
Solutions 6

Exercise 11.7

For Bayesian linear model, MMSE estimation is identical to MAP estimation since

p(θ|x) is Gaussian. But MAP estimation maximizes p(x|θ)p(θ) with no prior informa-

tion, equivalent to maximizing p(x|θ). In the Bayesian model, p(x|θ) = p(x;θ). Thus,

maximizing p(x;θ), which yields the MLE or MVUE, also yields the MMSE.

Exercise 11.11

R = E[C(ε)]

=

∫ ∫
C(ε)p(x,θ)dxdθ

=

∫ (∫
C(ε)p(θ|x)dθ

)
p(x)dx∫

C(ε)p(θ|x)dθ =

∫
||ε||>δ

p(θ|x)dθ = 1−
∫
||θ−θ̂||<δ

p(θ|x)dθ

as δ → 0, we minimize the above by choosing θ̂ = argmaxθ p(θ|x).
Exercise 11.12

If α = Aθ, then ∂α/∂θ = A

p(x,α) =
p(x,θ)

|det∂α/
∂θ
|
=
p(x,θ)

|detA|

However, A does not depend on α and θ = A−1α, so that

p(x,α) =
px,θ(x,A

−1α)

|detA|

The MAP estimator of α maximizes px,θ(x,A
−1α), equivalent to maximizing p(x,θ)

because θ = A−1α is invertible. Thus, α̂ = Aθ̂

Exercise 12.2

From (12.27) in page 391, we can get

Â = µA + (
1

σ2
A

+
hTh

σ2
)−1

hT

σ2
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where h = [1, r, ..., rN−1]T . Thus,

Â = µA +

∑N−1
n=0 r

n(x[n]− rnµA)
σ2

σ2
A
+
∑N−1

n=0 r
2n

From (12.29) and (12.30), we get

Bmse(Â) =
1

1
σ2
A
+ 1

σ2

∑N−1
n=0 r

2n

Exercise 12.14

To minimize E[(x[n]− x̂[n])2], we use the orthogonality principle, i.e.

E[(x[n]− x̂[n])x[n− l]] = 0, l = −M, ...,M(l 6= 0)

rxx(l) = E[
∑
k

akx[n− k]x[n− l]] =
∑
k

akrxx(l − k)

To show that a−k = ak, we let k
′
= −k

rxx(l) =
M∑

k′=−M,k′ 6=0

a−k′rxx(l + k
′
)

Let l
′
= −l

rxx(−l
′
) =

M∑
k′=−M,k′ 6=0

a−k′rxx(−l
′
+ k

′
)

rxx(l
′
) =

M∑
k′=−M,k′ 6=0

a−k′rxx(l
′ − k′

)

Hence rxx(−k) = rxx(k). But these are the same set of equation for which there is a

unique solution. Hence a−k = ak. This must be true since the correlation of x[n] with

x[n+ k] is the same as that with x[n− k], due to the even symmetry.

Exercise 12.19

x̂[n] =
N∑
k=1

h(k)x[n− k]

E[(x[n]− x̂[n])x[n− l]] = 0

rxx(l) =
N∑
k=1

h(k)E(x[n− k]x[n− l]) =
N∑
k=1

h(k)rxx(l − k)

The equations are independent of n since in deriving (12.65) we assumed n = N was the
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index of the sample to be predicted. Hence the ACF does not depend on n

Mx̂ = E[(x[n]− x̂[n])x[n]]− E[(x[n]− x̂[n])x̂[n]]

= E[x2[n]]−
N∑
k=1

h(k)E[x[n− k]x[n]]

= rxx(0)−
N∑
k=1

h(k)rxx(k)

Exercise 12.20

From the previous problem, we have

rxx(l) =
N∑
k=1

h(k)rxx(l − k)

must be solved for the optimal one-step prediction. But for an AR(N) process, we know

that

rxx(l) = −
N∑
k=1

a[k]rxx(l − k)

which are the Yale-Walker equations. Hence the solution for the h(k) is unique,

h(k) = −a[k]

so that x̂[n] = −
∑N

k=1 a[k]x[n− k] and the MMSE is

Mx̂ = rxx(0)−
N∑
k=1

h(k)rxx(k)

= rxx(0) +
N∑
k=1

a[k]rxx(k)

= σ2
u
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