
MULTIPLE-IMAGE SUPER RESOLUTION USING BOTH RECONSTRUCTION
OPTIMIZATION AND DEEP NEURAL NETWORK

Jie Wu, Tao Yue, Qiu Shen, Xun Cao, Zhan Ma

School of Electronic Science and Engineering, Nanjing University

ABSTRACT

We present an efficient multi-image super resolution (MISR)
method. Our solution consists of a L1-norm optimized recon-
struction scheme for super resolution (SR), and a three-layer
convolutional network for artifacts removal, in a concatenated
fashion. Such a two-stage method achieves excellent per-
formance, which outperforms the existing state-of-the-art SR
methods in both subjective and objective measurements (e.g.,
5 to 7 dB improvements on popular image database using
PSNR metric).

Index Terms— Super-resolution, Multi-image, Recon-
struction, Convolutional network

1. INTRODUCTION

Image super-resolution (SR) aims at recovering a high res-
olution image with more details from a single (single-frame
SR) or a series of low resolution images (multi-frame SR).
There are two main categories of existing SR algorithms, i.e.,
reconstruction-based methods and learning-based methods.

Reconstruction-based methods. Reconstruction-based al-
gorithms try to mimic the inverse process of down-sampling
to reconstruct the high resolution images from series of
slightly different observations. However, the reconstruction-
based SR method suffers from the ill-posedness due to the
loss of high frequency components. This issue can be tack-
led to a certain degree by introducing some regularizers into
the objective function, like L1- or L2-Norms. Theoreti-
cally, adding L1-norm/L2-norm regularizer is equivalent to
adding the Laplacican/Gaussian distribution prior informa-
tion. These kinds of methods have been explored for decades.
For instance, [1] recovered the high-resolution counterpart
particularly based on the locally linear embedding, and [2]
found the connection between soft edge smoothness and a
soft cut metric on an image grid. However, these distribu-
tion based regularizers cannot resolve the ill-posed problem
completely, especially for the cases of high enlarge factors.

Learning-based methods. The learning-based algorithms
learn a mapping from low resolution images to higher ones
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Fig. 1. 4x SR for “butterfly” of popular SR algorithms. Our
MISR provides 7 dB PSNR improvement over the latest Lap-
SRN [3].

from either internal information [4, 5, 6] (i.e., exploiting inter-
nal similarities of the same image) or external information [7,
8, 9, 10, 11] (i.e., learning mapping functions from external
low and high-resolution exemplar pairs). Recently, the deep
learning based methods achieve impressive performance for
SR. A three-layer convolutional network that takes the low-
resolution image as the input and outputs the high-resolution
one is proposed in [12]. And [13] presented a deep network to
generate a high-resolution image inspired by VGG-net used
for ImageNet classification [14]. A twenty-layer deep net-
work was applied to learn the residuals for decent perfor-
mance. These learning based methods directly guess the high
resolution details according to the low resolution input and the
learned mapping functions, which may cause the incorrect re-
sults (different from the real cases), although these recovered
images are of good visual quality.

In this paper, we propose an innovative multi-image
super-resolution method (MISR), cascading a reconstruction-
based SR and a three-layer deep neural network (DNN) based
artifacts removal filter. Specifically, the reconstruction-based
method takes multiple images with sub-pixel offsets as input
and outputs one high-resolution image. Then, a three-layer
convolutional neural network is applied to remove the arti-
facts caused by the ill-posedness of reconstruction problem
and to further sharpen the edges. In the proposed algorithm,
we use the L1-norm regularization term to constrain the re-
construction process, and the conjugate-gradient algorithm is
used for fast convergence. Ringing artifacts are unavoidable
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Fig. 2. The structure of our proposed MISR method: the left module is the reconstruction-based SR and the right is a three-layer
convolutional network for artifacts removal.

for these reconstructed high resolution images because of
the ill-posedness of the super resolution. We devise a neural
network with three-layer convolutional layers to suppress the
ringing artifacts and recover the sharp edges. The proposed
method benefits from both the multiple low resolution inputs
and information learned from the three-layer neural network,
thus it achieves superior accuracy which outperforms the
state-of-the-art SR approaches, as shown in Fig. 1.

The rest of the paper is organized as follows. Section 2 de-
tails the implementation of our proposed MISR algorithm fol-
lowed by the experiments conducted in Section 3 to demon-
strate the efficiency of MISR in comparison to other state-
of-the-art methods. Finally, concluding remarks is given in
Section 4.

2. TWO-STAGE MULTIPLE IMAGE SUPER
RESOLUTION

We propose a novel multi-image super resolution framework,
which takes both the sub-pixel measurements and exemplar
information into consideration. The framework concate-
nates two stages namely the reconstruction optimization and
a three-layer convolutional neural network. The complete
pipeline of our approach is illustrated in Fig. 2, where we take
16 low-resolution images to reconstruct one high-resolution
image denoted as X

′
, and then a three layer DNN is applied

upon X
′

to have X
′′

with better quality in both subjective
and objective measurements. Even though we exemplified
our MISR using 4× SR scaling factor, it could be directly
extended to other SR scaling factors.

2.1. Reconstruction-Based SR using Multiple Images

We denote the high-resolution image as X ∈ RMs×Ns , the
low-resolution images as {Yi}s

2

i=1 ∈ RM×N , and {Di}s
2

i=1 ∈
RMN×MNs2 as the down-sampling matrix, where we assume
the size of the low-resolution image Yi is M × N , and the
scaling factor is s. Thus, the high-resolution image is Ms ×
Ns. Their relationship can be described as,

[Y1, Y2, ..., Ys2 ]
T = [D1, D2, ..., Ds2 ]

T ·X. (1)

Our goal is to recover the high-resolution image X from

the low resolution observations {Yi}s
2

i=1. Considering the ill-
posedness, we translate it into an optimization problem with
L1-norm regularization, i.e.,

X = argmin
X
||D ·X − Y ||2 + β||∇X||1, (2)

where X is the high-resolution image, {Yi}s
2

i=1 are sixteen
low-resolution images, {Di}s

2

i=1 is the counterpart down-
sampling matrices from X to Yi, ∇ is the gradient operator,
and β is the weight of the regularization term. In this paper,
we empirically set β = 0.1. To solve Eq.(2), an auxiliary
variable Q is introduced,

J =
1

2s2

s2∑
i=1

||Di ·X − Yi||2 + θ||∇X −Q||22 + β||Q||1

(3)
where θ is the weight of auxiliary term and varies for each
iteration to accelerate the convergence. In our experiment,
θ is set to be 0.001 initially, and times 0.99 after each iter-
ation. Eq.(3) can be easily solved by the two-step iterative
optimization method, where the specific details are described
as follows:

X-step: In this step, we only optimize the terms with vari-
able X , and leave Q fixed. Then the objective function be-
comes,

J1 =
1

2s2

s2∑
i=1

||Di ·X − Yi||2 + θ||∇X −Q||22 (4)

We use Conjugate Gradient method to quickly find the op-
timal value. The reason for choosing Conjugate gradient
method is that it only uses first derivative information, and is
capable of overcoming the drawback of the steepest descent
method which converges very slowly. And the most important
thing is that conjugate gradient does not require any external
parameters, but offers fast and stable convergence rate.

Q-step: In this step, we focus on the optimization of Q,

J2 = θ||∇X −Q||22 + β||Q||1. (5)

Here we take X from aforementioned X-step, into Eq.(5). It
then can be solved by using a simple shrinkage operation (see
[16] for details). By iteratively optimizing X and Q, we can
get the optimal solution of Eq.(2) fast and stable, as shown in
Alg. 1.
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Alg. 1: L1-norm reconstruction algorithm
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1. -- Upscaling factor.
2.

2

1{Y }s

i i
-- Sixteen arrayed LR images.

3. -- the weight of auxiliary term.
4. -- the weight of the regularization term.
5. -- the convergence threshold.
6.

2

1{ }s

i iD 
-- The down-sampling matrix.

Outputs:
1. 'X -- The reconstructed image.
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2.2. Artifacts Removal and Enhancement Using DNN

It is unavoidable that the reconstruction images X
′

gener-
ated by first module may have some artifacts like ringing ef-
fects. We then introduce a three-layer full-convolutional neu-
ral network to suppress these artifacts to improve the final im-
age quality. The configuration is outlined in the right part of
Fig. 2. For better understanding, we present a detailed DNN
structure in Fig. 3. The artifacts removal DNN has three lay-
ers, except the first layer, the other two layers are all convo-
lutional layers with 128 feature maps and the filters size are
9 × 9, 5 × 5 separately. The first layer operates on the in-
put image. The last layer is used for image construction with
filter size of 1 × 7 × 7. The batch size for training is 128.
We shuffle the train data to avoid the effects of image con-
tents. We apply the Rectified Linear Unit (ReLU , max(0,x))
to add the nonlinear mapping. We use Adam optimizer and
set our training epoch number as 100 (76029 iterations). The
whole training process takes roughly one hour on GPU Tesla
P100-PCIE-16GB.

The network takes the reconstruction results, denoted as
X

′
, as the input. Given a training datasets {X ′

i , Xi}s
2

i=1,

Input 1 9f 
2 5f 

3 7f 

128@50 50
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'X ''X
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Fig. 3. A three-layer convolutional network used for artifacts
removal.

where X is the corresponding ground truth image, our goal
is to learn a mapping f that predicts values X

′′
= f(X

′
),

where X
′′

is an estimated high-resolution image with less ar-
tifacts. We minimize the mean squared error 1

2 ||X
′′ −X ′ ||2

averaged over the training set to train a network suppressing
the artifacts.

Although the training process needs input images of fixed
size, our network is fully convolutional, so it can handle im-
ages of arbitrary sizes without any pre- or post-processess.

3. EXPERIMENTS

In this section, we evaluate the performance of the proposed
and state-of-the-art SR methods on several datasets to verify
the effectiveness of the proposed algorithm.

3.1. Data Generation

We use Train2014 datasets [20] to train our model, since it
contains 1331 natural images which is big enough for our
training process. Specifically, we use 100 natural images from
the datasets and compute the down-sampled images with dif-
ferent sub-pixel offsets as the input of proposed method. To
train the refinement network, we reconstruct the artifacts cor-
rupted high resolution images by using the reconstruction-
based algorithm (Alg. 1). Then, we clip these images into
50 × 50 patches with a stride of 15, generating 95037 sub-
images pairs. Besides, we take 20% training data as the vali-
dation set.

Test datasets: For benchmark, we use three datasets, i.e.,
Set5 [19], Set14 [15], and Urban100 [6] which are commonly
chosen for demonstrating the SR algorithm to perform the
comparison with the state-of-the-art works [10, 11, 21].

3.2. Comparisons to State-of-the-Arts

In this section, we show the qualitative results of our method
in comparison to state-of-the-art methods. In our paper, we
adopt the traditional PSNR (Peak Signal-to-Noise Ratio) and
SSIM (Structural Similarity) indices [22], and PSNR is mea-
sured by dB (decibel). Specifically, we compare our method
with two multi-frame super resolution methods and two deep
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Fig. 4. Super-resolution results of three samples from Set14 [15] and Urban100 [6] with 4× scale factor. Obviously, the
proposed method recovers sharp lines.

Dataset
Bicubic

PSNR/SSIM
VDSR[13]

PSNR/SSIM
LapSRN[3]
PSNR/SSIM

MFSR[17]
PSNR/SSIM

VideoSR[18]
PSNR/SSIM

MISR(Ours)
PSNR/SSIM

Set5 28.423/0.810 30.289/0.871 31.522/0.885 27.627/0.811 28.450/0.845 38.200/0.963
Set14 26.101/0.704 27.166/0.763 27.168/0.744 25.617/0.740 26.121/0.774 32.808/0.910

Urban100 23.152/0.659 24.178/0.736 25.201/0.755 23.171/0.704 21.605/0.659 32.073/0.939

Table 1. Average PSNR/SSIM for 4× scale factor on datasets Set5 [19], Set14 [15] and Urban100 [6]. The bold indicates the
best performance. The proposed method outperforms the state-of-the-arts by a large margin.

learning methods, i.e., MFSR [17], VideoSR [18], VDSR [13]
and LapSRN [3]. From Fig. 4 and Table 1, we can see that
the proposed method achieves better results both objectively
and subjectively than the state-of-the-art SR methods. Specif-
ically, the PSNR of our method is higher than LapSRN [3],
the best SR algorithm nowadays, by 7dB on Urban100 [6].
It is worth noting that both MFSR [17] and VideoSR [18] are
specified for video super resolution, and it seems that their re-
sults have a slight offsets compared with ground truth images.
Therefore, although results of MFSR [17] and VideoSR [18]
are of pretty good visual quality, their PSNR and SSIM [22]
are not very good in this case, as shown in Fig. 4.

4. CONCLUSION

In this work, we have presented a novel multi-image super
resolution method, concatenating a reconstruction-based su-
per resolution and a three-layer deep neural network based
filtering for artifacts removal. We have demonstrated that our
method has superior performance to the state-of-the-art works

with a significant performance margin both subjectively and
objectively. More specifically, we have demonstrated that 5
to 7 dB PSNR improvements can be obtained over the state-
of-the-art LapSRN [3] with our method. As the future step,
we will integrate our MISR method with the array system that
using multiple off-the-shelf cameras (i.e., low-end) to achieve
super high resolution image/video captures.
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