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ABSTRACT However, the complexity of modern CNNs is quite high.

Convolutional neural network (CNN) has achieved numerfor example, the first large-scale CNN, AlexNet [7], ls
ous breakthroughs in many artificial intelligent applioas. ~ Millions of parameters, and the VGG network from Oxford

However, its complexity is quite high and usually requiresUniversity hasl9 layers andi44 millions of parameters [8].
expensive GPU or FPGA implementation, which is not costT nerefore running these networks requires significant amou
effective for many embedded systems. In this paper, we g&f hardware resources. This is especially challengingror e
velop a novel lapped CNN (LCNN) architecture that is suit-P€dded systems. Although there have been some embedded
able for resource-limited embedded systems. Our archite§YStéms such as NVIDIA TK1 and TX1 that can run large-
ture follows the divide-and-conquer principle. The CNN isSc@le CNNs, they are quite expensive. These chips also re-
designed such that it can be decomposed into two or mor@Uire a lot more power to run than traditional embedded plat-
stages, each can be implemented by a hardware module wifffms, making them unsuitable for many applications where

a low-resolution input and very low complexity. The origi- basic deep learning functionalities are required, butadert

nal input image is divided into some subimages of the samgonstraints on cost and power consumption should also be
size, with properly designed overlaps with each other. Fhesmet.
subimages are sequentially processed by the hardware mod- Some low-cost CNN-enabled embedded systems have
ule that implements the first stage of the CNN. The outputgiso started to emerge. One example is the HiSilicon Hi3519
from different subimages are then merged and processed I{pipset [9], which has a small built-in CNN module, whose
the next stage low-cost hardware CNN module. The resuRrchitecture is very similar to LeNet [6], the first CNN archi
is exactly identical to that of applying a larger-scale CNiN t tecture that was designed around 1990. Therefore it can only
the entire image with higher resolution. Therefore, by ireys Pe used for simple applications. However, one benefit of the
low-cost hardware CNN modules, a low-cost and larger-scalbli3519 CNN module is that it is very fast, and only takes
CNN system can be achieved. The performance of the pr@boutlms to process an input image wiiz x 40 pixels.
posed scheme is demonstrated by experimental results. In this paper, we develop a novel lapped CNN (LCNN) ar-
chitecture that is suitable for resource-limited embedsed
tems such as Hi3519. Our architecture follows the divide-
and-conquer principle. The CNN is designed such that it can
be decomposed into two or more tiers or stages, each operates
1. INTRODUCTION on a low-resolution input and can be implemented by low-cost
hardware module. To use the proposed LCNN, the original

In the last decade, a new generation of artificial neural ne'i'nput image is divided into subimages of the same size, with

work called deep learning (DL) has been developed [1]. Ithag o perly designed overlaps or shifts among each other.eThes
many layers of neurons and millions of parameters. The pas,pimages are fed to the first tier of the CNN sequentially.
ram_eters can be trained by I_arge amount ofo_la_ta on faSt_GPl’f'he outputs from different subimages are then merged, and
equipped computers [2], guided by novel training techriqueye resylt is exactly identical to that of applying a largeNCN
that can work with many layers, such as regularized lineaf, e entire image. The merged result is then processed by
units (ReLU) [3], dropout [4], and stochastic gradient @8C 1o next tier of the CNN, with a new set of network parame-

(SGD) [5] i i ters. This framework essentially builds a large-scale CYN b
Convolutional neural network (CNN) is the most popular e sing a small-scale CNN module, making it attractive for
DL architecture [6], and has achieved unprecedented perfoj,,._cost embedded systems.

mances in many computer vision and machine learning tasks
such as image classification [7], image caption generation
sual question answering, and automatic driving cars.

Index Terms— Convolutional neural network (CNN),
CNN hardware implementation, Receptive field

’ The performance of the proposed scheme is demonstrated

' by experimental results on Hi3519, which shows that for ap-
plications such as image classification, the top-1 perfocaa

*Email: jiel@sfu.ca. can be improved by0% compared to the default built-in
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CNN module on Hi3519.

2. THE PROPOSED ARCHITECTURE CNN2 |—>Output

In this paper, we use the built-in CNN module on Hi3519
as an example to illustrate how to design and implement the
proposed lapped CNN architecture. It should be noted that
the proposed framework can also be used on other embedded
plat_forms to reuse their built-in CNN modules and improveFig' 1. The architecture of the proposed CNN scheme that
the!r performances. Moreover, the proposed frame_zwork CaPan reuse simple hardware CNN module.

be implemented as a low-cost FPGA module, and integrated

with many low-cost embedded platforms.

The simple CNN module on Hi3519 only accepts inputthe features at subimage boundaries are not captured proper
images of up td 280 pixels. It can havé ~ 8 convolutional  This is similar to the blocking artifact in DCT-based image
(CONV) layers and ~ 8 fully-connected (FC) layers. Each coding, which can be resolved by applying filters across the
CONV or FC layer is followed by a ReLU layer. The ReLU image block boundaries, leading to the lapped transfor [11
layer after FC layer is also followed by a dropout layer. TheThe same idea can be applied here as well. That is, we can ap-
number of filters in each CONV layer is at m@$t, and only  ply CNNL1 to the regions across subimage boundaries. After
3 x 3 convolution filters are allowed. The convolution stride isthat, we can replace the boundary-affected outputs froiin eac
fixed to bel. The pooling window is fixed to b2x 2, and the  subimage by the correct ones from the boundary images.
stride can only b&. The maximum input dimension for the Note that if there are only convolution operatorsin CNN1,
FC part is1024, and the number of neurons in the middle FCwe can use the classic overlap-and-add method to subimages
layers is at mos256. The dimension of the output layer is at and still avoid the boundary artifacts. However, due to the
most256. The CNN on Hi3519 allows users to re-configure pooling operators in CNN1, the results of the overlap-add-a
the network architecture and parameters, which can be preaethod are not equivalent to applying convolutions acrioss t
trained for different applications. subimage boundary.

Due to its limited architecture, the CNN on Hi3519istyp-  In order to achieve equivalent convolution and maxpool-
ically only suitable for simple tasks such as handwrittegitdi ing results between the global approach and the subimage ap-
recognition and license plate recognition. For more chglle proach, we need to ensure two conditions: 1. The boundary
ing tasks such as face recognition, the performance will beffect of convolution should be avoided. 2. The input image
constrained by the low resolution of the input image and thesize to each maxpooling operator in both cases is even.
limited number of layers and filters in the network. In the following analyses, we focus on three stages of con-

In this paper, our goal is to reuse the built-in CNN modulevolutions and maxpooling operatoBsx 3 convolution filters,
on embedded systems such as Hi3519 to build a larger-sca@d2 x 2 maxpooling. The ReLU unitis ignored since it does
CNN. This is motivated by the various matrix-decomposition not affect the image size. The theory can be easily extended
based fast structures for DCT, lapped transform, and whaveléo more stages.
transform, which have found wide applications in speech, im  SupposeX is the number of rows or columns of an im-
age, and video coding [10-12]. In these applications, a filage. After the first convolution, there will & + 2 output
ter bank with long filters is usually implemented via the con-coefficients, but onlyk” — 2 of them are not affected by the
catenation of several stages, each has much shorter filters. boundary effect. These coefficients will be sent to the first
many cases, such decompositions do not loss any optimahaxpooling operator. Therefore to avoid boundary effeet, w
ity, i.e, the fast structure can still achieve the optimal perforneedK — 2 to be even. That is,
mance among all possible filter banks.

Our general approach is to divide a large input image into K—-2=2n = K=2n+2, 1)

some small subimages, and each of them is processed byw%erex is a positive integer
1 .

small hardware CNN module. The outputs from all subim- After the first maxpooling, the output size(i& —2) /2. In

ages are then combined for further processing. In this pap : . - B
we focus on two-tier structure, and we denote the two tiers ;‘ti]e second layer, the size after convolutioghs — 2)/2 - 2,

CNN1 and CNN2, as shown in Fig. 1, but the scheme can b\éVhICh should also be even, i.e.,

generalized to more than two tiers. (K—2)/2—2=21y = K =A4x,+6, )
We want the combined outputs are exactly identical to

running a large CNN to the input image directly. However,wherez- is another positive integer.

if all subimages are processed independently, there willdbe After the second maxpooling, the sizes reduce§{o—

convolution operator across the subimage boundariesigheng)/4 — 1. In the third layer, the size after convolutioni& —
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2)/4 — 3, which should still be even. This means

38

(K—2)/4—3=215 = K=283+14, (3)

----;-'"1 ,"n%----.
I [s |
. . . | ! |
wherexs is also a positive integer. L E:: 10 - 9
I
| :
! ! f—t

It is easy to verify that the solutions fdt' given by Eq. i i
(3) form a subset of the solutions for Eq. (2), and the latter
are a subset of that of Eq. (1). Therefore solutions for Ef. (3
can meet all three constraints in Eq. (1) to Eq. (3). If theee a
more than three layers, it can be shown that the solutions are P | R v
also given by the constraint from the last layer, which is als \ A f d
subset of the solutions of previous layers. Therefore éasi
solutions still exist.

The first few solutions given by Eq. (3) a2, 30, 38, and  Fig. 2. An example of image and subimage configuration to
46. Since the maximum number of input pixels for Hi3519 use the proposed lapped CNN.
CNN is 1280, the closest subimage dimension is tl38sx
30 (1140 pixels). For this choice of subimage, the size after
the first convolution is36 x 28. After the first maxpooling,
the size becomers x 14. After the second convolution an
maxpooling, we get6 x 12 and8 x 6 respectively. Finally,
the size reduces 1 x 4 after the third convolution, and the
final output size i x 2 after the third maxpooling.

]
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Note that each maxpooling reduces the image size by half.
d Therefore each output after three maxpooling stages corre-
sponds t& input pixels. As a result, in order for the output
to shift by2 and3 respectively, we need to shift the subimage
by 16 and24 pixels respectively. Therefore, to avoid any gap
or duplication in the output, the aforementioned image size

On the other hand, the sizg of the entire _input ima.ge78><62 should be adjusted &6 x 62, where86 = 38+24 x 2
should also meets Eqg. (3). This means that simply pumr?%nd62 30416 x 2. Thatis the,gap hasspixels horizor,]-

some subimages side by side cannot guarantee the equiva

lence, even if the subimage size meets Eq. (3). For exampl aily, but 10 pixels vertically. This example is illustrated in
. . g 15 Q- (9)- P Elg. 2. There ar® overlapped subimages, with rows starting
an image of siz&’6 x 60 cannot achieve the same results

between the global CNN and subimage-based CNN, becauaél’ 25, and49, and columns starting dt 17, and33. The

the numbers0 and60 do not satisfy Eq. (3), although it can ineélslrlllfle;]:tually closed related to the receptive field ephc
be divided into four subimages 88 x 30. '

To achieve both feasible subimage size and entire image Once we apply CNN1 to each subimage sequentially, the
. IEVE ! ubimage stz Ire | goutputs from different CNN1-processed subimages are com-
size, we can introduce some extra pixels between neighb

ing subimages. For the example above, the closest feasib ined to form the input to CNN2. CNNL only includes some
g subimages. o P T ONV layers and pooling layers. Its output feature mapk stil
solution is78 x 62, i.e, there are two extra pixels between

. . . . . preserve the spatial information. CNN2 only includes FC
two neighboring subimages both horizontally and vertjcall | . .
. o yers. It merges the features from different subimages and
In fact, the size of the entire image can be other values tha? ' e -
satisfy Eq. (3). These extra pixels (or gaps) can be filteyed bmakes thefinal classification decision.
9. {3). 10 P gap eved In fact, since the dimension of the output of CNN1 is
some special subimages that straddle the boundaries df-nei . ;

. . . L %nuch smaller than that of the input, the FC layers in CNN2
boring subimages. This approach is similar to the pre/post- . .
o do not have to be implemented by hardware. Carefully opti-
filter in the lapped transform [11]. The results of these &pp - . .

. . ._mized software implementation can be very fast.
subimages can be merged with the outputs of other subim-
ages.

Another constraint of many CNN modules is that they can 3. EXPERIMENTAL RESULTS
only support one input image size. Therefore all subimages,
including those that straddle neighbouring subimagesyjlsho In this part, we test the impact of different input image size
have the same size, for exampi8,x 30. With this additional  on the performance of the CNN models using two tasks, im-
constraint, the next question is what should be the optimadge classification and age estimation, and verify the efffagie
amount of distances or shifts between neighboring subisageof our proposed scheme. The baseline method uses input im-
Since the output of eacd8 x 30 subimage i x 2, we need age size of36 x 35, wth 1260 pixels, which is close to the
to choose the distance such that the outputs of two overthppeipper limit of 1280 of Hi3519. Therefore it can be processed
subimages are shifted W§yvertically and by2 horizontally, by the Hi3519 CNN directly. Our method uses an input size
otherwise we either have gaps in the outputs and therefor® 86 x 78, which is divided into 12 overlapped subimages
cannot ensure equivalence, or there are duplicated outputsf size 38 x 30, similar to the example in Fig. 2. The to-
which waste the computing resource. tal running time for the large image size is only abo8itns.
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Network N1 N1 N2 N2 Network N1 N1 N2 N2
(86x78) (36x35) | (86x78) (36x35) (86x78) (36x35) | (86x78) (36x35)
Top-1 36.25 28.36 38.12 29.86 Accuracy| 52.27 49.34 53.34 48.43
Top-5 62.75 54.37 64.24 55.58

Table 2. Age group estimation accurac¥] with different
Table 1. Image classification accuracy] with differentnet-  networks and different input sizes
works and different input sizes.

2 FC layers (same as ours). However, their image size is

This is enough to meet the real-time requirements of mang27 x 227 and their network has many more CONV filters:
applications. 96 in CONV1, 256 in CONV2 and 256 in CONV3. There-

For image classification, Tiny ImageNet, a subset offore our implementation on Hi3519 is very competitive if the
ILSVRC-2012 dataset [14], is used. For age group estimasost is considered.
tion, we use the Adiencedb dataset [15].

For each task, two network architectures are tested. The 4. CONCLUSION
first is denoted afN1, and the architecture is CONV(24)-
CONV/(48)-CONV(48)-FC(256)-SOFTMAX, where the num- | this paper, we develop an efficient CNN framework for em-
bers in bracket denote the number of filters in CONV layergyedded systems, which repeatedly applies a small-scale CNN
or the Size Of FC vectors. The Othel’ iS denoteulaS\Nith the modu'e to different Subimages Of a |arger input image. By ju_
architecture  CONV/(32)-CONV(48)-CONV(48)-FC(512)- diciously selecting the architecture of the network, treesi
FC(512)-SOFTMAX. The configuration of N1 strictly fol- of the input image, the sizes and overlaps of the subimages,
lows th Hi3519 hardware requirements and can be implethe result can be exactly equivalent to applying a larger CNN
mented entirely by reusing the built-in hardware CNN mod-yg the large input image directly. This approach enablessmor
ule. In N2, only the CONV layers follow the Hi3519 hard- ¢ost-effective CNN solutions for some embedded systems and
ware requirements, and the FC layers are implemented Q¥ very suitable for applications where basic deep learning

software since their sizes are over the hardware limit, bufynctionalities are required, but certain constraintsast and
since the complexity of the FC layers is much lower thanyower consumption should also be met.

convolution layers, software implementation does not slow
down the overall speed too much.
For the Tiny ImageNet dataset, we randomly select 200
classes from the ILSVRC-2012 dataset. In each class, wzl] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning
r

andomlchose 500 mae s g sampies 30 ] i Gsp ettt sl Comuaon
g pies. 9 vol. 18, pp. 15271554, 2006.

90x 90 after center crop. Together, there are 200 classes,
100K training samples and 10K validation samples. We use[2] L. Deng, M. Seltzer, D. Yu, A. Acero, A.-R. Mohamed,
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