIFICATION AND BSS

In this section, we develop two BEST-type methods for
joint reconstruction of the matrixH̃ and the states̃θ[n],
n = 0, . . . , N − 1. This problem can be interpreted as
a BSS problem with a reduced Laplacian mixing matrix,
which satisfies the aforementioned properties. The original
topology matrix,H, can be reconstructed from̃H by using
the relationH = AH̃AT . In addition, the states̃θ[n], n =
0, . . . , N − 1, can be estimated under the two methods,
based on the estimated topology,H̃, and the measurements,
p̃[n], n = 0, . . . , N − 1, by

ˆ̃
θ[n] = ˆ̃

H−1p̃[n], n = 0, . . . , N − 1. (7)

A. Cov-BEST

The proposed Cov-BEST method is based on the states SOS.
For simplicity it is developed under the assumption that the
state sequencẽθ[n], n = 0, . . . , N−1, is a stationary Gaussian
time-independent random process,θ̃[n] ∼ N (0,Σ

θ̃
), but

it can be used for any zero-mean time-independent process
with a known covariance matrix. This SOS can be obtained,
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for example, by using historical statistical data. Under these
assumptions and by using the model in (6) the normalized log
likelihood of p̃[n], n = 0, . . . , N − 1 is given by [15]:

ψ(H̃) = const−
1

2
trace

(

Σ̂p̃

(

H̃TΣ
θ̃
H̃
)−1

)

− log |H̃|, (8)

whereconst is independent of̃H, Σ̂p̃
△
= 1

N

∑N−1
n=0 p̃[n]p̃T [n],

and it is assumed that the matricesΣ
θ̃

andH̃ are non-singular
matrices. The derivative of (8) w.r.t.̃H is given by

∂ψ(H̃)

∂H̃
= H̃−T Σ̂p̃H̃

−1Σ−1

θ̃
H̃−T − H̃−T . (9)

By equating (9) to zero and substituting the symmetryH̃T =
H̃, one obtains that the maximum likelihood (ML) estimator
for a symmetric positive definite mixing matrix satisfies

ˆ̃
H = Σ−1

θ̃

ˆ̃
H−1Σ̂p̃. (10)

It can be verified that
ˆ̃
H = Σ

− 1
2

θ̃
(Σ

1
2

θ̃
Σ̂p̃Σ

1
2

θ̃
)

1
2Σ

− 1
2

θ̃
(11)

is the unique solution of (10), where we use the decomposi-
tionsΣθ̃ = Σ

1
2

θ̃
Σ

1
2

θ̃
andΣ−1

θ̃
= Σ

− 1
2

θ̃
Σ

− 1
2

θ̃
, In addition, if the

state expectation is nonzero and unknown, thenΣ̂p can be
replaced by the sample covariance matrix [28]

Σ̂p̃ =
1

N − 1

N−1
∑

n=0

(p̃[n]− p̄) (p̃[n]− p̄)
T
, (12)

where p̄
△
= 1

N

∑N−1
n=0 p̃[n] is the sample mean. In future

research, the ML process should be extended by taking into
account additional constraints of the reduced Laplacian matrix.
The Cov-BEST algorithm is summarized in Algorithm 1.

Algorithm 1: Cov-BEST Algorithm

Input: • Observationsp[n], n = 0, . . . , N − 1.
• State covariance matrix,Σθ̃.

Output: EstimatorsĤ and θ̂[n], n = 0, . . . , N − 1.
Algorithm Steps:

1) Compute the modified input̃p[n] = A†p[n].
2) Compute the sample covariance estimator,Σ̂p̃, from

(12) by usingp̃[n], n = 0, . . . , N − 1.

3) Evaluate ˆ̃H = Σ
− 1

2

θ̃
(Σ

1
2

θ̃
Σ̂p̃Σ

1
2

θ̃
)

1
2Σ

− 1
2

θ̃
.

4) Estimate the sources by (7):ˆ̃θ[n] = ˆ̃
H−1p̃[n] and, with

the reference bus,̂θ[n] = [0,
ˆ̃
θ
T [n]]T .

5) Evaluate the full topology matrix̂H = A
ˆ̃
HAT .

B. GLS-BEST

The GLS-BEST is a two-stage method which assumes that
states have an unknown non-Gaussian distribution with known
distribution’s support (range of values). The first stage ofthe
GLS-BEST method is based on applying any general BSS
method [14-18] oñp[n], n = 0, . . . , N −1, from (6) to obtain

the initial estimate of the mixing matrix,̂̃H(0). The second

stage is based on correcting̃̂H(0) by using the characteristics

of the reduced Laplacian matrix and knowledge of the range
of values of the states to resolve the inherent scale and permu-
tation ambiguities of BSS methods [14, 15]. In particular, the
correction of the estimated topology is performed as follows:

1) Permutation - As described in Section II,̃H satisfies
max

m=1,...,M−1
|[H̃]k,m| = |[H̃]k,k|. Therefore, in order to

solve the permutation ambiguity, the columns ofˆ̃H(0)

are reordered such that the element with the maximum
absolute value in each row is placed on the diagonal of
the modified matrix. The reordering is performed from
the first row to theM − 1 row, where a column that was
once reordered will not be reordered again. The reordered

matrix is denoted bŷ̃H(1).

2) Sign - To force the diagonal values of̃̂H(1) to be non
negative, as required for a reduced Laplacian matrix (see

Section II), we multiply each column of̃̂H(1) by ±1 to

obtain ˆ̃
H(2) with a nonnegative diagonal.

3) Scale - In order to solve the scale ambiguity ofˆ̃H(2),
we use the small angles assumption of the DC model
and assume that|θm[n]| ≤ Tm, m = 2, . . . ,M , n =
0, . . . , N − 1, where {Tm}Mm=2 are known thresholds.

Thus, we set the final topology estimator tõ̂H =
ˆ̃
H(2)diag(f2, . . . , fM ), where

fm =
1

Tm
max

n=0,...,N−1
| ˆ̃θ(2)m [n]|, m = 2, . . . ,M −1 (13)

and ˆ̃θ(2) △
= ( ˆ̃H(2))−1p̃[n], n = 0, . . . , N − 1.

It should be noted that for this algorithm there is no unique
solution, as, for example, for different reordering methods at
the permutation stage there can be different solutions. The
algorithm is summarized in Algorithm 2.

Algorithm 2: GLS-BEST

Input: • Observationsp[n], n = 0, . . . , N − 1.
• Thresholds of the voltage angles,{T̃m}Mm=2.

Output: EstimatorsĤ and θ̂[n], n = 0, . . . , N − 1.
Algorithm Steps:

1) Compute the modified input̃p[n] = A†p[n].
2) Apply any BSS algorithm oñp[n], n = 0, . . . , N − 1, to

obtain the mixing matrixˆ̃H(0).

3) Reorder the columns of̃̂H(0) to obtain ˆ̃
H(1), such that

the maximal absolute value of themth row of the
matrix appears at themth column,m = 1, . . . ,M − 1.

4) If [ ˆ̃H(1)]m,m is negative, multiply themth column of
ˆ̃
H(1) by −1 to obtain ˆ̃

H(2), ∀m = 1, . . . ,M − 1.
5) Computefm, m = 2, . . . ,M from (13).

6) Evaluate ˆ̃H = ˆ̃
H(2)diag(f2, . . . , fM ).

7) Estimate the sources by (7):ˆ̃θ[n] = ˆ̃
H−1p̃[n] and, with

the reference bus,̂θ[n] = [0,
ˆ̃
θ
T [n]]T .

8) EvaluateĤ = A
ˆ̃
HAT .

C. Identifiability

It is proved in [6] that, based on the DC model in (5),
the Laplacian matrix,H, cannot be uniquely identified using
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solely power injection data. In this paper, we impose further
assumptions on the system states, which enables full topology
matrix recovery. In particular, the Cov-BEST method utilizes
the states’ SOS, while the GLS-BEST method uses the value
range of the states. It should be noted that the support of
H, i.e. the network connectivity, can be recovered using the
GLS-BEST method without knowledge of the value ranges,

by simply applying a threshold operator oñ̂H(2).

IV. SIMULATIONS

In this section, we evaluate the performance of the two
proposed BEST algorithms by using 200 Monte-Carlo sim-
ulations. The power measurements are generated using (4),
with additional zero-mean Gaussian noise with varianceσ2.
It is assumed that the states and noise sequences are mutually
independent with a diagonal covariance matrix. The first stage
of the GLS-BEST method is implemented by the FastICA al-
gorithm [29], which requires a large number of measurements
and high SNR conditions. Thus, the performance of the GLS-
BEST method is presented for a limited range of SNR values
and numbers of buses.

A. Case study: 14-bus system

In this subsection, we implement the proposed methods for
the IEEE 14-bus system, where the branch susceptances for
each line are taken from [30]. The states,θ[n], n = 0, . . . , N−
1, are modeled as uniformly distributed measurements around
the nominal value of the buses,θ

(nom), according to [30]. In or-
der to maintain the DC model assumption of small angles, we
setθ[n] ∈

[

θ
(nom) − (π8 − |θ(nom)|),θ(nom) + (π8 − |θ(nom)|)

]

,
n = 0, . . . , N − 1. We also implemented the oracle state
estimator, which assumes perfect knowledge of the topology
matrix, H, and is given by

ˆ̃
θ
(oracle)[n] = H̃−1p̃[n], n = 0, . . . , N − 1. (14)

The oracle estimation was implemented withN = 50 mea-
surements, since the average MSE overn = 0, . . . , N − 1, is
independent ofN for a known topology.

In Fig. 1, the mean-squared-error (MSE) of the state esti-
mators is presented versus SNR, where the SNR is defined
as SNR= 1

σ2M
trace(HΣθ̃H). The performance of the Cov-

BEST and the GLS-BEST methods is presented forN =
50, 1000 and for N = 1000, 10000, respectively. It can be
seen that the MSE of the state estimation by the Cov-BEST
method is lower than the MSE of the GLS-BEST estimator.
Additionally, for high SNRs, the state estimation performance
of Cov-BEST with estimated topology converges to that of
the oracle method, which uses the true topology. Therefore,
we can conclude that for high SNRs the topology estimation
convergences to the true topology.

B. Case study: random topology matrices

In order to conduct an experiment with varying numbers
of buses,H was generated by taking off-diagonal elements
with a uniform distribution satisfying[H]m,k ∈ [−1, 0]. The
state vectors,θ[n], were generated with a uniform zero-mean
distribution, satisfyingθm[n] ∈ [−π

8 ,
π
8 ], n = 0, . . . , N − 1,

m = 2, . . . ,M . Fig. 2 shows the root normalized MSE

Fig. 1. MSE of state estimators by Cov-BEST, GLS-BEST, and oracle
methods for IEEE-14 bus system.
(RNMSE) of the topology estimator,||H−Ĥ||F

||H||F
, in which ||·||F

denotes the Frobenius norm, versus the number of buses in the
system for SNR= 30dB. It can be seen that the performance
of the Cov-BEST is significantly better than those of the GLS-
BEST and that as the number of buses increases, the RNMSE
increases and more power measurements need to be taken to
keep the same level of accuracy as for small topologies.

Fig. 2. RNMSE of the grid topology estimation by by Cov-BEST and GLS-
BEST methods versus number of buses.

V. CONCLUSION

In this paper we introduce two novel methods for blind
estimation of states and topology in power systems, given
active power measurements. The first method, Cov-BEST, is
based on using the states’ SOS and the positive-definiteness
of the reduced Laplacian matrix. The second method, GLS-
BEST, is a two-stage method that performs a conventional BSS
on the power measurements and then, resolves the inherent
permutation and scaling ambiguities by using the unique
properties of the Laplacian topology matrix and knowledge of
the value range of the states. The proposed methods are non-
iterative methods and, thus, do not suffer from problems of
convergence and initial guess. Simulations show that the pro-
posed methods are feasible and succeed in reconstructing the
topology and estimating the states, and that the state estimator
by the Cov-BEST converges to the oracle state estimator,
which assumes perfect knowledge of the topology. Topics for
future research include incorporating sparsity constraints and
assuming a noisy measurement model.
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