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Nonconvex Demixing From Bilinear Measurements
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Abstract—We consider the problem of demixing a sequence of
source signals from the sum of noisy bilinear measurements. It is
a generalized mathematical model for blind demixing with blind
deconvolution, which is prevalent across the areas of dictionary
learning, image processing, and communications. However, state-
of-the-art convex methods for blind demixing via semidefinite pro-
gramming are computationally infeasible for large-scale problems.
Although the existing nonconvex algorithms are able to address the
scaling issue, they normally require proper regularization to es-
tablish optimality guarantees. The additional regularization yields
tedious algorithmic parameters and pessimistic convergence rates
with conservative step sizes. To address the limitations of exiting
methods, we thus develop a provable nonconvex demixing proce-
dure via Wirtinger flow, much like vanilla gradient descent, to har-
ness the benefits of regularization-free fast convergence rate with
aggressive step size and computational optimality guarantees. This
is achieved by exploiting the benign geometry of the blind demix-
ing problem, thereby revealing that Wirtinger flow enforces the
regularization-free iterates in the region of strong convexity and
qualified level of smoothness, where the step size can be chosen
aggressively.

Index Terms—Blind demixing, blind deconvolution, bilin-
ear measurements, nonconvex optimization, Wirtinger flow,
regularization-free, statistical and computational guarantees.

I. INTRODUCTION

D EMIXING a sequence of source signals from the sum of
bilinear measurements provides a generalized mathemat-

ical modeling framework for blind demixing with blind decon-
volution [1]–[3]. It spans a wide scope of applications ranging
from communication [4], imaging [5], and machine learning
[6], to the recent application in the context of the Internet-of-
Things for sporadic and short messages communications over
unknown channels [3]. Although blind demixing can be re-
garded as a variant of blind deconvolution [7] by extending the
problem of “single-source” setting to the “multi-source” setting,
it is nontrivial to accomplish the extension. The main reason is
that the “incoherence” between different sources brings unique
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challenges to develop effective algorithms for blind demixing
with theoretical guarantees [1], [2], [8]. In addition, the bilin-
ear measurements in the blind demixing problem hamper the
extension of the results for the demixing problem with linear
measurements [9]. Moreover, the demixing procedure often in-
volves solving highly nonconvex optimization problems which
are generally dreadful to tackle. In particular, local stationary
points bring severe challenges since it is usually intractable to
even check local optimality for a feasible point [10].

Despite the general intractability, recent years have seen
progress on convex relaxation approach for demixing problems.
Specifically, sharp recovery bound for convex demixing with
linear measurements has been established in [11] based on the
integral geometry technique [11] for analyzing the convex opti-
mization problems with random constraints. Moreover, by lift-
ing the original bilinear model into the linear model with rank-
one matrix, the provable convex relaxation approach for solving
the blind deconvolution problem via semidefinite programming
has been developed in [7]. Ling et al. in [1] further extended the
theoretical analysis for blind deconvolution with single source
[7] to the blind demixing problem with multiple sources. The
theoretical guarantees for blind demixing have been recently
improved in [2], which are built on the concept of restricted
isometry property originally introduced in [12]. Despite attrac-
tive theoretical guarantees, such convex relaxation methods fail
in the high-dimensional data setting due to the high compu-
tational and storage cost for solving large-scale semidefinite
programming problems.

To address the scaling issue of the convex relaxation ap-
proaches, a recent line of works has investigated computa-
tionally efficient methods based on nonconvex optimization
paradigms with theoretical guarantees. For high-dimensional
estimation problems via nonconvex optimization methods, state-
of-the-art results can be divided into two categories, i.e., local
geometry and global geometry. In the line of works that focuses
on the local geometry, one shows that iterative algorithm con-
verges to global solution rapidly when the initialization is close
to the ground truth. The list of this line of successful works in-
cludes matrix completion [13], phase retrieval [10], [14], [15],
blind deconvolution [16] and blind demixing [8]. The second
line of works explores the global landscape of the objective func-
tion and aims to show that all local minima are globally optimal
under suitable statistical conditions while the saddle points can
be escaped efficiently via nonconvex iterative procedures with
random initialization. The successful examples include matrix
sensing [17], matrix completion [18], dictionary learning [19],
tensor decomposition [20], synchronization problem [21] and
learning shallow neural networks [22].

1053-587X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1418-7465
mailto:dongjl@shanghaitech.edu.cn
mailto:dongjl@shanghaitech.edu.cn
mailto:shiym@shanghaitech.edu.cn


DONG AND SHI: NONCONVEX DEMIXING FROM BILINEAR MEASUREMENTS 5153

The nonconvex optimization paradigm for high-dimensional
estimation has also recently been applied in the setting of blind
demixing. Specifically, a nonconvex Riemannian optimization
algorithm was developed in [3] by exploiting the manifold
geometry of fixed-rank matrices. However, due to compli-
cated iterative strategies of in the Riemannian trust-region
algorithms, it is challenging to provide high-dimensional
statistical analysis for such nonconvex strategy. Ling et al.
in [8] developed a regularized gradient descent procedure to
optimize the nonconvex loss function directly, in which the
regularization accounts for guaranteeing incoherence. Although
the regularized nonconvex procedure in [8] provides appealing
computational properties with optimality guarantees, it usually
introduces tedious algorithmic parameters that need to be
carefully tuned. Moreover, theoretical analysis in [8] provides a
pessimistic convergence rate with a severely conservative step
size.

In contrast, the Wirtinger flow algorithm [14], which consists
of spectral initialization and vanilla gradient descent updates
without regularization, turns out to yield theoretical guarantees
for important high-dimensional statistical estimation problems.
In particular, the optimality guarantee for phase retrieval was
established in [14]. However, the theoretical results in [14] only
ensure that the iterates of the Wirtinger flow algorithm remain
in the ℓ2-ball, in which the step size is chosen conservatively,
yielding slow convergence rate. The statistical and computa-
tional efficiency was further improved in [15] via the truncated
Wirtinger flow by carefully controlling search directions, much
like regularized gradient descent. To harness all benefits of reg-
ularization free, fast convergence rates with aggressive step size
and computational optimality guarantees, Ma et al. [10] has
recently uncovered that the Wirtinger flow algorithm (without
regularization) implicitly enforces iterates within the intersec-
tion between ℓ2-ball and the incoherence region, i.e., the region
of incoherence and contraction, for the nonconvex estimation
problems of phase retrieval, low-rank matrix completion, and
blind deconvolution. By exploiting the local geometry in such
a region, i.e., strong convexity and qualified level of smooth-
ness, the step size of the iterative algorithm can be chosen more
aggressively, yielding faster convergence rate.

In the present work, we extend the knowledge of implicit reg-
ularization in the nonconvex statistical estimation problems [10]
by studying the unrevealed blind demixing problem. It turns out
that, for the blind demixing problem, our theory suggests a more
aggressive step size for the Wirtinger flow algorithm compared
with the results in [8], yielding substantial computational sav-
ings for blind demixing problem. The extension turns out to be
nontrivial since the “incoherence” between multiple sources for
blind demixing leads to distortion to the statistical property in the
single source scenario for blind deconvolution. The similar chal-
lenge has also been observed in [1], [2] by extending the convex
relaxation approach (i.e., semidefinite programming) for blind
deconvolution to the setting of blind demixing. Furthermore, the
noisy measurements also bring additional challenges to estab-
lish theoretical guarantees. The extra technical details involved
in this paper to address these challenges shall be demonstrated
clearly during the presentation.

Notations: Throughout this paper, f(n) = O(g(n)) or
f(n) ! g(n) denotes that there exists a constant c > 0 such
that |f(n)| ≤ c|g(n)| whereas f(n) " g(n) means that there
exists a constant c > 0 such that |f(n)| ≥ c|g(n)|. f(n) ≫
g(n) denotes that there exists some sufficiently large con-
stant c > 0 such that |f(n)| ≥ c|g(n)|. In addition, the notation
f(n) ≍ g(n) means that there exist constants c1 , c2 > 0 such
that c1 |g(n)| ≤ |f(n)| ≤ c2 |g(n)|.

II. PROBLEM FORMULATION

In this section, we present mathematical model of the blind
demixing problem in the noisy scenario. As this problem is
highly intractable without any further structural assumptions,
the coupled signals are thus assumed to belong to known sub-
spaces [1], [2], [8].

Let A∗ denote the conjugate transpose of matrix A. Suppose
we have m bilinear measurements yj ’s, which are represented
in the frequency domain as

yj =
s∑

i=1

b∗jh
♮
ix

♮∗
i aij + ej , 1 ≤ j ≤ m, (1)

where aij ∈ CK and bj ∈ CK are known design vectors,

ej ∼ N (0, σ 2 d2
0

2m ) + iN (0, σ 2 d2
0

2m ) is the additive white com-
plex Gaussian noise with d0 =

√∑ s
i = 1 ∥h♮

i ∥2
2 ∥x

♮
i ∥2

2 and 1/σ2 as
the measurement of noise variance [8]. Each aij is assumed
to follow an i.i.d. complex Gaussian distribution, i.e., aij ∼
N (0, 1

2 IK ) + iN (0, 1
2 IK ). The first K columns of the uni-

tary discrete Fourier transform (DFT) matrix F ∈ Cm×m with
FF ∗ = Im form the matrix B := [b1 , . . . , bm ]∗ ∈ Cm×K [8].
Based on the above bilinear model, our goal is to simultaneously
recover the underlying signals h♮

i ∈ CK ’s and x♮
i ∈ CK ’s by

solving the following blind demixing problem [3], [8]

P : minimize
{hi },{xi }

f(h,x) :=
m∑

j=1

∣∣∣
s∑

i=1

b∗
jhix

∗
i aij − yj

∣∣∣
2
. (2)

To simplify the presentation, we denote f(z) := f(h,x),
where z = [z∗

1 · · · z∗
s ]

∗ ∈ C2sK with zi = [h∗
i x∗

i ]
∗ ∈ C2K . We

further define the discrepancy between the estimate z and the
ground truth z♮ as the distance function, given as

dist(z,z♮) =

(
s∑

i=1

dist2(zi ,z
♮
i )

)1/2

, (3)

where dist2(zi ,z
♮
i ) = minα i ∈C(∥ 1

α i
hi − h♮

i∥2
2 + ∥αixi −

x♮
i∥2

2)/di for i = 1, . . . , s. Here, di = ∥h♮
i∥2 + ∥x♮

i∥2 and each
αi is the alignment parameter.

III. MAIN RESULTS

In this section, we shall present the Wirtinger flow algorithm
along with the statistical analysis for blind demixing P .

A. Wirtinger Flow Algorithm

The Wirtinger flow algorithm [14] is a two-stage approach
consisting of spectral initialization and vanilla gradient descent
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Algorithm 1: Wirtinger Flow for Blind Demixing P .
Given: {aij}1≤i≤s,1≤j≤m , {bj}1≤j≤m , and {yj}1≤j≤m .

1: Spectral Initialization:
2: for all i = 1, . . . , s do in parallel
3: Let σ1(M i), ȟ

0
i and x̌0

i be the leading singular
value, left singular vector and right singular vector of
matrix M i :=

∑m
j=1 yjbja∗

ij , respectively.

4: Set h0
i =

√
σ1(M i)ȟ

0
i and x0

i =
√

σ1(M i)x̌0
i .

5: end for
6: for all t = 1, . . . , T do
7: for all i = 1, . . . , s do in parallel

8:
[

ht + 1
i

xt + 1
i

]
=
[

ht
i

xt
i

]
− η

[
1

∥xt
i
∥22

∇hi
f (ht ,xt )

1
∥ht

i
∥22

∇xi
f (ht ,xt )

]

9: end for
10: end for

update procedure without regularization. Specifically, the gra-
dient step in the second stage of Wirtinger flow is character-
ized by the notion of Wirtinger derivatives [14], i.e., the deriva-
tives of real valued functions over complex variables. For each
i = 1, . . . , s, ∇hi f(h,x) and ∇xi f(h,x) denote the Wirtinger
gradient of f(z) with respect to hi and xi respectively as
follows:

∇hi f(z) =
m∑

j=1

(
s∑

k=1

b∗
jhkx∗

kakj − yj

)
bja

∗
ijxi , (4a)

∇xi f(z) =
m∑

j=1

(
s∑

k=1

b∗
jhkx∗

kakj − yj

)
aijb

∗
jhi . (4b)

The Wirtinger flow for the blind demixing problem is pre-
sented in Algorithm 1, in which T > 0 is the maximum
number of iterations and the constant η > 0 is the step
size.

We now provide some numerical evidence by testing the
performance of the Wirtinger flow algorithm for blind demix-
ing problem P (2). We first consider the blind demixing
problem in the noiseless scenario in order to clearly demon-
strate the effectiveness of the Wirtinger flow algorithm. Specif-
ically, for each K ∈ {50, 100, 200, 400, 800}, s = 10 and
m = 50 K, we generate the design vectors aij ’s and bj ’s for
each 1 ≤ i ≤ s, 1 ≤ j ≤ m, according to the descriptions in
Section II. The underlying signals h♮

i ,x
♮
i ∈ CK , 1 ≤ i ≤ s,

are generated as random vectors with unit norm. With the
chosen step size η = 0.1 in all settings, Fig. 1(a) shows
the relative error

∑s
i=1 ∥ht

ix
t∗
i − h♮

ix
♮∗
i ∥F /

∑s
i=1 ∥h

♮
ix

♮∗
i ∥F ,

versus the iteration count, where ∥ · ∥F denotes the Frobe-
nius norm. We observe that, in the noiseless case, Wirtinger
flow with constant step size enjoys extraordinary linear con-
vergence rate which rarely changes as the problem size
varies.

In the noiseless scenario, we further demonstrate that the per-
formance and convergence rate of the Wirtinger flow actually

depend on the condition number, i.e., κ := maxi ∥x♮
i ∥2

min i ∥x♮
i ∥2

. In this

experiment, we let K = 50, m = 800, s = 2, the step size be
η = 0.5 and set for the first component ∥h♮

1∥2 = ∥x♮
1∥2 = 1

and for the second one ∥h♮
2∥2 = ∥x♮

2∥2 = κ with κ ∈ {1, 2, 3}.
Fig. 1(b) shows the relative error versus the iteration count. As
we can see, the larger κ yields slower convergence rate. This phe-
nomenon may be caused by bad initial guess for weak compo-
nents via spectral initialization [8]. Moreover, the strong compo-
nents may pollute the gradient directions for weak components,
which yields slow convergence rate [8]. We further provide em-
pirical results for the Wirtinger flow algorithm in the presence of
noise. We set the size of source signals K = 50, the sample size
m ∈ {3, 5, 7, 9, 12}× 103 , the user number s = 10, the step
size η = 0.1. The underlying signals h♮

i ,x
♮
i ∈ CK , 1 ≤ i ≤ s,

are generated as random vectors with unit norm. Fig. 1(c) shows
the relative error defined above versus the signal-to-noise ratio
(SNR), where the SNR is defined as SNR := ∥y∥2/∥e∥2 [8]
since it is easy to access the signal y. Both the relative error
and the SNR are shown in the dB scale. As we can see, the rel-
ative error scales linearly with the SNR, which implies that the
Wirtinger flow is robust to the noise. The main purpose of this
paper is to theoretically analyze the promising empirical obser-
vations of the Wirtinger flow algorithm for blind demixing P
in the noisy scenarios. We will demonstrate that for the problem
P the Wirtinger flow algorithm can achieve fast convergence
rates with aggressive step size and computational optimality
guarantees without explicit regularization.

B. Theoretical Results

Before stating the main theorem, we need to introduce the
incoherence parameter [8], which characterizes the incoherence
between bj and hi for 1 ≤ i ≤ s, 1 ≤ j ≤ m.

Definition 1: (Incoherence for blind demixing): Let the in-
coherence parameter µ be the smallest number such that

max
1≤i≤s,1≤j≤m

|b∗
jh

♮
i |

∥h♮
i∥2

≤ µ√
m

. (5)

The incoherence between bj and hi for 1 ≤ i ≤ s, 1 ≤ j ≤
m specifies the smoothness of the loss function (2). Within the
region of incoherence and contraction (defined in Section IV-A)
that enjoys the qualified level of smoothness, the step size for
iterative refinement procedure can be chosen more aggressively
according to generic optimization theory [10]. Based on the
definition of incoherence, our theory shall show that the iterates
of Algorithm 1 will retain in the region of incoherence and
contraction, which is endowed with strong convexity and the
qualified level of smoothness.

Without loss of generality, we assume ∥h♮
i∥2 = ∥x♮

i∥2 for
i = 1, . . . , s and define the condition number

κ :=
maxi ∥x♮

i∥2

mini ∥x♮
i∥2

≥ 1

with maxi ∥x♮
i∥2 = 1. Define Ai(e) =

∑m
j=1 ejbja∗

ij , i =
1, . . . , s, then the main theorem is presented in the following.

Theorem 1: Suppose the step size obeys η > 0 and η ≍ s−1 ,
then the iterates (including the spectral initialization point) in
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Fig. 1. Numerical results.

Algorithm 1 satisfy

dist(zt ,z♮) ≤ C1(1 − η

16κ
)t

(
1

log2 m
− 48

√
sκ2

η
·

max
1≤i≤s

∥Ai(e)∥
)

+
48C1

√
sκ2

η
max
1≤i≤s

∥Ai(e)∥, (6a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
αt

ix
t
i − x♮

i

)∣∣∣ · ∥x♮
i∥

−1
2 ≤ C3

1
√

s log3/2 m
,

(6b)

max
1≤i≤s,1≤j≤m

∣∣∣∣∣b
∗
j

1
αt

i

ht
i

∣∣∣∣∣ · ∥h
♮
i∥

−1
2 ≤ C4

µ√
m

log2 m, (6c)

for all t ≥ 0, with probability at least 1 − c1m−γ − c1me−c2 K

if the number of measurements m ≥ C(µ2 + σ2)s2κ4K log8 m
for some constants γ, c1 , c2 , C1 , C3 , C4 > 0 and sufficiently
large constant C > 0.

Here, we denote αt
i for i = 1, . . . , s as the alignment param-

eter such that

αt
i := arg min

α∈C

∥∥∥∥
1
α

ht
i − h♮

i

∥∥∥∥
2

2
+
∥∥∥αxt

i − x♮
i

∥∥∥
2

2
. (7)

In addition, with probability at least 1 − O(m−9), there holds
max1≤i≤s ∥Ai(e)∥ ≤ C0σ

√
1 0 s K l o g 2 m

m , for some absolute con-
stant C0 > 0 and σ is defined in Section II.

Note that the assumption of the same length of hi and
xi only serves the purpose of simplifying the presentation.
Our theoretical results can be easily extended to the scenario
where hi and xi have different sizes. Specifically, for each
i = 1, . . . , s, j = 1, . . . , m, if hi , bj ∈ CK and xi ,aij ∈ CN ,
the requirement of sample size turns out to be m ≥ C(µ2 +
σ2)s2κ4max{K,N} log8 m.

Theorem 1 endorses the empirical results shown in Fig. 1(a)–
(c). Specifically, compared to the step size (i.e., η ! 1

sκm )
suggested in [8] for regularized gradient descent, our theory
yields a more aggressive step size (i.e., η ≍ s−1) even with-
out regularization. According to (6a), in the noiseless scenario,
the Wirtinger flow algorithm can achieve ϵ-accuracy within
sκ log(1/ϵ) iterations, while previous theory in [8] suggests
sκm log(1/ϵ) iterations. In the noisy scenario, the convergence
rate of the Wirtinger flow algorithm is independent of the num-
ber of measurements m and related to the level of the noise.
The sample complexity, i.e., m ≥ Cs2Kpoly log m with suf-
ficiently large constant C > 0, is comparable to the result in
[8] which uses explicit regularization. However, we expect to
reduce the sample complexity to m ≥ CsKpoly log m, with

sufficiently large constant C > 0 by a tighter analysis, e.g.,
eluding controlling terms involved s2 /m, which is left for
future work.

For further illustrations, we plot the incoherence mea-
sure max1≤i≤s,1≤j≤m |a∗

ij (αt
ix

t
i − x♮

i )| (in Fig. 1(d)) and
max1≤i≤s,1≤j≤m |b∗

j
1
α t

i

ht
i | (in Fig. 1(e)) of the gradient

iterates versus iteration count, under the setting K ∈
{20, 40, 80, 160, 200}, m = 50K, s = 10, η = 0.1, σ = 10−1

with ∥h♮
i∥2 = ∥x♮

i∥2 = 1 for 1 ≤ i ≤ s. We observe that both
incoherence measures remain bounded by befitting values for
all iterations.

IV. TRAJECTORY ANALYSIS FOR BLIND DEMIXING

In this section, we prove the main theorem via trajectory
analysis for blind demixing via the Wirtinger flow algorithm.
We shall reveal that iterates of Wirtinger flow, i.e., Algorithm 1,
stay in the region of incoherence and contraction by exploiting
the local geometry of blind demixing P . The steps of proving
Theorem 1 are summarized as follows.! Characterizing local geometry in the region of inco-

herence and contraction (RIC). We first characterize a
region R, i.e., RIC, where the objective function enjoys re-
stricted strong convexity and smoothness near the ground
truth z♮ . Moreover, any point z ∈ R satisfies the ℓ2 er-
ror contraction and the incoherence conditions. This will
be established in Lemma 1. Provided that all the iterates
of Algorithm 1 are in the region R, the convergence rate
of the algorithm can be further established, according to
Lemma 2.! Constructing the auxiliary sequences via the leave-one-
out approach. To justify that the Wirtinger Flow algorithm
enforces the iterates to stay within the RIC, we intro-
duce the leave-one-out sequences. Specifically, the leave-
one-out sequences are denoted by {ht,(l)

i ,xt,(l)
i }t≥0 for

each 1 ≤ i ≤ s, 1 ≤ l ≤ m obtained by removing the l-th
measurement from the objective function f(h,x). Hence,
{ht,(l)

i } and {xt,(l)
i } are independent with {bj} and {aij},

respectively.! Establishing the incoherence condition via induction. In
this step, we employ the auxiliary sequences to establish
the incoherence condition via induction. That is, as long
as the current iterate stays within the RIC, the next iterate
remains in the RIC.
- Concentration between original and auxiliary se-

quences. The gap between {zt} and {zt,(l)} is
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established in Lemma 3 via employing the restricted
strong convexity of the objective function in RIC.

- Incoherence condition of auxiliary sequences. Based
on the fact that {zt} and {zt,(l)} are sufficiently close,
we can instead bound the incoherence of ht,(l)

i (resp.
xt,(l)

i ) with respect to {bj} (resp. {aij}), which turns
out to be much easier due to the statistical independence
between {ht,(l)

i } (resp. {xt,(l)
i }) and {bj} (resp.{aij}).

- Establishing iterates in RIC. By combining the above
bounds together, we arrive at |a∗

ij (xt
i − x♮

i )| ≤ ∥aij∥2 ·
∥xt

i − xt,(l)
i ∥2 + ∥a∗

ij (x
t,(l)
i − x♮

i )∥ via the triangle in-
equality. Based on the similar arguments, the other inco-
herence condition will be established in Lemma 4.

- Establishing initial point in RIC. Lemmas 5–7 are in-
tegrated to justify that the spectral initialization point is
in RIC.

A. Characterizing Local Geometry in the Region of
Incoherence and Contraction

We first introduce the notation of Wirtinger Hessian. Specif-
ically, let A denote the entry-wise conjugate of matrix A
and fclean denote the objective function of noiseless case. The
Wirtinger Hessian of fclean(z) with respect to zi can be written
as

∇2
zi

fclean :=
[

C

E∗
E

C

]
, (8)

where C := ∂
∂zi

( ∂fclean
∂zi

)∗ and E := ∂
∂zi

( ∂fclean
∂zi

)∗. The Wirtinger
Hessian of fclean(z) with respect to z is thus represented
as ∇2fclean(z) := diag({∇2

zi
fclean}s

i=1), where the operation
diag({Ai}s

i=1) generates a block diagonal matrix with the di-
agonal elements as the matrices A1 , . . . ,As . Please refer to
Appendix C for more details on the Wirtinger Hessian. In addi-
tion, we say (hi ,xi) is aligned with (h′

i ,x
′
i), if the following

condition is satisfied

∥hi − h′
i∥

2
2 + ∥xi − x′

i∥
2
2

= min
α∈C

{∥∥∥∥
1
α

hi − h′
i

∥∥∥∥
2

2
+ ∥αxi − x′

i∥
2
2

}
. (9)

Let ∥A∥ denote the spectral norm of matrix A. We have the
following lemma.

Lemma 1: (Restricted strong convexity and smoothness for
blind demixing problem P). Let δ > 0 be a sufficiently
small constant. If the number of measurements satisfies m ≫
µ2s2κ2K log5 m, then with probability at least 1 − O(m−10),
the Wirtinger Hessian ∇2fclean(z) obeys

u∗ [D∇2fclean(z) + ∇2fclean(z)D
]
u ≥ 1

4κ
∥u∥2

2 and
∥∥∇2fclean(z)

∥∥ ≤ 2 + s (10)

simultaneously for all

u =

⎡

⎢⎣
u1
...

us

⎤

⎥⎦ with ui =

⎡

⎢⎢⎣

hi − h′
i

xi − x′
i

hi − h′
i

xi − x′
i

⎤

⎥⎥⎦ ,

and D = diag ({W i}s
i=1)

with W i = diag
([

βi1IK βi2IK βi1IK βi2IK

]∗)
.

Here z satisfies

max
1≤i≤s

max
{
∥hi − h♮

i∥2 , ∥xi − x♮
i∥2

}
≤ δ

κ
√

s
, (11a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
xi − x♮

i

)∣∣∣ · ∥x♮
i∥

−1
2 ≤ 2C3√

s log3/2 m
,

(11b)

max
1≤i≤s,1≤j≤m

|b∗
jhi | · ∥h♮

i∥
−1
2 ≤ 2C4µ√

m
log2 m, (11c)

where (hi ,xi) is aligned with (h′
i ,x

′
i), and one has max{∥hi −

h♮
i∥2 , ∥h′

i − h♮
i∥2 , ∥xi − x♮

i∥2 , ∥x′
i − x♮

i∥2} ≤ δ/(κ
√

s), for
i = 1, . . . , s and W i’s satisfy that for βi1 ,βi2 ∈ R,
for i = 1, . . . , s max1≤i≤s max

{
|βi1 − 1

κ |, |βi2 − 1
κ |
}
≤ δ

κ
√

s
.

Therein, C3 , C4 ≥ 0 are numerical constants.
Proof: Please refer to Appendix B for details. #
Conditions (11a)–(11c) identify the local geometry of blind

demixing in the noiseless scenario. Specifically, (11a) identifies
a neighborhood that is close to the ground truth in ℓ2-norm. In
addition, (11b) and (11c) specify the incoherence region with
respect to the vectors aij and bj for 1 ≤ i ≤ s, 1 ≤ j ≤ m,
respectively. This lemma paves the way to the proof of Lemmas 2
and 3. Specifically, the quantities of interest in these lemmas are
decomposed into the part with respect to fclean and the part with
respect to the noise e such that Lemma 9 can be exploited to
bound the first part.

Based on the local geometry in the region of incoherence
and contraction, we further establish contraction of the error
measured by the distance function (3).

Lemma 2: Suppose the number of measurements sat-
isfies m ≫ µ2s2κ2K log5 m and the step size obeys
η > 0 and η ≍ s−1 . Then with probability at least
1 − O(m−10), dist(zt+1 ,z♮) ≤ (1 − η/(16κ))dist(zt ,z♮) +
3κ

√
s max1≤k≤s ∥Ak (e)∥ , provided that

dist(zt ,z♮) ≤ ξ, (12a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
x̃t

i − x♮
i

)∣∣∣ · ∥x♮
i∥

−1
2 ≤ 2C3√

s log3/2 m
,

(12b)

max
1≤i≤s,1≤j≤m

∣∣∣b∗
j h̃

t

i

∣∣∣ · ∥h♮
i∥

−1
2 ≤ 2C4µ√

m
log2 m, (12c)

for some constants C3 , C4 > 0 and a sufficiently small constant
ξ > 0. Here, h̃

t

i and x̃t
i are defined as h̃

t

i = 1
α t

i

ht
i and x̃t

i = αt
ix

t
i

for i = 1, . . . , s.
Proof: Please refer to Appendix E for details. #
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Remark 1: The key idea of proving Lemma 2 is to decom-
pose the gradient (4) to the part of pure gradient ∇hi fclean(z)
(resp. ∇xi fclean(z)) and the part relative to the noise, i.e.,
Ai(e)xi (resp.A∗

i (e)hi). The pure gradient∇hi fclean(z) (resp.
∇xi fclean(z)) is required in Lemma 1.

As a result, if zt satisfies condition (12) for all 0 ≤ t ≤ T =
O(mγ ) for some arbitrary constant γ > 0, then there is

dist(zt ,z♮) − 48κ2√s/η max
1≤k≤s

∥Ak (e)∥

≤ ρt(dist(z0 ,z♮) − 48κ2√s/η max
1≤k≤s

∥Ak (e)∥), (13)

with probability at least 1 − O(m−γ ) for some arbitrary con-
stant γ > 0, where ρ := 1 − η/(16κ). In the absence of noise
(e = 0), exact recovery can be established and it yields linear
convergence rate due to dist(zt ,z♮) ≤ ρtdist(z0 ,z♮). In addi-
tion, stable recovery can be achieved in the presence of noise,
where the estimation error is controlled by the noise level.

B. Establishing Iterates in the Region of Incoherence and
Contraction

In this subsection, we will demonstrate that the iterates of
Wirtinger flow algorithm stay within the region of incoher-
ence and contraction. In particular, the leave-one-out argument
has been introduced to address the statistical dependence be-
tween {ht

i} (resp. {xt
i}) and {bj} (resp.{aij}). Recall that

{ht,(l)
i ,xt,(l)

i } are defined in the recipe for proving Theorem
1. For simplicity, we denote zt,(l) = [zt,(l)∗

1 · · · zt,(l)∗
s ]∗ where

zt,(l)
i = [ht,(l)∗

i xt,(l)∗
i ]∗ and f

(
zt,(l)) := f (l) (h,x). We fur-

ther define the alignment parameters αt,(l)
i , signals h̃

t,(l)
i and

x̃t,(l)
i in the context of leave-one-out sequence.
We continue the proof by induction. For brief, with z̃t

i =
[z̃t∗

1 , . . . , z̃t∗
s ]∗ where z̃t

i = [h̃
t∗
i x̃t∗

i ]∗, the set of induction hy-
potheses of local geometry is listed as follows:

dist(zt ,z♮) ≤ C1
1

log2 m
, (14a)

dist(zt,(l) , z̃t) ≤ C2
sκµ√

m

√
µ2K log9 m

m
, (14b)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
x̃t

i − x♮
i

)∣∣∣ · ∥xi∥−1
2 ≤ C3

1
√

s log3/2 m
,

(14c)

max
1≤i≤s,1≤j≤m

∣∣∣b∗l h̃
t

i

∣∣∣ · ∥hi∥−1
2 ≤ C4

µ√
m

log2 m, (14d)

where C1 , C3 are some sufficiently small constants, while
C2 , C4 are some sufficiently large constants. In particular, (14a)
and (14b) can be also represented with respect to zi :

dist(zt
i ,z

♮
i ) ≤ C1

1
√

s log2 m
, (15a)

dist(zt,(l)
i , z̃t

i) ≤ C2
κµ√
m

√
sµ2K log9 m

m
, (15b)

for i = 1, . . . , s. We aim to specify that the induction hypothe-
ses (14) hold for (t + 1)-th iteration with high probability, if
these hypotheses hold up to the t-th iteration. Since (14a) has
been identified in (12a) as δ ≍ 1/ log2 m, we begin with the
hypothesis (14b) in the following lemma.

Lemma 3: Suppose the number of measurements satis-
fies m ≫ (µ2 + σ2)s2κK log13/2 m and the step size obeys
η > 0 and η ≍ s−1 . Under the hypotheses (14) for the t-th

iteration, one has dist(zt+1,(l) , z̃t+1) ≤ C2
sκµ√

m

√
µ2 K log9 m

m ,

max1≤l≤m

∥∥∥z̃t+1,(l)−z̃t+1
∥∥∥

2
! C2

sµ√
m

√
µ2 K log9 m

m , with pro-

bability at least 1 − O(m−9).
Proof: Please refer to Appendix F for details. #
Remark 2: The key idea of proving Lemma 3 is similar to

the one in Lemma 2 that decomposes the gradient (4) in the
update rule into the part of pure gradient and the part relative to
the noise. Combining Lemmas 1 and 10, we finish the proof.

Before proceeding to the hypothesis (14c), let us first show
the incoherence of the leave-one-out iterate xt+1,(l)

i with re-
spect to ail for all 1 ≤ i ≤ s, 1 ≤ l ≤ m. Based on the triangle
inequality, one has

∥x̃t+1,(l)
i − x♮

i∥2 ≤ ∥x̃t+1,(l)
i − x̃t+1

i ∥ + ∥x̃t+1
i − x♮

i∥2

(i)
≤ C

µ

m

√
µ2sK log9 m

m
+ C1

1
κ
√

s log2 m

(ii)
≤ 2C1/(κ

√
s log2 m), (16)

where (i) arises from Lemmas 2 and 3 and (ii) holds as long as
m ≫ (µ2 + σ2)

√
sKκ2/3 log13/2 m. Using the inequality (16),

the standard Gaussian concentration inequality on p. 78 in [10]
and the statistical independence, it follows that

max
1≤i≤s,1≤l≤m

∣∣∣a∗
il

(
x̃t+1,(l)

i − x♮
i

)∣∣∣ · ∥x♮
i∥

−1
2

≤ 5
√

log m max
1≤i≤s,1≤l≤m

∥∥∥x̃t+1,(l)
i − x♮

i

∥∥∥
2
· ∥x♮

i∥
−1
2

≤ 10C1
1

√
s log3/2 m

(17)

with probability exceeding 1 − O(m−9). For each 1 ≤ i ≤
s, 1 ≤ l ≤ m, we further obtain
∣∣∣a∗

il

(
x̃t+1

i − x♮
i

)∣∣∣ · ∥x♮
i∥

−1
2

(i)
≤
(
∥ail∥2∥x̃t+1

i − x̃
t+1,(l)
i ∥2 +

∣∣∣a∗
il

(
x̃

t+1,(l)
i − x♮

i

)∣∣∣
)
∥x♮

i∥
−1
2

(ii)
≤ 3

√
K · C κµ

m

√
µ2sK log9 m

m
+ 10C1

1
√

s log3/2 m

(iii)
≤ C3

1
√

s log3/2 m
, (18)

where step (i) is based on the Cauchy-Schwarz inequality, step
(ii) follows from the bound (17), Lemma 3 and the bound
with probability at least 1 − Cm exp(−cK), for some constants
c, C > 0, max1≤j≤m ∥aj∥2 ≤ 3

√
K, on p.78 in [10], and the
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last step (iii) holds as long as m ≫ (µ2 + σ2)sκ2/3K log6 m
and C3 ≥ 11C1 . It remains to justify the incoherence of ht+1

i
with respect to bl for all 1 ≤ i ≤ s, 1 ≤ l ≤ m. The result is
summarized as follows.

Lemma 4: Suppose the induction hypotheses (14) hold
true for t-th iteration and the number of measurements
obeys m ≫ (µ2 + σ2)s2K log8 m. Then with probability

at least 1 − O(m−9), max1≤i≤s,1≤j≤m |b∗
l h̃

t+1
i | · ∥h♮

i∥−1
2 ≤

C4
µ√
m

log2 m, provided that C4 is sufficiently large and the
step size obeys η > 0 and η ≍ s−1 .

Proof: Please refer to Appendix G for details. #
Remark 3: Based on the claim (27) in Lemma 10, it suf-

fices to control |b∗
l

1
α t

i

ht+1
i | · ∥h♮

i∥2 in order to bound |b∗
l h̃

t+1
i | ·

∥h♮
i∥−1

2 in Lemma 4. We represent 1
α t

i

ht+1
i by the gradient

update rule where the gradient is decomposed as Remark 1 de-
scribes. The quantities of interest are separated into several terms
which are bounded individually. In addition, the random vector
aij with i.i.d. plays a vital role in the proof since E(aija∗

kj ) = 0
for k ̸= i.

C. Establishing Initial Point in the Region of Incoherence and
Contraction

In order to finish the induction step, we need to further show
that the spectral initializations z0

i and z0,(l)
i for 1 ≤ i ≤ s, 1 ≤

l ≤ m hold for the induction hypotheses (14) of local geometry.
The related lemmas are summarized as follows.

Lemma 5: With probability at least 1 − O(m−9), there exists
some constant C > 0 such that

min
α i ∈C,|α i |=1

{∥∥∥αih
0
i − h♮

i

∥∥∥+
∥∥∥αix

0
i − x♮

i

∥∥∥
}
≤ ξ

κ
√

s
and

(19)

min
α i ∈C,|α i |=1

{∥∥∥αih
0,(l)
i − h♮

i

∥∥∥+
∥∥∥αix

0,(l)
i − x♮

i

∥∥∥
}
≤ ξ

κ
√

s
,

(20)

and ||α0
i |− 1| < 1/4, for each 1 ≤ i ≤ s, 1 ≤ l ≤ m, provided

that m ≥ C(µ2 + σ2)sκ2K log m/ξ2 .
Proof: Please refer to Appendix H for details. #
Remark 4: The proof of Lemma 8 is based on the Wedin’s

sinΘ theorem [23] and the bound in [8], i.e., for any ξ >
0, ∥M i − E[M i ]∥ ≤ ξ/(κ

√
s), with probability at least 1 −

O(m−9), provided that m ≫ c2(µ2 + σ2)sκ2K log m/ξ2 , for
some constant c2 > 0.

From the definition of distance function (3) and the assump-
tion ξ ≍ 1/ log2 m, we immediately imply that

dist(z0 ,z♮)
(i)
≤ min

α i ∈C

√
sκ

{∥∥∥∥
1
αi

h0
i − h♮

i

∥∥∥∥+
∥∥∥αix

0
i − x♮

i

∥∥∥
}

(ii)
≤ min

α i ∈C,|α i |=1

√
sκ
{∥∥∥αih

0
i − h♮

i

∥∥∥+
∥∥∥αix

0
i − x♮

i

∥∥∥
}

(iii)
≤ C1

1
log2 m

, (21)

as long as m ≫ (µ2 + σ2)sκ2K log6 m. Here, (i) arises from
the inequality that a2 + b2 ≤ (a + b)2 for a, b > 0 and the as-
sumption that ∥h♮

i∥2 = ∥x♮
i∥2 with max1≤i≤s ∥x♮

i∥2 = 1, (ii)
occurs since the latter optimization problem has strictly smaller
feasible set and (iii) derives from Lemma 5. With similar strat-
egy, we can get that with high probability

dist(z0,(l) ,z♮) ! 1
log2 m

, 1 ≤ l ≤ m. (22)

This establishes the inductive hypothesis (14a) for t = 0. We
further show the identification of (14b) and (14d) for t = 0.

Lemma 6: Suppose that m ≫ (µ2 + σ2)s2κ2K log3 m.
Then with probability at least 1 − O(m−9),

dist
(
z0,(l) , z̃0

)
≤ C2

sκµ√
m

√
µ2sK log5 m

m
and (23)

max
1≤i≤m

|b∗
l h̃

0
i | · ∥h

♮
i∥

−1
2 ≤ C4

µ log2 m√
m

. (24)

Proof: Please refer to Appendix I. #
Remark 5: Regarding the proof of Lemma 6, we de-

compose M i into the terms
∑m

j=1 bjb∗
jh

♮
ix

♮∗
i aija∗

ij and

W i =
∑m

j=1 bj (
∑

k ̸=i b∗jh
♮
kx♮∗

k akj + ej )a∗
ij . The proof is

further facilitated by the Wedin’s sinΘ theorem [23]
and the bound that with probability 1 − O(m−9) [8],
∥W i∥ ≤ (∥h♮

i∥2 · ∥x♮
i∥2)/(2

√
log m), provided that m ≫

(µ2 + σ2)sK log2 m.
Finally, we specify (14c) regarding the incoherence of x0

with respect to the vector aij for each 1 ≤ i ≤ s, 1 ≤ j ≤ m.
Lemma 7: Suppose the sample complexity m ≫ (µ2 +

σ2)s3/2K log5 m. Then with probability at least 1 − O(m−9),

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
x̃0

i − x♮
i

)∣∣∣ · ∥x♮
i∥

−1
2 ≤ C3

1
√

s log3/2 m
.

(25)

Proof: The proof follows [10, Lemma 21]. #

V. CONCLUSION

In this paper, we developed a provable nonconvex demix-
ing procedure from the sum of noisy bilinear measurements via
Wirtinger flow without regularization. We demonstrated that,
starting with spectral initialization, the iterates of Wirtinger flow
keep staying within the region of incoherence and contraction.
The restricted strong convexity and qualified level of smoothness
of such a region leads to more aggressive step size for gradient
descent, thereby significantly accelerating convergence rates.
The provable Wirtinger flow algorithm thus can solve the blind
demixing problem with regularization free, fast convergence
rates with aggressive step size and computational optimality
guarantees. Our theoretical analysis are by no means exhaus-
tive, and there are diverse directions that would be of interest
for future investigations. For examples, we may leverage prov-
able regularization-free iterates for the constrained nonconvex
high-dimensional estimation problems. Establish optimality for
nonconvex estimation problems solved by other regularization-
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free iterative methods, e.g., the Riemannian optimization algo-
rithms, are also worth being explored.

APPENDIX A
TECHNICAL LEMMAS

The following two lemmas, i.e., Lemmas 8 and 9, are estab-
lished to proof Lemma 1. We denote the population Wirtinger
Hessian in the noiseless case at the ground truth z♮ as

∇2F (z♮) := diag
(
{∇2

zi
F}s

i=1
)
, (26)

where

∇2
zi

F :=

⎡

⎢⎢⎢⎣

IK 0 0 h♮
ix

♮⊤
i

0 IK x♮
ih

♮⊤
i 0

0
(
x♮

ih
♮⊤
i

)∗
IK 0(

h♮
ix

♮⊤
i

)∗ 0 0 IK

⎤

⎥⎥⎥⎦

for i = 1, . . . , s.
Lemma 8: Recall that z = [z∗

1 · · · z∗
s ]

∗ ∈ C2sK with zi =
[h∗

i x∗
i ]
∗ ∈ C2K . Instate the notations and conditions

in the Lemma 1, there are ∥∇2F (z♮)∥ ≤ 1 + s and
u∗ [D∇2F (z♮) + ∇2F (z♮)D

]
u ≥ 1

κ ∥u∥
2
2 .

Proof: Please refer to Appendix C for details. #
Lemma 9: Suppose the sample complexity satisfies m ≫

µ2s2κ2K log5 m. Then with probability at least 1 − O(m−10),
one has supz∈S ∥∇2fclean(z) −∇2F (z♮)∥ ≤ 1

4 , where the set
S consists of all z’s satisfying the conditions (11) provided in
Lemma 1.

Proof: Please refer to Appendix D for details. #
Remark 6: For the proof of Lemmas 8 and 9, extension op-

erations are required due to multiple sources in blind demixing.
Furthermore, for the proof of Lemma 9, we decompose the
quantity of interest to the sum of spectral norm of random ma-
trix. In particular, the sum of multiple “incoherence” signals in
(4a) and (4b) calls for new statistical guarantees for the spectral
norm of random matrices over the “incoherence” region, which
is demonstrated in Lemma 12 (see Appendix A) by extending
[10, Lemma 59] for blind deconvolution with single source.

Lemma 10: Suppose that m ≫ 1. The following two bounds
hold true.

1) If ||αt
i |− 1| < 1/2, i = 1, . . . , s and dist(zt ,z♮) ≤

C1/ log2 m, then for i = 1, . . . , s
∣∣∣∣
αt+1

i

αt
i

− 1
∣∣∣∣ ≤ cdist(zt

i ,z
♮
i ) ≤

cC1

log2 m
(27)

holds for some absolute constant c > 0.
2) If

∣∣|α0
i |− 1

∣∣ < 1/4, i = 1, . . . , s and dist(zτ ,z♮) satis-
fies the condition (6a) for all 0 ≤ τ ≤ t, then for i =
1, . . . , s, one has

∣∣|ατ +1
i |− 1

∣∣ < 1
2 , 0 ≤ τ ≤ t, with suf-

ficiently small C5 > 0 .
Proof: The proof follows [10, Lemma 16].
We will present that the assumption

∣∣|α0
i |− 1

∣∣ < 1/4, for i =
1, . . . , s can be guaranteed with high probability by Lemma 5.
Based on Lemma 2 and Lemma 10, we conclude that the ratio of
consecutive alignment parameters, i.e., αt+1

i /αt
i , i = 1, . . . , s,

linearly converges to 1, and αt
i , i = 1, . . . , s converges to a point

near to 1.

Lemma 11: Suppose that {Akl}1≤l≤m is a collection of fixed
matrices in CN ×K . For k ̸= i, we have

P

⎛

⎝
∥∥∥∥∥

1
m

m∑

l=1

Aklakla
∗
il

∥∥∥∥∥ ≥ 2θ

∥∥∥∥∥
1
m

m∑

l=1

AklA
∗
kl

∥∥∥∥∥

1/2
⎞

⎠

≤ exp
(
c(N + K) − θ2m/C

)
, ∀θ ∈ (0, 1). (28)

Here, c, C > 0 are some absolute constants,
Proof: For simplicity, we define Q =

∑m
l=1 Aklakla∗

il ,
where k ̸= i. We are going to show that

P

⎛

⎝ 1
m
|u∗Qv| ≥ θ

∥∥∥∥∥
1
m

m∑

l=1

AklA
∗
kl

∥∥∥∥∥

1/2
⎞

⎠

≤ exp(1 − θ2m/C), ∀θ ∈ (0, 1), (29)

holds for any fixed u ∈ CN , v ∈ CK with ∥u∥2 = ∥v∥2 = 1.
To achieve this goal, we denote a zero-mean random variable
as wl = u∗Aklakla∗

ilv, where k ̸= i. Based on the technique
provided in [10, Lemma 58], we accomplish the proof. #

The following lemma derives the supremum of the spectral
norm of random matrices over an “incoherence” region.

Lemma 12: Suppose that {Akji(h,x)}1≤j≤m , where 1 ≤
k, i ≤ s and k ̸= i, is a set of CN ×K -valued func-
tion defined on CsN × CsK , such that for all (h,x),
(h′,x′), (h′′,h′′) ∈ C( δ

κ
√

s
,α) the following conditions hold:

∥ 1
m

∑m
j=1 Akji(h,x)A∗

kji(h,x)∥1/2 ≤ M1 , and max1≤j≤m

∥Akji(h′′,x′′) − Akji(h′,x′)∥ ≤ M2 max{∥h′′
k − h′

k∥2 , ∥x′′
k

− x′
k∥2}.

Define Pk (h,x) :=
∑m

j=1 Akji(h,x)akja∗
ij , where k ̸=

i. If the parameters δ, M1 and M2 hold that
(min{ δ

smM 1
, 1})2m ≫ (K + N) log m and m ≫ κ

√
sM2K,

then with probability exceeding 1 − O(m−10), there is
sup(hk ,xk )∈Ck ( δ

κ
√

s
,α) ∥Pk (h,x)∥ ≤ 4δ

s .

Proof: The proof follows the technical method provided in
[10, Lemma 59]. #

APPENDIX B
PROOF OF LEMMA 1

Combining Lemmas 8 and 9 in Appendix A, we can see that
for z ∈ S,

∥∥∇2fclean(z)
∥∥ ≤

∥∥∇2F (z♮)
∥∥+

∥∥∇2fclean(z) −∇2F (z♮)
∥∥

≤ 1 + s + 1/4 ≤ 2 + s, (30)

which identifies the upper bound of level of smoothness. We
further have

u∗ [D∇2fclean(z) + ∇2fclean(z)D
]
u

(i)
≥ u∗ [D∇2F (z♮) + ∇2F (z♮)D

]
u − 2∥D∥·

∥∥∇2fclean(z) −∇2F (z♮)
∥∥ ∥u∥2

2
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(ii)
≥ 1

κ
∥u∥2

2 − 2
(

1
κ

+
δ

κ
√

s

)
· 1
4
∥u∥2

2

(iii)
≥ 1

4κ
∥u∥2

2 , (31)

where (i) uses proper reformulation and triangle inequality, (ii)
is derived from Lemma 9 and the fact that ∥D∥ ≤ 1

κ + δ
κ
√

s
, and

(iii) holds if δ ≤
√

s
2 . Thus, we finish establishing the restricted

strong convexity and smoothness in the region of incoherence
and contraction.

APPENDIX C
PROOF OF LEMMA 8

We first provide the expressions of C = [C1 C2
C∗

2 C3
] where

C1 =
m∑

j=1

|a∗
ijxi |2bjb

∗
j , (32a)

C2 =
m∑

j=1

(
s∑

k=1

b∗j

(
hkx∗

k − h♮
kx♮∗

k

)
akj

)
bja

∗
ij , (32b)

C3 =
m∑

j=1

|b∗
jhi |2aija

∗
ij , (32c)

and E = [0 E1
E2 0 ] where

E1 =
m∑

j=1

bjb
∗
jhi(aija

∗
ijxi)⊤, (33a)

E2 =
m∑

j=1

aija
∗
ijxi(bjb

∗
jhi)⊤. (33b)

We first prove the identity
∥∥∇2F (z♮)

∥∥ = 1 + s. For i =

1, . . . , s, let vi1 = 1√
2
[q h♮

i 0 0 x♮
i w]⊤,vi2 =

1√
2 [q 0 x♮

i h♮
i 0 w]⊤,vi3 = 1√

2 [q h♮
i 0 0 −

x♮
i w]⊤,vi4 = 1√

2
[q 0 x♮

i − h♮
i 0 w]⊤ , where a⊤ denote

the transpose of the complex vector a, vi1 ,vi2 ,vi3 ,vi4 ∈ C4s

as well as q ∈ R4(i−1) and w ∈ R4(s−i) are zero vectors.
Based on the assumption that ∥h♮

i∥2 = ∥x♮
i∥2 for i = 1, . . . , s,

we check that these vectors are from an orthonormal set of
size 4s. Via simple calculations, there is ∇2F (z♮) = I4sK +∑s

i=1(vi1v∗
i1 + vi2v∗

i2 − vi3v∗
i3 − vi4v∗

i4), which implies that∥∥∇2F (z♮)
∥∥ ≤ 1 + s. Based on Lemma 26 in [10] and the

definition of ui in Lemma 1, for i = 1, . . . , s, there is
u∗

i

[
M i∇2

zi
F (z♮) + ∇2

zi
F (z♮)M i

]
ui ≥ 1/κ∥ui∥2

2 , as long
as δ defined in Lemma 1 is small enough, which implies that

u∗ [D∇2F (z♮) + ∇2F (z♮)D
]
u

=
s∑

i=1

u∗
i

[
M i∇2

zi
F (z♮) + ∇2

zi
F (z♮)M i

]
ui

≥ 1
κ

s∑

i=1

∥ui∥2
2 =

1
κ
∥u∥2

2 . (34)

APPENDIX D
PROOF OF LEMMA 9

Based on the expression of ∇2fclean(z) (8) and ∇2F (z♮)
(26) and the triangle inequality, we have
∥∥∥∇2fclean(z) −∇2F (z♮)

∥∥∥ ≤ max
1≤i≤s

(αi1 + 2αi2 + 4αi3 + 4αi4)

(35)

where the four terms on the right hand side are defined as follows

αi1 =

∥∥∥∥∥∥

m∑

j=1

|a∗
ijxi |2bjb

∗
j − IK

∥∥∥∥∥∥
, (36a)

αi2 =

∥∥∥∥∥∥

m∑

j=1

|b∗
jhi |2aija

∗
ij − IK

∥∥∥∥∥∥
, (36b)

αi3 =

∥∥∥∥∥∥

m∑

j=1

( s∑

k=1

b∗j

(
hkx∗

k − h♮
kx♮∗

k

)
akj

)
bja

∗
ij

∥∥∥∥∥∥
, (36c)

αi4 =

∥∥∥∥∥∥

m∑

j=1

bjb
∗
jhi(aija

∗
ijxi)⊤ − h♮

ix
♮⊤
i

∥∥∥∥∥∥
. (36d)

1) Here, αi1 ,αi2 ,αi4 can be bounded through [10, Lemma
27]. In particular, with probability 1 − O(m−10),

max
1≤i≤s

sup
z∈S

αi1 !
√

K

m
log m + C3

1
log m

. (37)

In addition, with probability at least 1 − O(m−10), we
have

max
1≤i≤s

sup
z∈S

αi2 ≤ 7
δ

κ
√

s
, (38)

max
1≤i≤s

sup
z∈S

αi4 ≤ 11
δ

κ
√

s
(39)

as long as m ≫ (µ2/δ)sκ2K log5 m.
2) To control αi3 , similar to the set defined in [10], we define

a new set for (h,x) ∈ CsK × CsK

C(ξ, ζ) :=
{

(h, x) : max
1≤i≤s

max
{
∥hi−h♮

i∥2 , ∥xi−x♮
i∥2

}

≤ ξ and max
1≤i≤s,1≤j≤m

∣∣∣b∗j hi

∣∣∣ · ∥h♮
i∥2 ≤ ζ√

m

}
,

where h is composed of h1 , . . . ,hs and x is composed of
x1 , . . . ,xs . Note that the set S defined in Lemma 9 satis-
fies S ⊆ C( δ

κ
√

s
, 2C4µ log2 m), thus it suffices to specify

supz∈C( δ
κ
√

s
,2C4 µ log2 m ) αi3 in order to control αi3 . We

are going to exploit Lemma 59 in [10] to derive that with
probability at least 1 − O(m−10)

max
1≤i≤s

sup
z∈C( δ

κ
√

s
,2C4 µ log2 m )

αi3 ≤ 4δ +
7δ

κ
√

s
. (40)

To achieve this goal, we define ∆ij (h,x) :=
∑

k ̸=i(
hkx∗

k − h♮
kx♮∗

k

)
akj and Ri(h, x) := Ri,clean(h, x)
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+
∑m

j=1 bjb∗
j∆ij (h,x)a∗

ij , where the first term
is denoted as Ri,clean(h, x) =

∑m
j=1 bjb∗

j (hix∗
i −

h♮
ix

♮∗
i )aija∗

ij . The original inequality (40) can be
represented as

P

⎛

⎝ sup
z∈C( δ

κ
√

s
,2C4 µ log2 m )

∥Ri(h,x)∥ ≥ 4δ + 7
δ

κ
√

s

⎞

⎠

! m−10 . (41)

Note that one has E[Ri,clean(h,x)] = hix∗
i − h♮

ix
♮∗
i and

the spectral norm is bounded by ∥E[Ri,clean(h,x)]∥ ≤
3δ/(κ

√
s) [10, Sec. C.1.2] when hi ,xi are fixed. Based on

the conclusion provided in [10, Sec. C.1.2], for (h,x) ∈
C( δ

κ
√

s
, 2C4µ log2 m), it yields

P

(
sup
(h,x)

∥Ri,clean(h,x) − E[Ri,clean(h,x)]∥ ≥ 4
δ

κ
√

s

)

! m−10 , (42)

as long as m ≫ (µ2/δ2)sκ2K log5 m. It thus suffices to
show that

P

⎛

⎝ sup
(h,x)

∥∥∥∥∥∥

m∑

j=1

bjb
∗
j∆ij (h,x)a∗

ij

∥∥∥∥∥∥
≥ 4δ

⎞

⎠ ! m−10 ,

(43)

where (h,x) ∈ C( δ
κ
√

s
, 2C4µ log2 m). We are positioned

to invoke Lemma 12 to achieve the above result.
Specifically, let Akji(h,x) = bjb∗jΓik where Γik =
hkx∗

k − h♮
kx♮∗

k with k ̸= i. We further define τ =
arg max1≤k≤s,k ̸=i ∥Akji(h,x)akja∗

ij∥. Hence, it suf-
fices to show that

P

⎛

⎝ sup
(h,x)

∥∥∥∥∥∥

m∑

j=1

Aτ j i(h,x)aτ ja
∗
ij

∥∥∥∥∥∥
≥ 4δ

s

⎞

⎠ ! m−10 ,

(44)

By choosing M1 ≤ 5C4µ log2 m/m and M2 ≤ 4K/m,
we invoke Lemma 12 and finish the proof of inequality
(44).

3) Based on the previous bounds, we deduced that with prob-
ability 1 − O(m−10),

∥∥∇2fclean(z) −∇2F (z♮)
∥∥

!
(√

K

m
log m + C3

1
log m

)
+ δ ≤ 1

4
, (45)

as long as δ > 0 is a small constant and m ≫
µ2s2κ2K log5 m, as desired.

APPENDIX E
PROOF OF LEMMA 2

Based on the definition of αt+1
k (7), k = 1, . . . , s , one has

dist2
(
zt+1 ,z♮

)
≤

s∑

k=1

dist2
(
zt+1

k ,z♮
k

)

≤ sκ2

∥∥∥∥∥
1

αt+1
k

ht
k − h♮

k

∥∥∥∥∥

2

2

+ sκ2
∥∥∥αt

kxt+1
k − x♮

k

∥∥∥
2

2
. (46)

By denoting h̃
t

k = 1
α t

k

ht
k , x̃t

k = αt
kxt

k , ĥ
t+1
k = 1

α t
k

ht+1
k and

x̂t+1
k = αt

kxt+1
k , we have

⎡

⎢⎢⎢⎢⎢⎣

ĥ
t+1
k − h♮

k

x̂t+1
k − x♮

k

ĥ
t+1
k − h♮

k

x̂t+1
k − x♮

k

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

h̃
t

k − h♮
k

x̃t
k − x♮

k

h̃
t

k − h♮
k

x̃t
k − x♮

k

⎤

⎥⎥⎥⎥⎥⎦
− ηW k

⎡

⎢⎢⎢⎢⎣

∇hk f(z̃t)
∇xk f(z̃t)

∇hk f(z̃t)

∇xk f(z̃t)

⎤

⎥⎥⎥⎥⎦
,

(47)

and W k = diag
([
∥x̃t

k∥−2
2 IK , ∥h̃

t

k∥−2
2 IK , ∥x̃t

k∥−2
2 IK , ∥h̃

t

k∥−2
2

IK

])
. According to the fundamental theorem of calculus pro-

vided in Section C.1 of [10] together with the definition of the
noiseless objective function fclean and the noiseless Wirtinger
Hessian ∇2

zk
fclean (8), we get

⎡

⎢⎢⎢⎢⎣

∇hk f(z̃t)
∇xk f(z̃t)

∇hk f(z̃t)

∇xi f(z̃t)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

∇hk fclean(z̃t)
∇xk fclean(z̃t)

∇hk fclean(z̃t)

∇xk fclean(z̃t)

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

Ak (e)xt
k

A∗
k (e)ht

k

Ak (e)xt
k

A∗
k (e)ht

k

⎤

⎥⎥⎥⎥⎦

= Hk

⎡

⎢⎢⎢⎢⎢⎣

h̃
t

k − h♮
k

x̃t
k − x♮

k

h̃
t

k − h♮
k

x̃t
k − x♮

k

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

Ak (e)xt
k

A∗
k (e)ht

k

Ak (e)xt
k

A∗
k (e)ht

k

⎤

⎥⎥⎥⎥⎦
, (48)

where Hk =
∫ 1

0 ∇2
zk

fclean (z(τ)) dτ with z(τ) := z♮ +
τ
(
z̃t − z♮

)
and Ak (e) =

∑m
j=1 ejbja∗

kj and A∗
k (e) =∑m

j=1 ejakjb∗
j . Since z(τ) lies between z̃t and z♮ , for all

τ ∈ [0, 1], z(τ) satisfies the assumption (12).

For simplicity, we denote ẑt+1
k = [ĥ

t+1∗
k x̂t+1∗

k ]∗. Substitut-
ing (48) to (47), one has

[
ẑt+1

k − z♮
k

ẑt+1
k − z♮

k

]
= ϕt

k +ψt
k , (49)

where

ϕt
k = (I − ηW kHk )

[
z̃t

k − z♮
k

z̃t
k − z♮

k

]
,ψt

k =

⎡

⎢⎢⎢⎢⎣

Ak (e)xt
k

A∗
k (e)ht

k

Ak (e)xt
k

A∗
k (e)ht

k

⎤

⎥⎥⎥⎥⎦
.
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Take the Euclidean norm of both sides of (49) to arrive

∥ϕt
k +ψt

k∥2 ≤ ∥ϕt
k∥2 + ∥ψt

k∥2 . (50)

We first control the second Euclidean norm at the right-hand
side of the equation (50): ∥ψt

k∥2
2 ≤ 16 ∥Ak (e)∥2 , where we use

the fact that max{∥xk∥2 , ∥hk∥2} ≤ 2 for 1 ≤ k ≤ s. Based on
the paper [10, Sec. C.2], the squared Euclidean norm of ϕt

k

is bounded by ∥ϕt
k∥2

2 ≤ 2(1 − η/(8κ))∥z̃t
k − z♮

k∥2
2 , under the

assumption (12). We thus conclude that

∥ϕt
k + ψt

k∥2 ≤
√

2(1 − η/(8κ))1/2∥z̃t
k − z♮

k∥2 + 4 ∥Ak (e)∥ ,

(51)

and hence

∥z̃t+1
k − z♮

k∥2 ≤ ∥ẑt+1
k − z♮

k∥2 ≤
√

2/2∥ϕt
k +ψt

k∥2

≤ (1 − η/(16κ))∥z̃t
k − z♮

k∥2 + 3 ∥Ak (e)∥ .
(52)

Integrating the above inequality (52) for i = 1, . . . , s, we
further obtain dist(zt+1 ,z♮) ≤ (1 − η/(16κ))dist(zt ,z♮) +
3
√

sκ max1≤k≤s ∥Ak (e)∥ .

APPENDIX F
PROOF OF LEMMA 3

Define the alignment parameter between zt,(l)
i = [ht,(l)∗

i

xt,(l)∗
i ]∗ and z̃t

i = [h̃
t∗
i x̃t∗

i ]∗ as

α
t,(l)
i,mutual := arg min

α∈C

∥∥∥∥∥
1
α

h
t,(l)
i − 1

αt
i

ht
i

∥∥∥∥∥

2

2

+
∥∥∥αx

t,(l)
i − αt

ix
t
i

∥∥∥
2

2
,

(53)

where h̃
t

i = 1
α t

i

ht
i and x̃t

i = αt
ix

t
i for i = 1, . . . , s. In addition,

we denote ẑt,(l)
i = [ĥ

t,(l)∗
i x̂t,(l)∗

i ]∗ where

ĥ
t,(l)
i :=

1

αt,(l)
i,mutual

ht,(l)
i and xt,(l)

i := αt,(l)
i,mutualx

t,(l)
i . (54)

In view of the above notions and technical methods in [10, Sec.
C.3], we have

dist
(
zt+1,(l) , z̃t+1

)
≤ κ

√√√√
s∑

k=1
max

{∣∣∣∣∣
αt+1

i

αt
i

∣∣∣∣∣ ,

∣∣∣∣∣
αt

i

αt+1
i

∣∣∣∣∣

}2

∥Jk∥2 ,

(55)

where Jk =

⎡

⎣
1

α t , ( l )
k , mutual

ht+1,(l)
k − 1

α t
k

ht+1
k

αt,(l)
k,mutualx

t+1,(l)
k − αt

kxt+1
k

⎤

⎦ . By further apply-

ing the update rule in Algorithm 1, we get

Jk =

⎡

⎢⎣
ĥ

t,(l)
k − η

∥x̂t , ( l )
k ∥2

2
∇hk f (l)(ĥ

t,(l)
, x̂t,(l)) − U k

x̂t,(l)
k − η

∥ĥ
t , ( l )
k ∥2

2

∇xk f (l)(ĥ
t,(l)

, x̂t,(l)) − V k

⎤

⎥⎦ (56)

where ∇hk f (l)(h,x) and ∇xk f (l)(h,x) are defined as

∇hk f (l)(h,x) = ∇hk f(h,x) − Rlbla
∗
klxk ,

∇xk f (l)(h,x) = ∇xk f(h,x) − Rlaklb
∗
l hk ,

with Rl =
∑s

i=1 b∗l hix∗
i ail − yl , and

U k = h̃
t

k − η

∥x̃t
k∥2

2
∇hk f(h̃

t
, x̃t),

V k = x̃t
k − η

∥h̃
t

k∥2
2

∇xk f(h̃
t
, x̃t).

Inspired by [10, Sec. C.3], by further derivation, we obtain

Jk = Jk1 + ηJk2 − ηJk3 , (57)

where

Jk1 =

⎡

⎢⎣
ĥ

t,(l)
k − η

∥x̂t , ( l )
k ∥2

2
∇hk f(ĥ

t,(l)
, x̂t,(l))

x̂t,(l)
k − η

∥ĥ
t , ( l )
k ∥2

2

∇xk f(ĥ
t,(l)

, x̂t,(l))

⎤

⎥⎦

−

⎡

⎣
h̃

t

k − η

∥x̂t , ( l )
k ∥2

2
∇hk f(h̃

t
, x̃t)

x̃t
k − η

∥ĥ
t , ( l )
k ∥2

2

∇xk f(h̃
t
, x̃t)

⎤

⎦ ,

Jk2 =

⎡

⎣

(
1

∥x̃t
k ∥2

2
− 1

∥x̂t , ( l )
k ∥2

2

)
∇hk f(h̃

t
, x̃t)

(
1

∥h̃
t

k ∥2
2

− 1
∥ĥ

t , ( l )
k ∥2

2

)
∇xk f(h̃

t
, x̃t)

⎤

⎦ ,

Jk3 =

⎡

⎢⎣
1

∥x̂t , ( l )
k ∥2

2

(∑s
i=1 b∗l ĥ

t,(l)
i x̂t,(l)∗

i ail − yl

)
bla∗

klx̂
t,(l)
k

1
∥ĥ

t , ( l )
k ∥2

2

(∑s
i=1 b∗l ĥ

t,(l)
i x̂t,(l)∗

i ail − yl

)
aklb∗l ĥ

t,(l)
k

⎤

⎥⎦.

We shall control the three terms Jk1 , Jk2 and Jk3 .
1) In terms of the first term Jk1 , we can exploit the same

strategy as in Appendix E and conclude that

∥Jk1∥ ≤
(

1 − η

16κ
+ C6

1
log2 m

)
∥ẑt,(l)

k − z̃t
k∥2 ,

(58)

provided that m ≫ (µ2 + σ2)sκK log13/2 m for the con-
stant C6 > 0.

2) Regarding to the second term J2 , based on [10, Appendix
C.3] and the bound on ∥Ak (e)∥ provided in [10, Sec. 6.5]
that with probability at least 1 − O(m−9), there holds

max1≤i≤s ∥Ai(e)∥ ≤ C0σ
√

10sK log2 m
m , for some abso-

lute constant C0 > 0 and σ is defined in Section II, it
yields that

∥J2∥2 ! C7
1

log2 m
∥ẑt,(l)

k − z̃t
k∥2 . (59)

3) In terms of the last term Jk3 , based on the technical
method used in [10, Appendix C.3] and the fact that |ej | ≤
σ2/m ≪ 1, we get

∥Jk3∥2 ! (C4)2 µ√
m

√
µ2sK log9 m

m
, (60)

provided that m ≫ (µ + σ2)s2κK log5/2 m.
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Combining the bounds (55), (58)–(60) and the equation (57),
there exist a constant C > 0 such that

dist
(
zt+1,(l) , z̃t+1

)

≤
√

sκ max

{∣∣∣∣∣
αt+1

i

αt
i

∣∣∣∣∣,

∣∣∣∣∣
αt

i

αt+1
i

∣∣∣∣∣

}⎧⎪⎨

⎪⎩

(
1− η

16κ
+

C6

log2 m
+

CC7η

log2 m

)
·

∥∥∥∥ẑ
t,(l)
k − z̃t

k

∥∥∥∥
2

+ C(C4)2η
µ√
m

√
µ2sK log9 m

m

⎫
⎪⎬

⎪⎭

≤ C2
sκµ√

m

√
µ2K log9 m

m
, (61)

with m ≫ (µ2 + σ2)s2κK log13/2 m, C2 ≫ (C4)2 and the
bound that max{|αt+1

i /αt
i |, |αt

i /αt+1
i |} ≤ 1−η/(21κ)

1−η/(20κ) which is
derived from Lemma 10. Hence the inequality (61) verifies the
induction hypothesis (14b) at (t + 1)-iterate with sufficiently
large C2 and sufficiently large m.

Finally, we establish the second claim in the lemma based
on the technical methods in [10, Sec. C.3] and the induction
hypothesis (15b), we deduced that

∥∥∥z̃t+1,(l) − z̃t+1
∥∥∥

2
!
∥∥∥ẑt+1,(l) − z̃t+1

∥∥∥
2

! C2
sµ√
m

√
µ2K log9 m

m
. (62)

APPENDIX G
PROOF OF LEMMA 4

Similar to the strategy used in [10, Sec. C.4], it suffices to
control |b∗

l
1
α t

i

ht+1
i | to finish the proof, as

max
1≤i≤s,1≤l≤m

∣∣∣∣∣b
∗
l

1

αt+1
i

ht+1
i

∣∣∣∣∣ · ∥h
♮
i∥

−1
2

≤ (1 + δ)

∣∣∣∣∣b
∗
l

1
αt

i

ht+1
i

∣∣∣∣∣ · ∥h
♮
i∥

−1
2 (63)

for some small δ ≍ 1/ log2 m. The gradient update rule for ht+1
i

is written as

1
αt

i

ht+1
i = h̃

t

i − ηξi

m∑

j=1

s∑

k=1

bjb
∗
j (h̃

t

k x̃t∗
k − h♮

kh♮∗
k )akja

∗
ij x̃

t
i

+ ηξi

m∑

j=1

ejbja
∗
ij x̃

t
i , (64)

where ξi = 1
∥x̃t

i ∥2
2

and h̃
t

i = 1
α t

i

ht
i and x̃t

i = αt
ix

t
i for i =

1, . . . , s. The formula (64) can be further decomposed into the

following terms

1

αt
i

ht+1
i = h̃

t
i − ηξi

m∑

j=1

s∑

k=1
bjb

∗
j h̃

t
k x̃t∗

k akja
∗
ij x̃

t
i

+ ηξi

m∑

j=1

s∑

k=1
bjb

∗
jh

♮
kx♮∗

k akja
∗
ij x̃

t
i + ηξi

m∑

j=1
ejbja

∗
ij x̃

t
i

= h̃
t
i − ηξi

s∑

k=1
h̃

t
k∥x

♮
k∥

2
2−ηξivi1−ηξivi2 + ηξivi3 + ηξivi4 ,

(65)

where

vi1 =
m∑

j=1

s∑

k=1

bjb
∗
j h̃

t

k

(
x̃t∗

k akja
∗
ij x̃

t
i − x♮∗

k akja
∗
ijx

♮
i

)

vi2 =
m∑

j=1

s∑

k=1

bjb
∗
j h̃

t

k

(
x♮∗

k akja
∗
ijx

♮
i − ∥x♮

k∥
2
2

)

vi3 =
m∑

j=1

s∑

k=1

bjb
∗
jh

♮
kx♮∗

k akja
∗
ij x̃

t
i

vi4 =
m∑

j=1

ejbja
∗
ij x̃

t
i ,

which is based on the fact that
∑m

j=1 bjb∗j = IK . In what fol-
lows, we bound the above four terms respectively.

1) Based on the inductive hypothesis (14), the incoherence
inequality (5) and the concentration inequality on p. 78 in
[10].

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ijx

♮
i

∣∣∣ · ∥x♮
i∥

−1
2 ≤ 5

√
log m, (66)

with the probability at least 1 − O(m−10), we have

|b∗
l vi1 | · ∥h♮

i∥
−1
2 ≤ 0.1s max

1≤k≤s,1≤j≤m
|b∗

j h̃
t

k | · ∥h
♮
i∥

−1
2 ,

(67)

as long as C3 is sufficiently small,

|b∗
1vi2 | · ∥h♮

i∥
−1
2 ≤ (0.1 + 0.1

√
s) max

1≤k≤s,1≤l≤m

∣∣∣b∗
l h̃

t

k

∣∣∣ ·

∥h♮
i∥

−1
2 + O(cC4

sµ√
m

log2 m),

(68)

as long as m ≫ s2K log2 m with some sufficiently large
constant C4 > 0 and some sufficiently small constant c >
0,

|b∗
l vi3 | · ∥h♮

i∥
−1
2 ! (1 + C3

√
s)

µ√
m

, (69)

as long as picking up sufficiently small C3 > 0.
2) We end the proof with controlling |b∗

l vi4 |:

|b∗l vi4 | · ∥h♮
i∥

−1
2 ≤

m∑

j=1
|b∗l bj |

{

max
1≤k≤s,1≤j≤m

|a∗
kj x̃

t
k |

∥x♮
i∥2

}

|ej |

(i)
! σ2 log3/2 m

m
≤ log m, (70)
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as long as m ≫ σ2√log m. Here the step (i) arises from
the inequality that with probability at least 1 − O(m−10),

max
1≤k≤s,1≤j≤m

∣∣a∗
kj x̃

t
k

∣∣ · ∥x♮
i∥

−1
2

≤ max
1≤k≤s,1≤j≤m

∣∣∣a∗
kj (x̃

t
k − x♮

k )
∣∣∣

∥x♮
k∥2

+ max
1≤k≤s,1≤j≤m

∣∣∣a∗
kjx

♮
k

∣∣∣

∥x♮
k∥2

≤ 6
√

log m, (71)

as long as m is sufficiently large, the inequality that∑m
j=1 |b∗

l bj | ≤ 4 log m [10, Lemma 48], and the assump-
tion |ej | ≤ σ2/m ≪ 1 provided in Section II.

Putting the above results together, there exists some constant
C8 > 0 such that
∣∣∣b∗l h̃

t+1
i

∣∣∣

∥h♮
i∥2

≤ (1 + δ)

{(
|b∗

l h̃
t

i |− ηξi

s∑

k=1

|b∗
l h̃

t

k | + (1 + 0.1
√

s

+ 0.1s) max
1≤k≤s,1≤j≤m

|b∗
j h̃

t

k |
)
· ∥h♮

i∥
−1
2 + C8(1 + C3

√
s)·

ηξi
µ√
m

+ C8cC4ηξi
sµ√
m

log2 m + C8ηξi log m

}

≤ C4
µ√
m

log2 m. (72)

The last step holds as long as c > 0 is sufficiently small, i.e.,
(1 + δ)C8ηξic ≫ 1, and the stepsize obeys η > 0 and η ≍ s−1 .
To accomplish the proof, we need to pick the sample size
that m ≫ (µ2 + σ2)τK log4 m, where τ = c10s2 log4 m with
some sufficiently large constant c10 > 0.

APPENDIX H
PROOF OF LEMMA 5

Recall that ȟ
0
i and x̌0

i are the leading left and
right singular vectors of M i , i = 1, . . . , s, where M i =∑m

j=1
∑s

k=1 bjb∗
jh

♮
kx♮∗

k akja∗
ij +

∑m
j=1 ejbja∗

ij . By exploit-
ing a variant of Wedin’s sinΘ theorem [23, Th. 2.1], we derive
that

min
α i ∈C,|α i |=1

∥∥∥αiȟ
0
i − h♮

i

∥∥∥
2

+
∥∥∥αix̌

0
i − x♮

i

∥∥∥
2

≤ c1∥M i − E[M i ]∥
σ1(E[M i ]) − σ2(M i)

, (73)

for some constant c1 > 0, where σ1(A) and σ2(A) denote the
largest eigenvalue and second largest eigenvalue of the matrix
A. In the view of the numerator of (73), it has been specified in
[8, Lemma 6.16] that for any ξ > 0,

∥M i − E[M i ]∥ ≤ ξ

κ
√

s
, (74)

with probability at least 1 − O(m−10), provided that m ≫
c2(µ2 + σ2)sκ2K log m/ξ2 , for some constant c2 > 0. In-
spired by the technical method used in [10, Sec. C.5]. We further
bound the denominator of (73) via combining (74) and Weyl’s

inequality, derived as σ1(E[M i ]) − σ2(M i) ≥ 1 − ξ
κ
√

s
. We

then get

min
α i ∈C,|α i |=1

∥∥∥αiȟ
0
i − h♮

i

∥∥∥
2

+
∥∥∥αix̌

0
i − x♮

i

∥∥∥
2
≤ 2c1

ξ

κ
√

s
,

(75)

as long as ξ < 1/2. Moreover, we extend the bound (75) to the
inequality with the scaled singular vector h0

i =
√

σ1(M i)ȟ
0
k

and x0
i =

√
σ1(M i)x̌0

k via using the inequality provided in
[10, Sec. C.5]. It yields that

∥∥∥αih
0
i − h♮

i

∥∥∥
2

+
∥∥∥αix

0
i − x♮

i

∥∥∥
2

≤
∥∥∥αiȟ

0
i − h♮

i

∥∥∥
2

+
∥∥∥αix̌

0
i − x♮

i

∥∥∥
2

+ 2
ξ

κ
√

s
. (76)

We thus conclude that

min
α i ∈C|α i |=1

{∥∥∥αih
0
i − h♮

i

∥∥∥
2

+
∥∥∥αix

0
i − x♮

i

∥∥∥
2

}

≤ 2c1
ξ

κ
√

s
+ 2

ξ

κ
√

s
. (77)

Since ξ is arbitrary, we accomplish the proof for (19) by tak-
ing m ≫ (µ2 + σ2)sκ2K log m. Under similar arguments, we
can also establish (20) in Lemma 5, which is omitted here. We
further obtain the last claim in Lemma 5 via combining the in-
equality (19) and [10, Lemma 54], given as ||α0

i |− 1| ! ξ
κ
√

s
<

1/4, 1 ≤ i ≤ s.

APPENDIX I
PROOF OF LEMMA 6

With the similar strategy in [10, Sec. C.6], we first show that
the normalized singular vectors of M i and M (l)

i , i = 1, . . . , s
are close enough. We further extend this inequality to the scaled
singular vectors, thereby converting the ℓ2 metric to the distance
function defined in (3). We finally prove the incoherence of
{hi}s

i=1 with respect to {bj}m
j=1 .

Recall that ȟ
0
i and x̌0

i are the leading left and right singu-

lar vectors of M i , i = 1, . . . , s, and ȟ
0,(l)
i and x̌0,(l)

i are the
leading left and right singular vectors of M (l)

i , i = 1, . . . , s. By
exploiting a variant of Wedin’s sinΘ theorem [23, Th. 2.1], we
derive that

min
α i ∈C,|α i |=1

∥∥∥αiȟ
0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥αix̌

0
i − x̌0,(l)

i

∥∥∥
2

≤
c1

∥∥∥(M i − M (l)
i )x̌0,(l)

i

∥∥∥
2

+ c1

∥∥∥ȟ0,(l)∗
i (M i − M (l)

i )
∥∥∥

2

σ1(M
(l)
i ) − σ2(M i)

,

(78)

for i = 1, . . . , s with some constant c1 > 0. According to [10,
Sec. C.6], for i = 1, . . . , s, we have

σ1(M
(l)
i ) − σ2(M i)

≥ 3/4 − ∥M (l)
i − E[M (l)

i ]∥ − ∥M i − E[M i ]∥ ≥ 1/2,
(79)
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where the last step comes from [8, Lemma 6.16] provided that
m ≫ (µ2 + σ2)sK log m. As a result, we obtain that for i =
1, . . . , s
∥∥∥β0,(l)

i ȟ
0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥β0,(l)

i x̌0
i − x̌

0,(l)
i

∥∥∥
2

≤ 2c1

{∥∥∥(M i − M
(l)
i )x̌0,(l)

i

∥∥∥
2

+
∥∥∥ȟ0,(l)∗

i (M i − M
(l)
i )
∥∥∥

2

}
,

(80)

where

β0,(l)
i := arg min

α∈C,|α |=1

∥∥∥αȟ
0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥αx̌0

i − x̌0,(l)
i

∥∥∥
2
.

(81)

It thus suffices to control the two terms on the right-hand side
of (80). Therein,

M i − M (l)
i = blb

∗
l

s∑

k=1

h♮
kx♮∗

k akla
∗
il + elbla

∗
il . (82)

Inspired the similar strategy used in [10, Sec. C.6], we conclude
that∥∥∥β0,(l)

i ȟ
0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥β0,(l)

i x̌0
i − x̌0,(l)

i

∥∥∥
2

≤ 2C1

{
30

µ√
m

·

√
s2K log2 m

m
+

5σ2

m

√
K log m

m
(

15

√
µ2s2K log m

m
+ 3

√
K

σ2

m

)
|b∗

l ȟ
0
i | · ∥h

♮
i∥

−1
2 +

(
15

√
µ2s2K log m

m

√
K

m
+3

√
K

σ2

m

)
κ
∥∥∥α̃iȟ

0
i −ȟ

0,(l)
i

∥∥∥
2

}

(83)

via exploiting the fact that ∥bl∥2 =
√

K/m, the incoherence
condition (5), the bound (66), the assumption |ej | ≤ σ 2

m ≪ 1
provided in Section II and the condition that with probability
exceeding 1 − O(m−10),

max
1≤l≤m

|a∗
ilx̌

0,(l)
i | · ∥x♮

i∥
−1
2 ≤ 5

√
log m, (84)

due to the independence between x̌0,(l)
i and ail [10, Sec. C.6].

Since the inequality (83) holds for any |α̃i | = 1, we can
pick up α̃i = β0,(l) . With the assumption that m ≫ (µ +

σ2)sκK log1/2 m such that 1 − 30c1κ
√

µ2 s2 K log m
m ·

√
K
m −

6κ
√

K σ 2

m ≤ 1
2 , we get

max
1≤i≤s,1≤j≤m

∥∥∥β0,(l)
i ȟ

0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥β0,(l)

i x̌0
i − x̌0,(l)

i

∥∥∥
2

≤ 120c1
µ√
m

·

√
s2K log2 m

m
+

20c1σ2

m

√
K log m

m

+

(
60c1

√
µ2s2K log m

m
+ 12c1

√
K

σ2

m

)
·

max
1≤i≤s,1≤j≤m

|b∗
l ȟ

0
i | · ∥h

♮
i∥

−1
2 . (85)

It thus suffices to control max1≤i≤s,1≤j≤m |b∗
l ȟ

0
i | · ∥h

♮
i∥−1

2 .
We further define that M ix̌0 = σ1(M i)ȟ

0
i and W i =∑m

j=1 bj (
∑

k ̸=i b∗jh
♮
kx♮∗

k akj + ej )a∗
ij , A which further leads

to

max
1≤i≤s

|b∗
l ȟ

0
i | · ∥h

♮
i∥

−1
2

=
1

σ1(M i) · ∥h♮
i∥2

|b∗
l M ix̌

0
i |

(i)
≤ 2

⎛

⎝
m∑

j=1

|b∗
l bj |

⎞

⎠ max
1≤i≤s,1≤j≤m

{
|b∗

jh
♮
i | · |a

∗
ijx

♮
i | · |a

∗
ij x̌

0
i |
}
·

∥h♮
i∥

−1
2 + 2∥bl∥2 · ∥W i∥ · ∥x̌0

i ∥2 · ∥h♮
i∥

−1
2 ·

max
1≤i≤s,1≤j≤m

{ ∣∣∣a∗
j x̌

0,(j )
i

∣∣∣+ ∥aij∥2

∥∥∥β0,(j )
i x̌0

i − x̌0,(j )
i

∥∥∥
2

}

(ii)
≤ κ

√
K

m log m
+ 200

µ log2 m√
m

+ 120κ

√
µ2K log3 m

m
·

max
1≤i≤s,1≤j≤m

∥∥∥β0,(j )
i x̌0

i − x̌0,(j )
i

∥∥∥
2
, (86)

where β0,(j )
i is defined in (81). Here, (i) arises from the

low bound σ1(M i) ≥ 1
2 , the triangle inequality and the

Cauchy-Schwarz inequality. The step (ii) comes from com-
bining the assumption that ∥h♮

i∥2 = ∥x♮
i∥2 , for i = 1, . . . , s,

max1≤i≤s ∥h♮
i∥2 = 1, the incoherence condition (5), the bound

(66), the triangle inequality, the estimate:
∑m

j=1 |b∗
l bj | ≤

4 log m [10, Lemma 48], ∥bl∥ =
√

K/m, ∥x̌0
i ∥2 = 1,

the inequality (84) and the bound that with probability
1 − O(m−9) [8],

∥W i∥ ≤ ∥h♮
i∥2 · ∥x♮

i∥2

2
√

log m
, (87)

if m ≫ (µ2 + σ2)sK log2 m. Combining the bound (85) and
(86) and the assumption m ≫ (µ2 + σ2)s2κK log2 m such

that (60c1

√
µ2 s2 K log m

m + 12c1
√

K σ 2

m ) · 120κ
√

µ2 K log3 m
m ≤

1/2, we have

max
1≤i≤s,1≤l≤m

∥∥∥β0,(l)
i ȟ

0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥β0,(l)

i x̌0
i − x̌0,(l)

i

∥∥∥
2

≤ C4
µ√
m

√
µ2s2K log5 m

m
, (88)

for some constant C4 > 0. Taking the bound (88) together with
(86), it yields max1≤i≤s,1≤l≤m |b∗

l ȟ
0
i |∥h

♮
i∥−1

2 ≤ c2
µ log2 m√

m
, for

some constant c2 > 0, as long as m ≫ (µ2 + σ2)sκ2K log2 m.
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We further scaled the preceding bounds to the final version.
Based on [10, Sec. C.6], one has

∥∥∥αh0 − h0,(l)
∥∥∥

2
+
∥∥∥αx0 − x0,(l)

∥∥∥
2

≤
∥∥∥(M i − M (l)

i )x̌0,(l)
i

∥∥∥
2

+ 6
{∥∥∥αȟ

0
i − ȟ

0,(l)
i

∥∥∥
2

+
∥∥∥αx̌0

i − x̌0,(l)
i

∥∥∥
2

}
. (89)

Taking the bounds (88) and (89) collectively yields

min
α i ∈C,|α i |=1

∥∥∥αih
0
i − h0,(l)

i

∥∥∥
2

+
∥∥∥αix

0
i − x0,(l)

i

∥∥∥
2

≤ c5
µ√
m

√
µ2s2K log5 m

m
, (90)

for some constant c5 > 0, as long as m ≫ (µ2 +
σ2)s2K log2 m.

Furthermore, by exploiting the technical methods pro-
vided in [10, Sec. C.6], we have dist(z0,(l) , z̃0) ≤
4c5

sκµ √
m

√
µ2 sK log5 m

m . This accomplishes the proof for the
claim (23). We further move to the proof for the claim (24). In

terms of |b∗
l h̃

0
i |, one has

|b∗
l h̃

0
i |

∥h♮
i∥2

≤

∣∣∣∣b
∗
l

1
α0

i

h0
i

∣∣∣∣

∥h♮
i∥2

≤

∣∣∣∣∣
1
α0

i

∣∣∣∣∣
|b∗

l h
0
i |

∥h♮
i∥2

≤ 2

∣∣∣
√

σ1(M i)b∗l ȟ
0
i

∣∣∣

∥h♮
i∥2

≤ 2
√

2c2
µ log2 m√

m
, (91)

based on fact that 1
2 ≤ σ1(M i) ≤ 2.
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