Solutions 6

Exercise 11.7

For Bayesian linear model, MMSE estimation is identical to MAP estimation since
p(0|x) is Gaussian. But MAP estimation maximizes p(x|@)p(6) with no prior informa-
tion, equivalent to maximizing p(x|@). In the Bayesian model, p(x|0) = p(x;0). Thus,
maximizing p(x; @), which yields the MLE or MVUE, also yields the MMSE.
Exercise 11.11

R=E[C

/ / p(x, 6)dxdd
— / (/ C(e)p(G\X)Cw) p(x)dx

/C(e)p(@\x)d@ = / ||>5p(0lx)d9 =1- /lg_é||<§p(0\x)d9

as & — 0, we minimize the above by choosing 6 = arg maxg p(0]x).
Exercise 11.12
If o = A0, then 0a/00 = A

p(x,0) p(x0)

p(x,a) =
(@) det 22/ |detA|

However, A does not depend on o and @ = A=, so that

Pz.0 <X7 Aila)

p(x, @) = detA|

The MAP estimator of o maximizes p,¢(x, A"'ar), equivalent to maximizing p(x, )
because @ = A~'a is invertible. Thus, & = A8
Exercise 12.2
From (12.27) in page 391, we can get
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where h = [1,7,...,7V 1T, Thus,
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From (12.29) and (12.30), we get
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Exercise 12.14

To minimize E[(x[n] — Z[n])?], we use the orthogonality principle, i.e.
E[(z[n] — Z[n])zn —1]] =0, l=—-M,..,M(l #0)
reo(l) = E)_axxln — Kaln = 1] = Y arrea(l — k)

To show that a_j = ax, we let E =—k

M

e (l) = Z a_yren(l+ k)

k' =—Mk' #0
Let I = —1
reo(—1) = > a_yre(-1 +FK)

ree(l) = ) a_yre(l — k)
k' =—M k' #0
Hence ry.(—k) = ry.(k). But these are the same set of equation for which there is a
unique solution. Hence a_, = ag. This must be true since the correlation of x[n] with
xz[n + k] is the same as that with z[n — k|, due to the even symmetry.
Exercise 12.19

El(z[n] — 2[n])z[n —1]] = 0
raa(l) = > h(k)E(zn — Kla[n — 1)) = > h(k)re (1 — k)

The equations are independent of n since in deriving (12.65) we assumed n = N was the



index of the sample to be predicted. Hence the ACF does not depend on n

M; = E[(z[n] — &

—

n))x[n]] = E[(z[n] — 2[n])z[n]]

Exercise 12.20

From the previous problem, we have

rae(l) = ) h(k)rea(l = k)

N
k=1

must be solved for the optimal one-step prediction. But for an AR(N) process, we know

that

k=1
which are the Yale-Walker equations. Hence the solution for the h(k) is unique,

h(k) = —alk]

so that &[n] = — S0, a[k]z[n — k] and the MMSE is

= 120(0) + Y alk]raa(k)



