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ABSTRACT

Convolutional neural network (CNN) has achieved numer-
ous breakthroughs in many artificial intelligent applications.
However, its complexity is quite high and usually requires
expensive GPU or FPGA implementation, which is not cost-
effective for many embedded systems. In this paper, we de-
velop a novel lapped CNN (LCNN) architecture that is suit-
able for resource-limited embedded systems. Our architec-
ture follows the divide-and-conquer principle. The CNN is
designed such that it can be decomposed into two or more
stages, each can be implemented by a hardware module with
a low-resolution input and very low complexity. The origi-
nal input image is divided into some subimages of the same
size, with properly designed overlaps with each other. These
subimages are sequentially processed by the hardware mod-
ule that implements the first stage of the CNN. The outputs
from different subimages are then merged and processed by
the next stage low-cost hardware CNN module. The result
is exactly identical to that of applying a larger-scale CNN to
the entire image with higher resolution. Therefore, by reusing
low-cost hardware CNN modules, a low-cost and larger-scale
CNN system can be achieved. The performance of the pro-
posed scheme is demonstrated by experimental results.

Index Terms— Convolutional neural network (CNN),
CNN hardware implementation, Receptive field

1. INTRODUCTION

In the last decade, a new generation of artificial neural net-
work called deep learning (DL) has been developed [1]. It has
many layers of neurons and millions of parameters. The pa-
rameters can be trained by large amount of data on fast GPU-
equipped computers [2], guided by novel training techniques
that can work with many layers, such as regularized linear
units (ReLU) [3], dropout [4], and stochastic gradient descent
(SGD) [5].

Convolutional neural network (CNN) is the most popular
DL architecture [6], and has achieved unprecedented perfor-
mances in many computer vision and machine learning tasks,
such as image classification [7], image caption generation,vi-
sual question answering, and automatic driving cars.
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However, the complexity of modern CNNs is quite high.
For example, the first large-scale CNN, AlexNet [7], has60
millions of parameters, and the VGG network from Oxford
University has19 layers and144 millions of parameters [8].
Therefore running these networks requires significant amount
of hardware resources. This is especially challenging for em-
bedded systems. Although there have been some embedded
systems such as NVIDIA TK1 and TX1 that can run large-
scale CNNs, they are quite expensive. These chips also re-
quire a lot more power to run than traditional embedded plat-
forms, making them unsuitable for many applications where
basic deep learning functionalities are required, but certain
constraints on cost and power consumption should also be
met.

Some low-cost CNN-enabled embedded systems have
also started to emerge. One example is the HiSilicon Hi3519
chipset [9], which has a small built-in CNN module, whose
architecture is very similar to LeNet [6], the first CNN archi-
tecture that was designed around 1990. Therefore it can only
be used for simple applications. However, one benefit of the
Hi3519 CNN module is that it is very fast, and only takes
about1ms to process an input image with32× 40 pixels.

In this paper, we develop a novel lapped CNN (LCNN) ar-
chitecture that is suitable for resource-limited embeddedsys-
tems such as Hi3519. Our architecture follows the divide-
and-conquer principle. The CNN is designed such that it can
be decomposed into two or more tiers or stages, each operates
on a low-resolution input and can be implemented by low-cost
hardware module. To use the proposed LCNN, the original
input image is divided into subimages of the same size, with
properly designed overlaps or shifts among each other. These
subimages are fed to the first tier of the CNN sequentially.
The outputs from different subimages are then merged, and
the result is exactly identical to that of applying a large CNN
to the entire image. The merged result is then processed by
the next tier of the CNN, with a new set of network parame-
ters. This framework essentially builds a large-scale CNN by
reusing a small-scale CNN module, making it attractive for
low-cost embedded systems.

The performance of the proposed scheme is demonstrated
by experimental results on Hi3519, which shows that for ap-
plications such as image classification, the top-1 performance
can be improved by30% compared to the default built-in
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CNN module on Hi3519.

2. THE PROPOSED ARCHITECTURE

In this paper, we use the built-in CNN module on Hi3519
as an example to illustrate how to design and implement the
proposed lapped CNN architecture. It should be noted that
the proposed framework can also be used on other embedded
platforms to reuse their built-in CNN modules and improve
their performances. Moreover, the proposed framework can
be implemented as a low-cost FPGA module, and integrated
with many low-cost embedded platforms.

The simple CNN module on Hi3519 only accepts input
images of up to1280 pixels. It can have1 ∼ 8 convolutional
(CONV) layers and3 ∼ 8 fully-connected (FC) layers. Each
CONV or FC layer is followed by a ReLU layer. The ReLU
layer after FC layer is also followed by a dropout layer. The
number of filters in each CONV layer is at most50, and only
3×3 convolution filters are allowed. The convolution stride is
fixed to be1. The pooling window is fixed to be2×2, and the
stride can only be2. The maximum input dimension for the
FC part is1024, and the number of neurons in the middle FC
layers is at most256. The dimension of the output layer is at
most256. The CNN on Hi3519 allows users to re-configure
the network architecture and parameters, which can be pre-
trained for different applications.

Due to its limited architecture, the CNN on Hi3519 is typ-
ically only suitable for simple tasks such as handwritten digit
recognition and license plate recognition. For more challeng-
ing tasks such as face recognition, the performance will be
constrained by the low resolution of the input image and the
limited number of layers and filters in the network.

In this paper, our goal is to reuse the built-in CNN module
on embedded systems such as Hi3519 to build a larger-scale
CNN. This is motivated by the various matrix-decomposition-
based fast structures for DCT, lapped transform, and wavelet
transform, which have found wide applications in speech, im-
age, and video coding [10–12]. In these applications, a fil-
ter bank with long filters is usually implemented via the con-
catenation of several stages, each has much shorter filters.In
many cases, such decompositions do not loss any optimal-
ity, i.e., the fast structure can still achieve the optimal perfor-
mance among all possible filter banks.

Our general approach is to divide a large input image into
some small subimages, and each of them is processed by a
small hardware CNN module. The outputs from all subim-
ages are then combined for further processing. In this paper,
we focus on two-tier structure, and we denote the two tiers as
CNN1 and CNN2, as shown in Fig. 1, but the scheme can be
generalized to more than two tiers.

We want the combined outputs are exactly identical to
running a large CNN to the input image directly. However,
if all subimages are processed independently, there will beno
convolution operator across the subimage boundaries; hence

Fig. 1. The architecture of the proposed CNN scheme that
can reuse simple hardware CNN module.

the features at subimage boundaries are not captured properly.
This is similar to the blocking artifact in DCT-based image
coding, which can be resolved by applying filters across the
image block boundaries, leading to the lapped transform [11].
The same idea can be applied here as well. That is, we can ap-
ply CNN1 to the regions across subimage boundaries. After
that, we can replace the boundary-affected outputs from each
subimage by the correct ones from the boundary images.

Note that if there are only convolution operators in CNN1,
we can use the classic overlap-and-add method to subimages
and still avoid the boundary artifacts. However, due to the
pooling operators in CNN1, the results of the overlap-and-add
method are not equivalent to applying convolutions across the
subimage boundary.

In order to achieve equivalent convolution and maxpool-
ing results between the global approach and the subimage ap-
proach, we need to ensure two conditions: 1. The boundary
effect of convolution should be avoided. 2. The input image
size to each maxpooling operator in both cases is even.

In the following analyses, we focus on three stages of con-
volutions and maxpooling operators,3×3 convolution filters,
and2×2 maxpooling. The ReLU unit is ignored since it does
not affect the image size. The theory can be easily extended
to more stages.

SupposeK is the number of rows or columns of an im-
age. After the first convolution, there will beK + 2 output
coefficients, but onlyK − 2 of them are not affected by the
boundary effect. These coefficients will be sent to the first
maxpooling operator. Therefore to avoid boundary effect, we
needK − 2 to be even. That is,

K − 2 = 2x1 ⇒ K = 2x1 + 2, (1)

wherex1 is a positive integer.
After the first maxpooling, the output size is(K−2)/2. In

the second layer, the size after convolution is(K − 2)/2− 2,
which should also be even, i.e.,

(K − 2)/2− 2 = 2x2 ⇒ K = 4x2 + 6, (2)

wherex2 is another positive integer.
After the second maxpooling, the sizes reduces to(K −

2)/4− 1. In the third layer, the size after convolution is(K−
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2)/4− 3, which should still be even. This means

(K − 2)/4− 3 = 2x3 ⇒ K = 8x3 + 14, (3)

wherex3 is also a positive integer.
It is easy to verify that the solutions forK given by Eq.

(3) form a subset of the solutions for Eq. (2), and the latter
are a subset of that of Eq. (1). Therefore solutions for Eq. (3)
can meet all three constraints in Eq. (1) to Eq. (3). If there are
more than three layers, it can be shown that the solutions are
also given by the constraint from the last layer, which is also a
subset of the solutions of previous layers. Therefore feasible
solutions still exist.

The first few solutions given by Eq. (3) are22, 30, 38, and
46. Since the maximum number of input pixels for Hi3519
CNN is 1280, the closest subimage dimension is thus38 ×

30 (1140 pixels). For this choice of subimage, the size after
the first convolution is36 × 28. After the first maxpooling,
the size becomes18 × 14. After the second convolution and
maxpooling, we get16 × 12 and8 × 6 respectively. Finally,
the size reduces to6 × 4 after the third convolution, and the
final output size is3× 2 after the third maxpooling.

On the other hand, the size of the entire input image
should also meets Eq. (3). This means that simply putting
some subimages side by side cannot guarantee the equiva-
lence, even if the subimage size meets Eq. (3). For example,
an image of size76 × 60 cannot achieve the same results
between the global CNN and subimage-based CNN, because
the numbers70 and60 do not satisfy Eq. (3), although it can
be divided into four subimages of38× 30.

To achieve both feasible subimage size and entire image
size, we can introduce some extra pixels between neighbor-
ing subimages. For the example above, the closest feasible
solution is78 × 62, i.e., there are two extra pixels between
two neighboring subimages both horizontally and vertically.
In fact, the size of the entire image can be other values that
satisfy Eq. (3). These extra pixels (or gaps) can be filtered by
some special subimages that straddle the boundaries of neigh-
boring subimages. This approach is similar to the pre/post-
filter in the lapped transform [11]. The results of these lapped
subimages can be merged with the outputs of other subim-
ages.

Another constraint of many CNN modules is that they can
only support one input image size. Therefore all subimages,
including those that straddle neighbouring subimages, should
have the same size, for example,38×30. With this additional
constraint, the next question is what should be the optimal
amount of distances or shifts between neighboring subimages.
Since the output of each38× 30 subimage is3 × 2, we need
to choose the distance such that the outputs of two overlapped
subimages are shifted by3 vertically and by2 horizontally,
otherwise we either have gaps in the outputs and therefore
cannot ensure equivalence, or there are duplicated outputs,
which waste the computing resource.

Fig. 2. An example of image and subimage configuration to
use the proposed lapped CNN.

Note that each maxpooling reduces the image size by half.
Therefore each output after three maxpooling stages corre-
sponds to8 input pixels. As a result, in order for the output
to shift by2 and3 respectively, we need to shift the subimage
by 16 and24 pixels respectively. Therefore, to avoid any gap
or duplication in the output, the aforementioned image size
78×62 should be adjusted to86×62, where86 = 38+24×2,
and62 = 30 + 16× 2. That is, the gap has2 pixels horizon-
tally, but 10 pixels vertically. This example is illustrated in
Fig. 2. There are9 overlapped subimages, with rows starting
at 1, 25, and49, and columns starting at1, 17, and33. The
design is actually closed related to the receptive field concept
in CNN [13].

Once we apply CNN1 to each subimage sequentially, the
outputs from different CNN1-processed subimages are com-
bined to form the input to CNN2. CNN1 only includes some
CONV layers and pooling layers. Its output feature maps still
preserve the spatial information. CNN2 only includes FC
layers. It merges the features from different subimages and
makes the final classification decision.

In fact, since the dimension of the output of CNN1 is
much smaller than that of the input, the FC layers in CNN2
do not have to be implemented by hardware. Carefully opti-
mized software implementation can be very fast.

3. EXPERIMENTAL RESULTS

In this part, we test the impact of different input image sizes
on the performance of the CNN models using two tasks, im-
age classification and age estimation, and verify the efficiency
of our proposed scheme. The baseline method uses input im-
age size of36 × 35, wth 1260 pixels, which is close to the
upper limit of1280 of Hi3519. Therefore it can be processed
by the Hi3519 CNN directly. Our method uses an input size
of 86 × 78, which is divided into 12 overlapped subimages
of size38 × 30, similar to the example in Fig. 2. The to-
tal running time for the large image size is only about18ms.
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Network N1 N1 N2 N2
(86×78) (36×35) (86×78) (36×35)

Top-1 36.25 28.36 38.12 29.86
Top-5 62.75 54.37 64.24 55.58

Table 1. Image classification accuracy [%] with different net-
works and different input sizes.

This is enough to meet the real-time requirements of many
applications.

For image classification, Tiny ImageNet, a subset of
ILSVRC-2012 dataset [14], is used. For age group estima-
tion, we use the Adiencedb dataset [15].

For each task, two network architectures are tested. The
first is denoted asN1, and the architecture is CONV(24)-
CONV(48)-CONV(48)-FC(256)-SOFTMAX,where the num-
bers in bracket denote the number of filters in CONV layers
or the size of FC vectors. The other is denoted asN2, with the
architecture CONV(32)-CONV(48)-CONV(48)-FC(512)-
FC(512)-SOFTMAX. The configuration of N1 strictly fol-
lows th Hi3519 hardware requirements and can be imple-
mented entirely by reusing the built-in hardware CNN mod-
ule. In N2, only the CONV layers follow the Hi3519 hard-
ware requirements, and the FC layers are implemented by
software since their sizes are over the hardware limit, but
since the complexity of the FC layers is much lower than
convolution layers, software implementation does not slow
down the overall speed too much.

For the Tiny ImageNet dataset, we randomly select 200
classes from the ILSVRC-2012 dataset. In each class, we
randomly choose 500 images as training samples and another
50 images as validation samples. All images are resized to
90×90 after center crop. Together, there are 200 classes,
100K training samples and 10K validation samples. We use
the Adam [16] optimizer in TensorFlow [17]. To get input
size 86×78, we randomly crop image of size 90×90. To get
input size 36×35, we first randomly crop 90×90 to 80×80,
and then resize to 36×35.

The results are reported in Table 1, which shows that large
input size can improve the Top-1 and Top-5 accuracies by
about 30% and15% respectively with the same architecture.

For the age estimation using the Adiencedb dataset, there
are 8 age groups and 5 folders of images. We randomly select
1 of 5 folders as validation set and use the remaining 4 folders
as training set. There are 11K images in the training set and
3K in the validation set.

The results are summarized in Table 2. In this example,
the relative improvement of our method is between6− 10%.
The impact of image size is not as much as image classifi-
cation. Note that the best result achieved on this dataset is
55.6±6.1 in [18], which is based on the much more compli-
cated 16-layer VGG16 network. The second best result is
50.7±5.1 in [19], whose network has 3 CONV layers and

Network N1 N1 N2 N2
(86×78) (36×35) (86×78) (36×35)

Accuracy 52.27 49.34 53.34 48.43

Table 2. Age group estimation accuracy [%] with different
networks and different input sizes

2 FC layers (same as ours). However, their image size is
227 × 227 and their network has many more CONV filters:
96 in CONV1, 256 in CONV2 and 256 in CONV3. There-
fore our implementation on Hi3519 is very competitive if the
cost is considered.

4. CONCLUSION

In this paper, we develop an efficient CNN framework for em-
bedded systems, which repeatedly applies a small-scale CNN
module to different subimages of a larger input image. By ju-
diciously selecting the architecture of the network, the sizes
of the input image, the sizes and overlaps of the subimages,
the result can be exactly equivalent to applying a larger CNN
to the large input image directly. This approach enables more
cost-effective CNN solutions for some embedded systems and
is very suitable for applications where basic deep learning
functionalities are required, but certain constraints on cost and
power consumption should also be met.
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