Blind Estimation of States and Topology (BEST) In
Power Systems

Idan Gerd, Yair Yakoby‘, and Tirza Routtenberg
*These authors contributed equally to this work
Department of Electrical and Computer Engineering
Ben-Gurion University of the Negev, Beer-Sheva 84105,€lsra
Email: idange@post.bgu.ac.il, yairyak@post.bgu.atitdar@bgu.ac.il

Abstract—In this paper, we consider the problem of state power data obtained by phasor measurement units (PMUSs)
estimation and topology identification in power systems. We [8], voltage measurements and their associated correatio
assume the DC model of real power measurements with unknown [9-11], historical voltage phasor measurements and flgrtia
voltage phases and an unknown admittance matrix. We show K ! id | 12 d el o ice based K
that this problem is equivalent to the blind source separation nown grid topology [12], an eectrl_CIty price based marke
(BSS) problem, where the mixing matrix is a weighted Laplacian data [13]. The methods proposed in [6, 7, 13] can reveal
matrix. We propose two new Blind Estimation of States and part of the grid topology, such as the grid connectivity and
Topology (BEST) methods for this problem. The first method, the eigenvectors of the topology matrix, but they cannot

Cov-BEST, is based on utilizing the states’ second-order statissc e Wi i
and the positive-definiteness of the reduced Laplacian matrix. Té reconstruct the full topology matrix with exact scaling and

second method, Generalized Laplacian Separation (GLS)-BEST, eigenvalues. In addition, these meth_od_s are highly dem¢nde
is obtained by applying any general BSS method, followed by an ON the parameters used in the optimization process, on the
approach that resolves the inherent BSS ambiguities by utilizing initialization step, and on the sparsity level of the std&@or
the Laplacian matrix properties. In contrast to existing methods, of the topology matrix [7]. Blind source separation (BS$}-[1
the proposed methods achieve full recovery of the topology 19) refers to the problem of recovering signals from several
matrix and are not limited to matrix eigenvectors estimation. The b d mixt ithout prior k led f th ab
performance of the proposed methods is evaluated for a general observed mixtures without prior knowledge of the sources an
network with an arbitrary number of buses and for the IEEE-14 ~ the mixing system. In the last decade, modern optimizatieh a
bus system, and compared with the oracle state estimator. ~ statistical methodologies have been shown to be powerdis to
Index Terms—Blind source separation (BSS), Laplacian mixing in power system problems (see e.g. [20-25]). In this copntext
matrix, Topology identification, State estimation, Power system applying BSS techniques for state and topology estimation

monitorin -
g seems a promising tool.

. INTRODUCTION In this work, we consider the problem of topology identifi-
cation in power systems with unknown states. We use the DC
ower-flow model with active power measurements. First, we
nentg of moderr) Energy Management Systemg (EMSS). ow that this problem is equivalent to the problem of BSS
multiple monitoring purposes, including analysis, seuri ith a weighted Laplacian mixing matrix, where the weights
control, and stability assessment of power systems. !n té;% determined by the branch susceptances. Then, we derive
DC model, the states are the bus voltage angles, while Blind Estimation of States and Topology (BEST) methods:
rf)' Cov-BEST, which uses the states’ second-order sta&istic
SOS) and the positive-definiteness of the Laplacian matrix
nd 2) Generalized Laplacian Separation (GLS)-BEST, which
% based on correcting any general BSS method by using the
aplacian matrix properties. To the best of our knowledge,
ese are the first published methods that provide full regov
the topology, without any topology information and with

State estimation and network topology are critical comp

tors, transmission lines, transformers, and statuses siéisy
devices. The grid topology is an integral part of state es
mation and is essential for security, power market desi
scheduling of connected devices, and optimization of ele,
tricity dispatchment. Usually, it is assumed that the EM
has precise knowledge of the grid topology [1]. Howevef,

this knowledge may not be available and may be INcorreghnown states. Finally, simulations demonstrate thaptoe

due to malicious attacks [2], failure, opening and closirig osed methods are applicable for different network topekg
switches, and the presence of new loads and generators. Thus

methods for state estimation and topology identificatiom ar In the rest of this paper vectors are denoted by boldface
crucial for obtaining an accurate system model and high powgwercase letters and matrices by boldface uppercaseslette
quality. Additionally, topology identification can be uséat The identity matrix of dimensiof x K is denoted by, and
identifying faults and line outages, and for cybersecuiity 1 andO denote the constant one and zero vectors. The super-
the context of cyberattacks on the topology data. scripts(-)” and(-)~" denote the transpose and matrix inverse
Several approaches to topology identification have be@Rerators, respectively. For a full-rank matr A denotes
proposed in the literature. Detecting topological chariges the Moore-Penrose pseudo-inverskf 2 (ATA)_lAT.
been studied in [3, 4] and the conditions for the detectiglili diag(x) denotes the diagonal matrix with vecteron the di-
topology errors are studied in [5]. Recently, a few paperehaagonal. Thenth element of the vectat, the (m, ¢)th element
addressed blind estimation of the grid topology by obseyvirof the matrixA, and the(m; : ma X ¢1 : g2) submatrix ofA
multiple power injection measurements [6, 7], voltage arate denoted byi,,, [Al]., ¢, @Nd Al :m, q1:0., FESPECtively.
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Il. SYSTEM MODEL based on the model from (3), the linearized DC model of the

In this section, we present the power network as a graghetwork can be written as
describe the DC model, and formulate the estimation problem p[n]=HO|, n=0,... N-1, (4)

A. Power systems as graphs where the topology matri is defined in (2) and is con-
Power systems are characterized by buses that represgaéred static for a short-period of time and under normal

interconnections, generators or loads, denoted by the/sét  Operating conditions. It is assumed thHt is an unknown

A deterministic matrix and[n], n = 0,..., N — 1 are unknown
{1,..., M}, and a set of edges= {(m, k)}, where the edge . ' [RR
AT random states. As is customary in the BSS framework (see
(m, k) corres_pon_ds to the transmission Il_ne betw_een bm;ese'g_ [14-16]), the model in (4) );s assumed to be noiselfass.
g?glkk)E ZCZ “.rllﬁ ;etf:g;aleragter:)zvsgrbg tsrt'g nlqlnéeazdtrgttraeﬁ(?g;;é ntN((i)twithstanding, in the simulations, it is demonstratedt th
as e{n undirécted grap@ —FEM o) )\//vhereM is the Eet of e developed methods are robust to the presence of noise.
: _ e .~ . Due to the null space property of the Laplacian matk,
nodes (buses) affd's. the set gﬁﬁ%?s (connected transml.ssmw has, at most, a raFr)1k df/[p - Ilo an)(; the DC mpodel from gg( is
lines). ":'_he c_arczlhnallt):1§t| = 3 represents all possible not invertible. Therefore, a reference bus is usually agslim
connections in the system. . have zero voltage phase. Without loss of generality we assum
An arbitrary onentanorz is ?35|gned to each edge= in the following that@:[n] = 0, ¥n = 0 N — 1. By
(m.k) € & i =1,..., 5=, wheree; = (1,2),e; = imposing the constraiffi1 — 0 and the assumption regardin
(1,3),...,emm-1y = (M,M — 1). Then, the associated b 9 P 9 9

A “~“the reference bus, the model from (4) can be rewritten as
topology of the graph can be described by the oriented

incidence matrixB € RM**“2= [26], where the(m, i) p[n] = AH6[n], n=0,....N -1, (5)

element ofB is given by where H 2 HZT:M&M’ a[n] 2 [0[n], 0s[n), . . ., Oas [n]]7,

{1y C () R e I oy = [ | e me. e mosern @1
0 e = (m,k) is not connected equivalent to

Ym=1,....M andi:lw..,w. Using the incidence p[n] =HO], n=0,....,N -1, (6)

matrix, the weighted Laplacian of the graph is defined as where p[n] A\ A'p[n] and H is called the Ist-reduced

A T Laplacian (see e.g. p. 161 in [26] and [27]). Under the
H=BYB", 2 . . .
assumption that there are no unobservable islands in the
whereY is a diagonal weight matrix, in whiclt; ; = Y,,, . grid, the reduced topology matrit, is a full-M — 1-rank
contains the line admittance for thn edgee; = {m,k} € {, matrix and, thus, can be identified. In addition, sirideis
i=1,..., M(A;[’”, i.e.Vm,k=1,...,M, such thatn < k. a positive semidefinte Laplacian matrix, theH, is also a
Note that the matrixH defined in (2) is a real, symmetric, Symmetric, positive semidefinte matrix with nonpositivé- of
and positive semidefinite matrix, which satisfies the nuticep diagonal elements and is a diagonally dominant matrix, i.e.

property, H1 = 0. 0< S M Hpp, Ve =1,...,M —1.
B. DC model and problem formulation I1l. SYSTEM IDENTIFICATION AND BSS
We consider the DC power flow model [1], which is based In this section, we develop two BEST-type methods for
on the following assumptions on the network: joint reconstruction of the matri¥l and the state®[n],
« Branches are considered lossless, which results,jp= ” = 0,...,N — 1. This problem can be interpreted as
bm k., Whereb,, ;. is the susceptance of tlien, k) branch. @ BSS problem with a reduced Laplacian mixing matrix,
« The bus voltdge magnitude®,,, m = 1,...,M, are Which satisfies the aforementioned properties. The origina
approximated by 1 per unit (p.u.). topology matrix,H, can be reconstructed frol by using
. \oltage angle differences across branches are small, st relationH = AHA™. In addition, the state8[n],n =
thatsin(6,, — 05,) ~ 6,,, — 0%, whereb,,, m=1,..., M, 0,...,N — 1, can be estimated under the two methods,
are the bus voltage angles. based on the estimated topolody§, and the measurements,
Under these assumptions, the active power injected ahbusp["]=” =0,...,N—1 by
satisfies y On] =H 'Bln], n=0,.. N—1. 7)
Pm = — Zk:l}c;&m b 1 Vin Vi, sin (0 — 0 ) A. Cov-BEST

The proposed Cov-BEST method is based on the states SOS.
For simplicity it is developed under the assumption that the
state sequend®n], n = 0,..., N—1, is a stationary Gaussian

M
~ _Zkzl,k;ﬁm Y;n,k(em - ek)v Vm=1,...,M. (3)

A T . 2
Now, letp[n] = [pl[n]vA"va[nH be the vector of active time-independent random procesdj] ~ A(0,%;), but
power injected and[n] = [;[n],...,0:[n]]" the vector of it can be used for any zero-mean time-independent process
voltage phase angles at time Vn = 0,...,N — 1. Then, with a known covariance matrix. This SOS can be obtained,
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for example, by using historical statistical data. Undegsth of the reduced Laplacian matrix and knowledge of the range

assumptions and by using the model in (6) the normalized lo§values of the states to resolve the inherent scale andyserm

likelihood of p[n], n =0,..., N — 1 is given by [15]: tation ambiguities of BSS methods [14, 15]. In particulhg t

correction of the estimated topology is performed as fodlow
1) Permutation - As described in Section H satisfies

_ . N\ -1 -

W(H) = const — %trace(Ef, (HT25H> > —log [H|, (8)
whereconst is independent of, 3 = L Snsg BlnlpT [n],
and it is assumed that the matricgg andH are non-singular
matrices. The derivative of (8) w.r.H is given by

v (H)

oH

By equating (9) to zero and substituting the symméiy =

—H 'S H 'S H T -H ", 9)

H, one obtains that the maximum likelihood (ML) estimator 2)

for a symmetric positive definite mixing matrix satisfies

H=3;'H'S,;. (10)

It can be verified that

_1 111
H=3%(2;5:%7)?5;"

=

(11)

is the uniquelsollution of (10), where we use the decomposi-

_1
2

tions X%; = 22 X2 and 2&_1 =%, 23,2, In addition, if the
state expectation is nonzero and unknown, tlﬁqp can be

max 1|[I~{]k1m| = |[H]x |- Therefore, in order to

solve the permutation ambiguity, the columns Idf®

are reordered such that the element with the maximum
absolute value in each row is placed on the diagonal of
the modified matrix. The reordering is performed from
the first row to theM — 1 row, where a column that was
once reordered will not be reordered again. The reordered

matrix is denoted bﬁ(1>.

Sign - To force the diagonal values Bf(") to be non
negative, as required for a reduced Laplacian matrix (see

Section 11), we multiply each column @) by +1 to
obtain H® with a nonnegative diagonal.

3) Scale - In order to solve the scale ambiguityﬁf”,

we use the small angles assumption of the DC model

and assume thaf,,[n]| < Tp,, m = 2,...,M, n =
0,...,N — 1, where {T;,}}/_, are known thresholds.

Thus, we set the final topology estimator H =
H®diag(fs, ..., far), where

replaced by the sample covariance matrix [28]

| N1 fszl _ fmax, 1\55,%)[71]\, m=2,...,M—1 (13)
=51 > (Bln] - p) (Bln] - p)’. (12 . Z L
n=0 and8® = (H®)~1p[n], n=0,...,N — 1.

_ . It should be noted that for this algorithm there is no unique
%ij:olf)[n] is the sample mean. In future 9 a

AN
where p = ; ; .
research, the ML process should be extended by taking isolutlon, as, for example, for different reordering methed

account additional constraints of the reduced Laplaciaimixna
The Cov-BEST algorithm is summarized in Algorithm 1.

MR permutation stage there can be different solutions. The
algorithm is summarized in Algorithm 2.

Algorithm 2: GLS-BEST
Input: e Observationgp[n}, n=0,...,N — 1.
e Thresholds of the voltage angle&T;, }2_,.
Output: EstimatorsH and8[n], n =0,...,N — 1.
Algorithm Steps:
1) Compute the modified inpgi[n] = Afp[n].

1 ] 2) Apply any BSS algorithm op[n|, n =0,...,N — 1, to
2) Compute t.he ~sample covariance estimakys, from obtain the mixing matrixI(©).
(12) by usingp[n], n =0,...,N — 1. 2 0) )
luatefl — 3-% (5 5. i st 3) Reorder the columns d®) to obtainH'"), such that
3) EvaluateH = 7 ( 6P Qé) 0," the maximal absolute value of theth row of the
4) Estimate the sources by ({n] = H™'p[n] and, with matrix appears at theath column,m =1,..., M — 1.
4) If [HD],, . is negative, multiply thenth column of

the reference bugl[n] = (0,07 [n]]”.
5) Evaluate the full topology matrifl = AHAT. H® by —1 to obtainH®, Ym =1,..., M — 1.
5) Computef,,, m =2,..., M from (13).

B. GLS-BEST 6) EvaluateH = H®diag(fo,. ... fu).

The GLS-BEST is a two-stage method which assumes that 7) Estimate the sources by (B{n] = H~'p[n] and, with
states have an unknown non-Gaussian distribution with know the reference busé}[n] =0 ng[n”T_
distribution’s support (range of values). The first stagehef N ATIAT ’
GLS-BEST method is based on applying any general BSS 8) EvaluateH = AHA".
method [14-18] orp[n], n = 0,..., N —1, from (6) to obtain ¢ |dentifiability
the initial estimate of the rplXIng matriXI:I(O). The second It is proved in [6] that’ based on the DC model in (5),
stage is based on correctid(®) by using the characteristicsthe Laplacian matrixH, cannot be uniquely identified using

Algorithm 1: Cov-BEST Algorithm
Input: e Observationp[n|, n=0,...,N — 1.
¢ State covariance matri®;;.
Output: EstimatorsH and8[n], n =0,..., N — 1.
Algorithm Steps:
1) Compute the modified inpyi[n] = Afp[n].
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solely power injection data. In this paper, we impose furthe
assumptions on the system states, which enables full tgpolo
matrix recovery. In particular, the Cov-BEST method u&Bz
the states’ SOS, while the GLS-BEST method uses the value 4 1
range of the states. It should be noted that the support of =

[— & - Cov-BEST,N=s0 |

H, i.e. the network connectivity, can be recovered using the - —r—gt\;aBEEsé:_r;=1mo
GLS-BEST method without knowledge oI the value ranges, - :_GLSjBEST:N:mD
by simply applying a threshold operator 2. — © —Oracle
10 15 20 25 30 35 40 45
IV. SIMULATIONS SNR (dB]

In this section, we evaluate the performance of the twgy 1. wSE of state estimators by Cov-BEST, GLS-BEST, anctlera
proposed BEST algorithms by using 200 Monte-Carlo sinmethods for IEEE-14 bus system. .
ulations. The power measurements are generated using (B)NMSE) of the topology estimatOHi}i;{%HF, in which||-||¢
with additional zero-mean Gaussian noise with varianée denotes the Frobenius norm, versus the number of buses in the
It is assumed that the states and noise sequences are mutsatbtem for SNR: 30dB. It can be seen that the performance
independent with a diagonal covariance matrix. The firgiestaof the Cov-BEST is significantly better than those of the GLS-
of the GLS-BEST method is implemented by the FastiICA aBEST and that as the number of buses increases, the RNMSE
gorithm [29], which requires a large number of measuremeritereases and more power measurements need to be taken to
and high SNR conditions. Thus, the performance of the GL8eep the same level of accuracy as for small topologies.

BEST method is presented for a limited range of SNR value

and numbers of buses. _ [Fe=coveEsT.Nom0 | i i @& fiid
L —+— Cov-BEST, N=1000 4l
A. Case study: 14-bus system g — a
. . . = -p-a -o-e-o o=
In this subsection, we implement the proposed methods fc Z

10§ a=-00-@-0-8 -8
the IEEE 14-bus system, where the branch susceptances | M

each line are taken from [30]. The stat8®;],n =0,..., N— 10" Number of Buses 10¢
1, are modeled as uniformly distributed measurements arour 10° e e N S R S PR B i
the nominal value of the buse&™™ , according to [30]. In or- ' No

al Ve ¢ L ||- * -GLS-BEST, N=10000| _®
der to maintain the DC model assumption of small angles, w: é 7 E oel--rop=TY i
SetGiniE ie(nom)_(g_ie(nom)i)’a(nom)_i_(%_io(nom)i)i, z t_'b___-b-b-—-—b—' e Lilalild
. i I . k. Sl !
n =0,...,N —1. We also implemented the oracle state L _* ---*-*- " *"* ", .
estimator, which assumes perfect knowledge of the topolog § S B R
matrix, H, and is given by
2 - B Fig. 2. RNMSE of the grid topology estimation by by Cov-BEST&BLS-
g(orac9 [n)]=H 'pn], n=0,...,N—1. (14) BEST methods versus number of buses.
The oracle estimation was implemented with = 50 mea- V. CONCLUSION
surements, since the average MSE ovet 0,...,N — 1, is In this paper we introduce two novel methods for blind
independent ofV for a known topology. estimation of states and topology in power systems, given

In Fig. 1, the mean-squared-error (MSE) of the state esfctive power measurements. The first method, Cov-BEST, is
mators is presented versus SNR, where the SNR is definggsed on using the states’ SOS and the positive-definiteness
as SNR= —;trac§ HX;H). The performance of the Cov-of the reduced Laplacian matrix. The second method, GLS-
BEST and the GLS-BEST methods is presented #or= BEST, is a two-stage method that performs a conventional BSS
50,1000 and for N' = 1000, 10000, respectively. It can be on the power measurements and then, resolves the inherent
seen that the MSE of the state estimation by the COV-BE%-Ermutation and Sca|ing ambiguities by using the unique
method is lower than the MSE of the GLS-BEST estimatoproperties of the Laplacian topology matrix and knowledfje o
Additionally, for high SNRs, the state estimation perfono@ the value range of the states. The proposed methods are non-
of Cov-BEST with estimated topology converges to that gferative methods and, thus, do not suffer from problems of
the oracle method, which uses the true topology. Therefotgnvergence and initial guess. Simulations show that the pr
we can conclude that for high SNRs the topology estimatigfbsed methods are feasible and succeed in reconstrucéng th
convergences to the true topology. topology and estimating the states, and that the state atstim
by the Cov-BEST converges to the oracle state estimator,
which assumes perfect knowledge of the topology. Topics for

In order to conduct an experiment with varying numbeg, e research include incorporating sparsity constsamd
of buses,H was generated by taking off-diagonal elememéssuming a noisy measurement model

with a uniform distribution satisfyingH],,, , € [—1,0]. The

state vectors@[n], were generated with a uniform zero-mean ACKNOWLEDGMENT

distribution, satisfyingd,,[n] € [-%, %, n =0,...,N — 1, This work is partially supported by the ISRAEL SCIENCE
m = 2,...,M. Fig. 2 shows the root normalized MSEFOUNDATION (ISF), grant No. 1173/16.

B. Case study: random topology matrices
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