Solutions 6

Exercise 11.7

For Bayesian linear model, MMSE estimation is identical to MAP estimation since $p(\boldsymbol{\theta} \mid \mathbf{x})$ is Gaussian. But MAP estimation maximizes $p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$ with no prior information, equivalent to maximizing $p(\mathbf{x} \mid \boldsymbol{\theta})$. In the Bayesian model, $p(\mathbf{x} \mid \boldsymbol{\theta})=p(\mathbf{x} ; \boldsymbol{\theta})$. Thus, maximizing $p(\mathbf{x} ; \boldsymbol{\theta})$, which yields the MLE or MVUE, also yields the MMSE.

Exercise 11.11

$$
\begin{aligned}
R & =\mathbb{E}[C(\boldsymbol{\epsilon})] \\
& =\iint C(\boldsymbol{\epsilon}) p(\mathbf{x}, \boldsymbol{\theta}) d \mathbf{x} d \boldsymbol{\theta} \\
& =\int\left(\int C(\boldsymbol{\epsilon}) p(\boldsymbol{\theta} \mid \mathbf{x}) d \boldsymbol{\theta}\right) p(\mathbf{x}) d \mathbf{x} \\
\int C(\boldsymbol{\epsilon}) p(\boldsymbol{\theta} \mid \mathbf{x}) d \boldsymbol{\theta} & =\int_{\| \epsilon \mid>\delta} p(\boldsymbol{\theta} \mid \mathbf{x}) d \boldsymbol{\theta}=1-\int_{\|\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}\|<\delta} p(\boldsymbol{\theta} \mid \mathbf{x}) d \boldsymbol{\theta}
\end{aligned}
$$

as $\delta \rightarrow 0$, we minimize the above by choosing $\hat{\boldsymbol{\theta}}=\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathbf{x})$.

Exercise 11.12

If $\boldsymbol{\alpha}=\mathbf{A} \boldsymbol{\theta}$, then $\partial \boldsymbol{\alpha} / \partial \boldsymbol{\theta}=\mathbf{A}$

$$
p(\mathbf{x}, \boldsymbol{\alpha})=\frac{p(\mathbf{x}, \boldsymbol{\theta})}{\left|\operatorname{det} \frac{\partial \boldsymbol{\alpha} \mid}{\partial \boldsymbol{\theta}}\right|}=\frac{p(\mathbf{x}, \boldsymbol{\theta})}{|\operatorname{det} \mathbf{A}|}
$$

However, \mathbf{A} does not depend on $\boldsymbol{\alpha}$ and $\boldsymbol{\theta}=\mathbf{A}^{-1} \boldsymbol{\alpha}$, so that

$$
p(\mathbf{x}, \boldsymbol{\alpha})=\frac{p_{x, \theta}\left(\mathbf{x}, \mathbf{A}^{-1} \boldsymbol{\alpha}\right)}{|\operatorname{det} \mathbf{A}|}
$$

The MAP estimator of $\boldsymbol{\alpha}$ maximizes $p_{x, \theta}\left(\mathbf{x}, \mathbf{A}^{-1} \boldsymbol{\alpha}\right)$, equivalent to maximizing $p(\mathbf{x}, \boldsymbol{\theta})$ because $\boldsymbol{\theta}=\mathbf{A}^{-1} \boldsymbol{\alpha}$ is invertible. Thus, $\hat{\boldsymbol{\alpha}}=\mathbf{A} \hat{\boldsymbol{\theta}}$

Exercise 12.2

From (12.27) in page 391, we can get

$$
\hat{A}=\mu_{A}+\left(\frac{1}{\sigma_{A}^{2}}+\frac{\mathbf{h}^{T} \mathbf{h}}{\sigma^{2}}\right)^{-1} \frac{\mathbf{h}^{T}}{\sigma^{2}}
$$

where $\mathbf{h}=\left[1, r, \ldots, r^{N-1}\right]^{T}$. Thus,

$$
\hat{A}=\mu_{A}+\frac{\sum_{n=0}^{N-1} r^{n}\left(x[n]-r^{n} \mu_{A}\right)}{\frac{\sigma^{2}}{\sigma_{A}^{2}}+\sum_{n=0}^{N-1} r^{2 n}}
$$

From (12.29) and (12.30), we get

$$
\operatorname{Bmse}(\hat{A})=\frac{1}{\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma^{2}} \sum_{n=0}^{N-1} r^{2 n}}
$$

Exercise 12.14

To minimize $\mathbb{E}\left[(x[n]-\hat{x}[n])^{2}\right]$, we use the orthogonality principle, i.e.

$$
\begin{aligned}
\mathbb{E}[(x[n]-\hat{x}[n]) x[n-l]]=0, \quad l & =-M, \ldots, M(l \neq 0) \\
r_{x x}(l)=\mathbb{E}\left[\sum_{k} a_{k} x[n-k] x[n-l]\right] & =\sum_{k} a_{k} r_{x x}(l-k)
\end{aligned}
$$

To show that $a_{-k}=a_{k}$, we let $k^{\prime}=-k$

$$
r_{x x}(l)=\sum_{k^{\prime}=-M, k^{\prime} \neq 0}^{M} a_{-k^{\prime}} r_{x x}\left(l+k^{\prime}\right)
$$

Let $l^{\prime}=-l$

$$
\begin{aligned}
r_{x x}\left(-l^{\prime}\right) & =\sum_{k^{\prime}=-M, k^{\prime} \neq 0}^{M} a_{-k^{\prime}} r_{x x}\left(-l^{\prime}+k^{\prime}\right) \\
r_{x x}\left(l^{\prime}\right) & =\sum_{k^{\prime}=-M, k^{\prime} \neq 0}^{M} a_{-k^{\prime}} r_{x x}\left(l^{\prime}-k^{\prime}\right)
\end{aligned}
$$

Hence $r_{x x}(-k)=r_{x x}(k)$. But these are the same set of equation for which there is a unique solution. Hence $a_{-k}=a_{k}$. This must be true since the correlation of $x[n]$ with $x[n+k]$ is the same as that with $x[n-k]$, due to the even symmetry.
Exercise 12.19

$$
\begin{gathered}
\hat{x}[n]=\sum_{k=1}^{N} h(k) x[n-k] \\
\mathbb{E}[(x[n]-\hat{x}[n]) x[n-l]]=0 \\
r_{x x}(l)=\sum_{k=1}^{N} h(k) \mathbb{E}(x[n-k] x[n-l])=\sum_{k=1}^{N} h(k) r_{x x}(l-k)
\end{gathered}
$$

The equations are independent of n since in deriving (12.65) we assumed $n=N$ was the
index of the sample to be predicted. Hence the ACF does not depend on n

$$
\begin{aligned}
M_{\hat{x}} & =\mathbb{E}[(x[n]-\hat{x}[n]) x[n]]-\mathbb{E}[(x[n]-\hat{x}[n]) \hat{x}[n]] \\
& =\mathbb{E}\left[x^{2}[n]\right]-\sum_{k=1}^{N} h(k) \mathbb{E}[x[n-k] x[n]] \\
& =r_{x x}(0)-\sum_{k=1}^{N} h(k) r_{x x}(k)
\end{aligned}
$$

Exercise 12.20

From the previous problem, we have

$$
r_{x x}(l)=\sum_{k=1}^{N} h(k) r_{x x}(l-k)
$$

must be solved for the optimal one-step prediction. But for an $\operatorname{AR}(N)$ process, we know that

$$
r_{x x}(l)=-\sum_{k=1}^{N} a[k] r_{x x}(l-k)
$$

which are the Yale-Walker equations. Hence the solution for the $h(k)$ is unique,

$$
h(k)=-a[k]
$$

so that $\hat{x}[n]=-\sum_{k=1}^{N} a[k] x[n-k]$ and the MMSE is

$$
\begin{aligned}
M_{\hat{x}} & =r_{x x}(0)-\sum_{k=1}^{N} h(k) r_{x x}(k) \\
& =r_{x x}(0)+\sum_{k=1}^{N} a[k] r_{x x}(k) \\
& =\sigma_{u}^{2}
\end{aligned}
$$

