
Efficient CTL Model-Checking for Pushdown Systems?

Fu Song and Tayssir Touili

Liafa, CNRS and Univ. Paris Diderot, France.
E-mail: {song,touili}@liafa.jussieu.fr

Abstract. Pushdown systems (PDS) are well adapted to model sequential program-
s with (possibly recursive) procedure calls. Therefore, it is important to have effi-
cient model checking algorithms for PDSs. We consider in this paper CTL mod-
el checking for PDSs. We consider the “standard” CTL model checking problem
where whether a configuration of a PDS satisfies an atomic proposition or not de-
pends only on the control state of the configuration. We consider also CTL model
checking with regular valuations, where the set of configurations in which an atomic
proposition holds is a regular language. We reduce these problems to the emptiness
problem in Alternating Büchi Pushdown Systems, and we give an algorithm to solve
this emptiness problem. Our algorithms are more efficient than the other existing al-
gorithms for CTL model checking for PDSs in the literature. We implemented our
techniques in a tool, and we applied it to different case studies. Our results are en-
couraging. In particular, we were able to find bugs in linux source code.

1 Introduction

PushDown Systems (PDS for short) are an adequate formalism to model sequential, pos-
sibly recursive, programs [EK99,ES01]. It is then important to have verification algo-
rithms for pushdown systems. This problem has been intensively studied by the ver-
ification community. Several model-checking algorithms have been proposed for both
linear-time logics [BEM97,ES01,EHRS00,FWW97,KPV10], and branching-time logics
[BEM97,Boz07,BS97,Wal96,KV00,PV04,FWW97,KPV10].

In this paper, we study the CTL model-checking problem for PDSs. First, we
consider the “standard” model-checking problem as was considered in the literature.
In this setting, whether a configuration satisfies an atomic proposition or not de-
pends only on the control state of the configuration, not on its stack content. This
problem is known to be EXPTIME-complete [Wal00]. CTL corresponds to a frag-
ment of the alternation-free µ-calculus and of CTL*. Existing algorithms for model-
checking these logics for PDSs could then be applied for CTL model-checking.
However, these algorithms either allow only to decide whether a given configura-
tion satisfies the formula i.e., they cannot compute all the set of PDS configura-
tions where the formula holds [BS95,BS97,Wal96,KV00], or have a high complexi-
ty [PV04,Boz07,BEM97,EKS03,EKS01,FWW97,KPV10]. Moreover, these algorithms
have not been implemented due to their high complexity. Thus, there does not exist a
tool for CTL model-checking of PDSs.

? Work partially funded by ANR grant ANR-08-SEGI-006.

In this work, we propose a new efficient algorithm for CTL-model checking for PDSs.
Our algorithm allows to compute the set of PDS configurations that satisfy a given CTL
formula. Our procedure is more efficient than the existing model-checking algorithm-
s for µ-calculus and CTL* that are able to compute the set of configurations where a
given property holds [PV04,Boz07,BEM97,EKS03,EKS01,FWW97,KPV10]. Our tech-
nique reduces CTL model-checking to the problem of computing the set of configurations
from which an Alternating Büchi Pushdown System (ABPDS for short) has an accepting
run. We show that this set can be effectively represented using an alternating finite au-
tomaton.

Then, we consider CTL model checking with regular valuations. In this setting, the set
of configurations where an atomic proposition holds is given by a finite state automaton.
Indeed, since a configuration of a PDS has a control state and a stack content, it is natural
that the validity of an atomic proposition in a configuration depends on both the control
state and the stack. For example, in one of the case studies we considered, we needed
to check that whenever a function call hpsb send phy config is invoked, there is a path
where call hpsb send packet is called before call hpsb send phy config returns. We need
propositions about the stack to express this property. “Standard” CTL is not sufficient. We
provide an efficient algorithm that solves CTL model checking with regular valuations for
PDSs. Our procedure reduces the model-checking problem to the problem of computing
the set of configurations from which an ABPDS has an accepting run.

We implemented our techniques in a tool for CTL model-checking for pushdown
systems. Our tool deals with both “standard” model-checking, and model-checking with
regular valuations. As far as we know, this is the first tool for CTL model-checking for
PDSs. Indeed, existing model-checking tools for PDSs like Moped [Sch02] consider only
reachability and LTL model-checking, they don’t consider CTL. We run several experi-
ments on our tool. We obtained encouraging results. In particular, we were able to find
bugs in source files of the linux system, in a watchdog driver of linux, and in an IEEE
1394 driver of linux. We needed regular valuations to express the properties of some of
these examples.

Outline. The rest of the paper is structured as follows. Section 2 gives the basic definitions
used in the paper. In section 3, we present an algorithm for computing an alternating
automaton recognizing all the configurations from which an ABPDS has an accepting run.
Sections 4 and 5 describe the reductions from “standard” CTL model-checking for PDSs
and CTL model-checking for PDSs with regular valuations, to the emptiness problem in
ABPDS. The experiments are provided in Section 6. Section 7 describes the related work.

2 Preliminaries

2.1 The temporal logic CTL

We consider the standard branching-time temporal logic CTL. For technical reasons, we
use the operator Ũ as a dual of the until operator for which the stop condition is not
required to occur; and we suppose w.l.o.g. that formulas are given in positive normal
form, i.e., negations are applied only to atomic propositions. Indeed, each CTL formula
can be written in positive normal form by pushing the negations inside.

2

Definition 1. Let AP = {a, b, c, ...} be a finite set of atomic propositions. The set of CTL
formulas is given by (where a ∈ AP):

ϕ ::= a | ¬a | ϕ∧ϕ | ϕ∨ϕ | AXϕ | EXϕ | A[ϕUϕ] | E[ϕUϕ] | A[ϕŨϕ] | E[ϕŨϕ].

The closure cl(ϕ) of a CTL formula ϕ is the set of all the subformulas of ϕ, including
ϕ. Let AP+(ϕ) = {a ∈ AP | a ∈ cl(ϕ)} and AP−(ϕ) = {a ∈ AP | ¬a ∈ cl(ϕ)}. The size
|ϕ| of ϕ is the number of elements in cl(ϕ). Let T = (S ,−→, c0) be a transition system
where S is a set of states, −→⊆ S × S is a set of transitions, and c0 is the initial state. Let
s, s′ ∈ S . s′ is a successor of s iff s −→ s′. A path is a sequence of states s0, s1, . . . such
that for every i ≥ 0, si −→ si+1. Let λ : AP → 2S be a labelling function that assigns to
each atomic proposition a set of states in S . The validity of a formula ϕ in a state s w.r.t.
the labelling function λ, denoted s |=λ ϕ, is defined inductively in Figure 1. T |=λ ϕ iff
c0 |=λ ϕ. Note that a path π satisfies ψ1Ũψ2 iff either ψ2 holds everywhere in π, or the first
occurrence in the path where ψ2 does not hold must be proceeded by a position where ψ1
holds.

s |=λ a ⇐⇒ s ∈ λ(a).
s |=λ ¬a ⇐⇒ s < λ(a).
s |=λ ψ1 ∧ ψ2 ⇐⇒ s |=λ ψ1 and s |=λ ψ2.

s |=λ ψ1 ∨ ψ2 ⇐⇒ s |=λ ψ1 or s |=λ ψ2.

s |=λ AX ψ ⇐⇒ s′ |=λ ψ for every successor s′ of s.
s |=λ EX ψ ⇐⇒ There exists a successor s′ of s s.t. s′ |=λ ψ.

s |=λ A[ψ1Uψ2] ⇐⇒ For every path of T, π = s0, s1, ..., with s0 = s,∃i ≥ 0
s.t. si |=λ ψ2 and ∀0 ≤ j < i, s j |=λ ψ1.

s |=λ E[ψ1Uψ2] ⇐⇒ There exists a path of T, π = s0, s1, ..., with s0 = s, s.t.
∃i ≥ 0, si |=λ ψ2 and ∀0 ≤ j < i, s j |=λ ψ1.

s |=λ A[ψ1Ũψ2] ⇐⇒ For every path of T, π = s0, s1, ..., with s0 = s,∀i ≥ 0 s.t. si 6|=λ ψ2,

∃0 ≤ j < i, s.t. s j |=λ ψ1.

s |=λ E[ψ1Ũψ2] ⇐⇒ There exists a path of T, π = s0, s1, ..., with s0 = s, s.t. ∀i ≥ 0 s.t. si 6|=λ ψ2,

∃0 ≤ j < i s.t. s j |=λ ψ1.

Fig. 1. Semantics of CTL

2.2 PushDown Systems

Definition 2. A PushDown System (PDS for short) is a tuple P = (P, Γ, ∆,]), where P is
a finite set of control locations, Γ is the stack alphabet, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite
set of transition rules and] ∈ Γ is a bottom stack symbol.

A configuration of P is an element 〈p, ω〉 of P×Γ∗. We write 〈p, γ〉 ↪→ 〈q, ω〉 instead
of ((p, γ), (q, ω)) ∈ ∆. For technical reasons, we consider the bottom stack symbol], and
we assume w.l.o.g. that it is never popped from the stack, i.e., there is no transition rule of

3

the form 〈p,]〉 ↪→ 〈q, ω〉 ∈ ∆. The successor relation{P⊆ (P × Γ∗) × (P × Γ∗) is defined
as follows: if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉{P 〈q, ωω′〉 for every ω′ ∈ Γ∗.

Let c be a given initial configuration of P. Starting from c, P induces the transition
system T c

P
= (P×Γ∗,{P, c). Let AP be a set of atomic propositions, ϕ be a CTL formula

on AP, and λ : AP→ 2P×Γ∗ be a labelling function. We say that (P, c) |=λ ϕ iff T c
P
|=λ ϕ.

2.3 Alternating Büchi PushDown Systems

Definition 3. An Alternating Büchi PushDown System (ABPDS for short) is a tupleBP =

(P, Γ, ∆, F), where P is a finite set of control locations, Γ is the stack alphabet, F ⊆ P is
a finite set of accepting control locations and ∆ is a function that assigns to each element
of P × Γ a positive boolean formula over P × Γ∗.

A configuration of an ABPDS is a pair 〈p, ω〉, where p ∈ P is a control location
and ω ∈ Γ∗ is the stack content. We assume w.l.o.g. that the boolean formulas are
in disjunctive normal form. This allows to consider ∆ as a subset of (P × Γ) × 2P×Γ∗ .
Thus, rules of ∆ of the form1 〈p, γ〉 ↪→

∨n
j=1

∧m j

i=1〈p
j
i , ω

j
i 〉 can be denoted by the u-

nion of n rules of the form 〈p, γ〉 ↪→ {〈p j
1, ω

j
1〉, ..., 〈p

j
m j , ω

j
m j〉}, where 1 ≤ j ≤ n. Let

t = 〈p, γ〉 ↪→ {〈p1, ω1〉, ..., 〈pn, ωn〉} be a rule of ∆. For every ω ∈ Γ∗, the configuration
〈p, γω〉 (resp. {〈p1, ω1ω〉, ..., 〈pn, ωnω〉}) is an immediate predecessor (resp. successor) of
{〈p1, ω1ω〉, ..., 〈pn, ωnω〉} (resp. 〈p, γω〉).

A run ρ of BP from an initial configuration 〈p0, ω0〉 is a tree in which the root is
labeled by 〈p0, ω0〉, and the other nodes are labeled by elements of P × Γ∗. If a node of ρ
is labeled by 〈p, ω〉 and has n children labeled by 〈p1, ω1〉, ..., 〈pn, ωn〉, respectively, then
necessarily, 〈p, ω〉 has {〈p1, ω1〉, ..., 〈pn, ωn〉} as an immediate successor in BP. A path
c0c1... of a run ρ is an infinite sequence of configurations such that c0 is the root of ρ and
for every i ≥ 0, ci+1 is one of the children of the node ci in ρ. The path is accepting from the
initial configuration c0 if and only if it visits infinitely often configurations with control
locations in F. A run ρ is accepting if and only if all its paths are accepting. Note that an
accepting run has only infinite paths; it does not involve finite paths. A configuration c is
accepted (or recognized) byBP iffBP has an accepting run starting from c. The language
of BP, L(BP) is the set of configurations accepted by BP.

The reachability relation =⇒BP⊆ (P×Γ∗)×2P×Γ∗ is the reflexive and transitive closure
of the immediate successor relation. Formally =⇒BP is defined as follows: (1) c =⇒BP {c}
for every c ∈ P × Γ∗, (2) c =⇒BP C if C is an immediate successor of c, (3) if c =⇒BP
{c1, ..., cn} and ci =⇒BP Ci for every 1 ≤ i ≤ n , then c =⇒BP

⋃n
i=1 Ci.

The functions PreBP, Pre∗
BP

and Pre+
BP

: 2P×Γ∗ −→ 2P×Γ∗ are defined as follows:
PreBP(C) = {c ∈ P×Γ∗ | ∃C′ ⊆ C s.t. C′ is an immediate successor of c}, (2) Pre∗

BP
(C) =

{c ∈ P × Γ∗|∃C′ ⊆ C s.t. c =⇒BP C′}, (3) Pre+
BP

(C) = PreBP ◦ Pre∗
BP

(C).

To represent (infinite) sets of configurations of ABPDSs, we use Alternating Multi-
Automata:

Definition 4. [BEM97] Let BP = (P, Γ, ∆, F) be an ABPDS. An Alternating Multi-
Automaton (AMA for short) is a tuple A = (Q, Γ, δ, I,Q f), where Q is a finite set of

1 This rule represents ∆(p, γ) =
∨n

j=1
∧m j

i=1(p j
i , ω

j
i).

4

states that contains P, Γ is the input alphabet, δ ⊆ (Q×Γ)× 2Q is a finite set of transition
rules, I ⊆ P is a finite set of initial states, Q f ⊆ Q is a finite set of final states.

A Multi-Automaton (MA for short) is an AMA such that δ ⊆ (Q × Γ) × Q.

We define the reflexive and transitive transition relation −→δ⊆ (Q×Γ∗)×2Q as follows:
(1) q

ε
−→δ {q} for every q ∈ Q, where ε is the empty word, (2) q

γ
−→δ Q′, if q

γ
−→ Q′ ∈ δ,

(3) if q
ω
−→δ {q1, ..., qn} and qi

γ
−→δ Qi for every 1 ≤ i ≤ n, then q

ωγ
−→δ

⋃n
i=1 Qi.

The automaton A recognizes a configuration 〈p, ω〉 iff there exists Q′ ⊆ Q f such that
p

ω
−→δ Q′ and p ∈ I. The language of A, L(A), is the set of configurations recognized

by A. A set of configurations is regular if it can be recognized by an AMA. It is easy to
show that AMAs are closed under boolean operations and that they are equivalent to MAs.
Given an AMA, one can compute an equivalent MA by performing a kind of powerset
construction as done for the determinisation procedure. Similarly, MAs can also be used
to recognize (infinite) regular sets of configurations for PDSs.

Proposition 1. Let A = (Q, Γ, δ, I,Q f) be an AMA. Deciding whether a configuration
〈p, ω〉 is accepted byA can be done in O(|Q| · |δ| · |ω|) time.

3 Computing the language of an ABPDS

Our goal in this section is to compute the set of accepting configurations of an Alternating
Büchi PushDown System BP = (P, Γ, ∆, F). We show that it is regular and that it can
effectively be represented by an AMA. Determining whether BP has an accepting run is a
non-trivial problem because a run ofBP is an infinite tree with an infinite number of paths
labelled by PDS configurations, which are control states and stack contents. All the paths
of an accepting run are infinite and should all go through final control locations infinitely
often. The difficulty comes from the fact that we cannot reason about the different paths of
an ABPDS independently, we need to reason about runs labeled with PDS configurations.
We proceed as follows: First, we characterize the set of configurations from whichBP has
an accepting run. Then, based on this characterization, we compute an AMA representing
this set.

3.1 Characterizing L(BP)

We give in this section a characterization of L(BP), i.e., the set of configurations from
which BP has an accepting run. Let (Xi)i≥0 be the sequence defined as follows: X0 =

P × Γ∗ and Xi+1 = Pre+(Xi ∩ F × Γ∗) for every i ≥ 0. Let YBP =
⋂

i≥0 Xi. We show that
L(BP) = YBP:

Theorem 1. BP has an accepting run from a configuration 〈p, ω〉 iff 〈p, ω〉 ∈ YBP.

To prove this result, we first show that:

Lemma 1. BP has a run ρ from a configuration 〈p, ω〉 such that each path of ρ visits
configurations with control locations in F at least k times iff 〈p, ω〉 ∈ Xk.

5

Intuitively, let c be a configuration in X1. Since X1 = Pre+(X0 ∩ F × Γ∗), c has a
successor C that is a subset of F×Γ∗. Thus,BP has a run starting from c whose paths visit
configurations with control locations in F at least once. Since X2 = Pre+(X1 ∩ F × Γ∗), it
follows that from every configuration in X2,BP has a run whose paths visit configurations
in X1 ∩ F × Γ∗ at least once, and thus, they visit configurations with control locations in
F at least twice. We get by induction that for every k ≥ 1, from every configuration c in
Xk, BP has a run whose paths visit configurations with control locations in F at least k
times. Since YBP is the set of configurations from which BP has a run that visits control
locations in F infinitely often, Theorem 1 follows.

3.2 Computing L(BP)

Our goal is to compute YBP =
⋂

i≥0 Xi, where X0 = P × Γ∗ and for every i ≥ 0, Xi+1 =

Pre+(Xi ∩ F × Γ∗). We provide a saturation procedure that computes the set YBP. Our
procedure is inspired from the algorithm given in [Cac02a] to compute the winning region
of a Büchi game on a pushdown graph.

We show that YBP can be represented by an AMA A = (Q, Γ, δ, I, Q f) whose set
of states Q is a subset of P × N ∪ {q f }, where q f is a special state denoting the final state
(Q f = {q f }). From now on, for every p ∈ P and i ∈ N, we write pi to denote (p, i).

Intuitively, to compute YBP, we will compute iteratively the different Xi’s by applying
the saturation procedure of [BEM97]. The iterative procedure computes different automa-
ta. The automaton computed during the iteration i uses states of the form pi having i as
index. To force termination, we use an acceleration criterion. For this, we need to define
two projection functions π−1 and πi defined as follows: For every S ⊆ P × N ∪ {q f },

π−1(S) =

{qi | qi+1 ∈ S } ∪ {q f } if q f ∈ S or ∃q1 ∈ S ,

{qi | qi+1 ∈ S } else.

πi(S) = {qi | ∃1 ≤ j ≤ i s.t. q j ∈ S } ∪ {q f | q f ∈ S }.

The AMAA is computed iteratively using Algorithm 1:

6

Algorithm 1: Computation of YBP
Input: An ABPDS BP = (P, Γ, ∆, F).

Output: An AMAA = (Q, Γ, δ, I, Q f) that recognizes YBP.

1.Initially: Let i = 0, δ = {(q f , γ, {q f }) for every γ ∈ Γ}, and for every control state p ∈ P, p0 = q f .

2. Repeat (we call this loop loop1)

3. i := i + 1;

4. Add in δ a new transition rule pi ε
−→ pi−1, for every p ∈ F;

5. Repeat (we call this loop loop2)

6. For every 〈p, γ〉 ↪→ {〈p1, ω1〉, ..., 〈pn, ωn〉} in ∆

7. and every case where pi
k

ωk
−→δ Qk , for every 1 ≤ k ≤ n;

8. Add a new rule pi γ
−→

⋃n
k=1 Qk in δ;

9. Until No new transition rule can be added.

10. Remove from δ the transition rules pi ε
−→ pi−1, for every p ∈ F;

11. Replace in δ every transition rule pi γ
−→ R by pi γ

−→ πi(R), for every p ∈ P, γ ∈ Γ, R ⊆ Q;

12. Until i > 1 and for every p ∈ P, γ ∈ Γ, R ⊆ P × {i} ∪ {q f }; pi γ
−→ R ∈ δ⇐⇒ pi−1 γ

−→ π−1(R) ∈ δ

Let us explain the intuition behind the different lines of this algorithm. Let Ai be the
automaton obtained at step i (a step starts at Line 3). For every p ∈ P, the state pi is
meant to represent state p at step i, i.e., Ai recognizes a configuration 〈p, ω〉 iff pi ω

−→δ q f .
Let A0 be the automaton obtained after the initialization step (Line 1). It is clear that A0
recognizes X0 = P × Γ∗. Suppose now that the algorithm is at the beginning of the i-th
iteration (loop1). Line 4 adds the ε-transition pi ε

−→ pi−1 for every control state p ∈ F.
After this step, we obtain L(Ai−1)∩ F ×Γ∗. loop2 at lines 5− 9 is the saturation procedure
of [BEM97]. It computes the Pre∗ of L(Ai−1) ∩ F × Γ∗. Line 10 removes the ε-transition
added by Line 4. After this step, the automaton recognizes Pre+(L(Ai−1) ∩ F × Γ∗), i.e.,
Xi. Let us call Algorithm B the above algorithm without Line 11. It follows from the
explanation above that if Algorithm B terminates, it will produce YBP. However, this
procedure will never terminate if the sequence (Xi) is strictly decreasing. Consider for
example the ABPDS BP = ({q}, {γ}, ∆, {q}), where ∆ = {〈q, γ〉 ↪→ 〈q, ε〉}. Then, for every
i ≥ 0, Xi = {〈q, γiω〉 | ω ∈ γ∗}. It is clear that Algorithm B will never terminate on this
example.

The substitution at Line 11 is the acceleration used to force the termination of the
algorithm, tested at Line 12. We can show that thanks to Line 11 and to the test of Line
12, our algorithm always terminates and produces YBP:

Theorem 2. Algorithm 1 always terminates and produces YBP.

Proof (Sketch): Termination. Let us first prove the termination of our procedure. Note
that due to the substitution of Line 11, at the end of step i, states with index j < i are not
useful and can be removed. We can then suppose that at the end of step i, the automaton
Ai uses only states of index i (in addition to state q f). Thus, the termination tested at Line
12 holds when at step i, the transitions of Ai are “the same” than those of Ai−1.

We can show that at each step i, loop2 (corresponding to the saturation procedure)
adds less transitions than at step i − 1, meaning that Ai has less transitions than Ai−1.
Intuitively, this is due to the fact that at step i, we obtain after the saturation procedure
Pre+(L(Ai−1) ∩ F × Γ∗). Since Pre+ is monotonic, and since we start at step 0 with an

7

automaton A0 that recognizes all the configurations P × Γ∗, we get that for i > 0, L(Ai) ⊆
L(Ai−1). More precisely, we can show by induction on i that:

Proposition 2. In Algorithm 1, for every γ ∈ Γ, p ∈ P, S ⊆ Q; at each step i ≥ 2, if
pi γ
−→ S ∈ δ, then pi−1 γ

−→ π−1(πi(S)
)
∈ δ.

Thus, the substitution of Line 11 guarantees that at each step, the number of transitions
of the automaton Ai is less than the number of transitions of Ai−1. Since the number of
transitions that can be added at each step is finite, and since the termination criterion of
Line 12 holds if the transitions of Ai are “the same” than those of Ai−1, the termination of
our algorithm is guaranteed.

Correctness. Let us now prove that our algorithm is correct, i.e., it produces YBP. As
mentionned previously, without Line 11, the algorithm above would have computed the
different Xi’s. Since YBP =

⋂
i≥0 Xi, we need to show that Line 11 does not introduce new

configurations that are not in YBP, nor remove ones that should be in YBP.
Suppose we are at step i, and let p ∈ P, γ ∈ Γ, and R ⊆ Q be such that Line 11 adds

the transition pi γ
−→ πi(R) and removes the transition pi γ

−→ R. This substitution adds a
new transition iff R contains at least one state of the form qi−1 (otherwise, πi(R) = R and
Line 11 does not introduce any change for this transition). Let then S ⊆ Q be such R =

S ∪ {qi−1}. Let us first show that this substitution does not introduce new configurations.
Let u ∈ Γ∗ such that pi γ

−→δ π
i(R)

u
−→δ q f is a new accepting run of the automaton. Then,

due to Proposition 2, we can show that there exists already (before the substitution) a run
pi γ
−→δ R

u
−→δ q f in the automaton that accepts the configuration 〈p, γu〉.

Let us now show that the substitution above does not remove configurations that are
in YBP. Let 〈p, ω〉 be a configuration removed by the substitution above, i.e., 〈p, ω〉 is no
more recognized by Ai due to the fact that pi γ

−→ R is removed. We show that 〈p, ω〉
cannot be in YBP. Let v ∈ Γ∗ such that ω = γv and ρ = pi γ

−→δ qi−1 ∪ S
v
−→δ {q f }

is a run accepting 〈p, ω〉 whereas there is no run of the form qi v
−→δ {q f }. Suppose for

simplicity that ρ is the only run recognizing 〈p, ω〉, the same reasoning can also be applied
if this is not the case. Since pi γ

−→ qi−1 ∪ S , we can show that there exist states q1, . . . , qn,
and words ω1, . . . , ωn such that 〈p, γ〉 =⇒BP {〈q, ε〉, 〈q1, ω1〉, · · · 〈qn, ωn〉}. Then, due to
the fact that 〈p, ω〉 is removed from the automaton and that ρ is the only path accepting
〈p, ω〉, we can show that all the possible runs from the configuration 〈p, ω〉 go through the
configuration 〈q, v〉. Since 〈q, v〉 < YBP (because there is no run of the form qi v

−→δ {q f }),
BP has no accepting run from the configuration 〈q, v〉. It follows that BP cannot have an
accepting run from 〈p, ω〉.

�

Complexity: Given an AMA A with n states, [SSE06] provides a procedure that can
implement the saturation procedure loop2 to compute the Pre∗ of A in time O(n · |∆| · 22n).
Since at each step i, Algorithm 1 needs to consider only states of the form pi and pi−1

(in addition to q f), the number of states at each step i should be 2|P| + 1. Thus, loop2 can
be done in O(|P| · |∆| · 24|P|). Furthermore, Line 11 and the termination condition are done

8

in time O(|Γ| · |P| · 22|P|) and O(|Γ| · |P| · 2|P|), respectively. We know that the number of
transition rules of Ai is less than those of Ai−1. Since the number of transition rules of the
AMA is at most |Γ| · |P| · 2|P|+1, loop1 can be done at most |Γ| · |P| · 2|P|+1 times. Putting all
these estimations together, the algorithm runs in O(|P|2 · |∆| · |Γ| · 25|P|) time.

Thus, since L(BP) = YBP, we get :

Theorem 3. Given an ABPDS BP = (P, Γ, ∆, F), we can effectively compute an AMA A
with O(|P|) states and O(|P| · |Γ| · 2|P|) transition rules that recognizes L(BP). This AMA
can be computed in time O(|P|2 · |∆| · |Γ| · 25|P|).

Example: Let us illustrate our algorithm by an ex-
ample. Consider an ABPDS BP = ({q}, {γ}, ∆,
{q}), where ∆ = {〈q, γ〉 ↪→ 〈q, ε〉}. The automa-
ton produced by Algorithm 1 is shown in Figure
2. The dashed lines denote the transitions removed

q
fq1q2

γ
γ

γ

γ
ε ε

γ

Fig. 2: The result automaton.

by Lines 10 and 11. In the first iteration, t1 = q1 ε
−→ q f is added by Line 4, the saturation

procedure (lines 5 − 9) adds two transitions q1 γ
−→ q f and q1 γ

−→ q1. Then the transition
t1 is removed by Line 10. In the second iteration, t2 = q2 ε

−→ q1 is added by Line 4.
The saturation procedure adds the transitions t3 = q2 γ

−→ q1 and q2 γ
−→ q2. Finally, t2 is

removed by Line 10 and t3 is replaced by q2 γ
−→ q2 (this transition already exists in the

automaton). Now the termination condition is satisfied and the algorithm terminates. In
this case, BP has no accepting run.

Efficient implementation of Algorithm 1. We show that we can improve the complexity
of Algorithm 1 as follows:

Improvement 1. For every q ∈ Q and γ ∈ Γ, if t1 = q
γ
−→ Q1 and t2 = q

γ
−→ Q2 are

two transitions in δ such that Q1 ⊆ Q2, then remove t2. This means that ifA contains two
transitions t1 = p

γ
−→ {q1, q2, q3} and t2 = p

γ
−→ {q1, q2}, then we can remove t1 without

changing the language of A. Indeed, if a path q
ω
−→δ q f uses the transition rule t1, then

there must be necessarily a path q
ω
−→δ q f that uses the transition rule t2 instead of t1.

Improvement 2. Each transition qi γ
−→ R added by the saturation procedure will be

substituted by qi γ
−→ πi(R) in Line 11. Transitions of the form qi γ

−→ {qi
1, q

i−1
1 } ∪ R and

qi γ
−→ {qi−1

1 } ∪ R have the same substitution qi γ
−→ {qi

1} ∪ π
i(R). We show that each

transition qi γ
−→ {qi

1, q
i−1
1 } ∪ R can be replaced by qi γ

−→ {qi−1
1 } ∪ R in the saturation

procedure (i.e., during loop2). Moreover, we show that if both t1 = qi γ
−→ {qi−1

1 , ..., qi−1
n } ∪

R and t2 = qi γ
−→ {qi

1, ..., q
i
n} ∪ R exist during loop2, then t2 can be removed. This is due

to the fact that they both have the same substitution rule.

4 CTL Model-Checking for PushDown Systems

We consider in this section “standard” CTL model checking for pushdown systems as
considered in the literature, i.e., the case where whether an atomic proposition holds for

9

a given configuration c or not depends only on the control state of c, not on its stack.
Let P = (P, Γ, ∆,]) be a pushdown system, c0 its initial configuration, AP a set of atomic
propositions, ϕ a CTL formula, f : AP → 2P a function that associates atomic proposi-
tions to sets of control states, and λ f : AP→ 2P×Γ∗ a labelling function such that for every
a ∈ AP, λ f (a) = {〈p, ω〉 | p ∈ f (a), ω ∈ Γ∗}. We provide in this section an algorithm to
determine whether (P, c0) |=λ f ϕ. We proceed as follows: Roughly speaking, we compute
an Alternating Büchi PushDown System BP that recognizes the set of configurations c
such that (P, c) |=λ f ϕ. Then (P, c0) |=λ f ϕ holds iff c0 ∈ L(BP). This can be effectively
checked due to Theorem 3 and Proposition 1.

LetBPϕ = (P′, Γ, ∆′, F) be the ABPDS defined as follows: P′ = P×cl(ϕ); F = {[p, a] |
a ∈ cl(ϕ) ∩ AP and p ∈ f (a)} ∪ {[p,¬a] | ¬a ∈ cl(ϕ), a ∈ AP and p < f (a)} ∪ P × clŨ(ϕ),
where clŨ(ϕ) is the set of formulas of cl(ϕ) of the form E[ϕ1Ũϕ2] or A[ϕ1Ũϕ2]; and ∆′
is the smallest set of transition rules such that for every control location p ∈ P, every
subformula ψ ∈ cl(ϕ), and every γ ∈ Γ, we have:

1. if ψ = a, a ∈ AP and p ∈ f (a); 〈[p, ψ], γ〉 ↪→ 〈[p, ψ], γ〉 ∈ ∆′,
2. if ψ = ¬a, a ∈ AP and p < f (a); 〈[p, ψ], γ〉 ↪→ 〈[p, ψ], γ〉 ∈ ∆′,
3. if ψ = ψ1 ∧ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∧ 〈[p, ψ2], γ〉 ∈ ∆′,
4. if ψ = ψ1 ∨ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∨ 〈[p, ψ2], γ〉 ∈ ∆′,
5. if ψ = EXψ1; 〈[p, ψ], γ〉 ↪→

∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′,

6. if ψ = AXψ1; 〈[p, ψ], γ〉 ↪→
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′,

7. if ψ = E[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′,

8. if ψ = A[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′,

9. if ψ = E[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′,

10. if ψ = A[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′.

The ABPDS BPϕ above can be seen as the “product” of P with the formula ϕ. Intu-
itively, BPϕ has an accepting run from 〈[p, ψ], ω〉 if and only if the configuration 〈p, ω〉
satisfies ψ. Let us explain the intuition behind the different items defining ∆′.

Let ψ = a ∈ AP. If p ∈ f (a) then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ. Thus, BPϕ
should accept 〈[p, a], ω〉, i.e., have an accepting run from 〈[p, a], ω〉. This is ensured by
Item 1 that adds a loop in 〈[p, a], ω〉, and the fact that [p, a] ∈ F.

Let ψ = ¬a, where a ∈ AP. If p < f (a) then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ.
Thus, BPϕ should accept 〈[p,¬a], ω〉, i.e., have an accepting run from 〈[p,¬a], ω〉. This
is ensured by Item 2 and the fact that [p,¬a] ∈ F.

Item 3 expresses that if ψ = ψ1 ∧ ψ2, then for every ω ∈ Γ∗, BPϕ has an accepting
run from 〈[p, ψ1 ∧ψ2], ω〉 iff BPϕ has an accepting run from 〈[p, ψ1], ω〉 and 〈[p, ψ2], ω〉;
meaning that 〈p, ω〉 satisfies ψ iff 〈p, ω〉 satisfies ψ1 and ψ2. Item 4 is similar to Item 3.

Item 5 means that if ψ = EXψ1, then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff there
exists an immediate sucessor 〈p′, ω′〉 of 〈p, ω〉 such that 〈p′, ω′〉 satisfies ψ1. Thus, BPϕ
should have an accepting run from 〈[p, ψ], ω〉 iff it has an accepting run from 〈[p′, ψ1], ω′〉.
Similarly, item 6 states that if ψ = AXψ1, then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff
〈p′, ω′〉 satisfies ψ1 for every immediate sucessor 〈p′, ω′〉 of 〈p, ω〉.

Item 7 expresses that if ψ = E[ψ1Uψ2], then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff
either it satisfies ψ2, or it satisfies ψ1 and there exists an immediate sucessor 〈p′, ω′〉 of
〈p, ω〉 such that 〈p′, ω′〉 satisfies ψ. Item 8 is similar to Item 7.

Item 9 expresses that if ψ = E[ψ1Ũψ2], then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff
it satisfies ψ2, and either it satisfies also ψ1, or it has a successor that satisfies ψ. This

10

guarantees that ψ2 holds either always, or until both ψ1 and ψ2 hold. The fact that the state
[p, ψ] is in F ensures that paths where ψ2 always hold are accepting. The intuition behind
Item 10 is analogous.

Formally, we can show that:

Theorem 4. Let P = (P, Γ, ∆,]) be a PDS, f : AP −→ 2P a labelling function, ϕ a CTL
formula, and 〈p, ω〉 a configuration of P. Let BPϕ be the ABPDS computed above. Then,
(P, 〈p, ω〉) |=λ f ϕ iff BPϕ has an accepting run from the configuration 〈[p, ϕ], ω〉.

It follows from Theorems 3 and 4 that:

Corollary 1. Given a PDS P = (P, Γ, ∆,]), a labeling function f : P −→ 2AP, and a CTL
formula ϕ, we can construct an AMA A in time O(|P|2 · |ϕ|3 · (|P| · |Γ| + |∆|) · |Γ| · 25|P||ϕ|)
such that for every configuration 〈p, ω〉 of P, (P, 〈p, ω〉) |=λ f ϕ iff the AMAA recognizes
the configuration 〈[p, ϕ], ω〉.

The complexity follows from the complexity of Algorithm 1 and the fact that BPϕ
has O(|P||ϕ|) states and O

(
(|P||Γ| + |∆|)|ϕ|

)
transitions.

5 CTL Model-Checking for PushDown Systems with regular
valuations

So far, we considered the “standard” model-checking problem for CTL, where the validity
of an atomic proposition in a configuration c depends only on the control state of c, not
on the stack. In this section, we go further and consider an extension where the set of
configurations in which an atomic proposition holds is a regular set of configurations.

Let P = (P, Γ, ∆,]) be a pushdown system, c0 its initial configuration, AP a set of
atomic propositions, ϕ a CTL formula, and λ : AP → 2P×Γ∗ a labelling function such
that for every a ∈ AP, λ(a) is a regular set of configurations. We say that λ is a regular
labelling. We give in this section an algorithm that checks whether (P, c0) |=λ ϕ. We
proceed as previously: Roughly speaking, we compute an ABPDS BP′ϕ such that BP′ϕ
recognizes a configuration c iff (P, c) |=λ ϕ. Then (P, c0) satisfies ϕ iff c0 is accepted by
BP′ϕ. As previously, this can be checked using Theorem 3 and Proposition 1.

For every a ∈ AP, since λ(a) is a regular set of configurations, let Ma =

(Qa, Γ, δa, Ia, Fa) be a multi-automaton such that L(Ma) = λ(a), and M¬a =

(Q¬a, Γ, δ¬a, I¬a, F¬a) such that L(M¬a) = P × Γ∗ \ λ(a) be a multi-automaton that rec-
ognizes the complement of λ(a), i.e., the set of configurations where a does not hold.
Since for every a ∈ AP and every control state p ∈ P, p is an initial state of Qa and Q¬a;
to distinguish between all these initial states, for every a ∈ AP, we will denote in the
following the initial state corresponding to p in Qa (resp. in Q¬a) by pa (resp. p¬a).

Let BP′ϕ = (P′′, Γ, ∆′′, F′) be the ABPDS defined as follows2: P′′ = P × cl(ϕ) ∪⋃
a∈AP+(ϕ) Qa ∪

⋃
a∈AP−(ϕ) Q¬a; F′ = P × clŨ(ϕ) ∪

⋃
a∈AP+(ϕ) Fa ∪

⋃
a∈AP−(ϕ) F¬a; and ∆′′

is the smallest set of transition rules such that for every control location p ∈ P, every
subformula ψ ∈ cl(ϕ), and every γ ∈ Γ, we have:

2 AP+(ϕ) and AP−(ϕ) are as defined in Section 2.1.

11

1. if ψ = a, a ∈ AP; 〈[p, ψ], γ〉 ↪→ 〈pa, γ〉 ∈ ∆
′′,

2. if ψ = ¬a, a ∈ AP ; 〈[p, ψ], γ〉 ↪→ 〈p¬a, γ〉 ∈ ∆
′′,

3. if ψ = ψ1 ∧ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∧ 〈[p, ψ2], γ〉 ∈ ∆′′,
4. if ψ = ψ1 ∨ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∨ 〈[p, ψ2], γ〉 ∈ ∆′′,
5. if ψ = EXψ1; 〈[p, ψ], γ〉 ↪→

∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′′,

6. if ψ = AXψ1; 〈[p, ψ], γ〉 ↪→
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′′,

7. if ψ = E[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′′,

8. if ψ = A[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′′,

9. if ψ = E[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′′,

10. if ψ = A[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′′.

Moreover:

11. for every transition q1
γ
−→ q2 in (

⋃
a∈AP+(ϕ) δa) ∪ (

⋃
a∈AP−(ϕ) δ¬a); 〈q1, γ〉 ↪→ 〈q2, ε〉 ∈

∆′′,
12. for every q ∈ (

⋃
a∈AP+(ϕ) Fa) ∪ (

⋃
a∈AP−(ϕ) F¬a); 〈q,]〉 ↪→ 〈q,]〉 ∈ ∆′′.

The ABPDSBP′ϕ has an accepting run from 〈[p, ψ], ω〉 if and only if the configuration
〈p, ω〉 satisfies ψ according to the regular labellings Ma’s. Let us explain the intuition
behind the rules above. Let p ∈ P, ψ = a ∈ AP, and ω ∈ Γ∗. The ABPDS BP′ϕ should
accept 〈[p, a], ω〉, iff 〈p, ω〉 ∈ L(Ma). To check this, BP′ϕ goes to state pa, the initial
state corresponding to p in Ma (Item 1); and then, from this state, it checks whether ω is
accepted by Ma. This is ensured by Items 11 and 12. Item 11 allows BP′ϕ to mimic a run

of Ma on ω: if BP′ϕ is in state q1 with γ on top of its stack, and if q1
γ
−→ q2 is a rule in δa,

then BP′ϕ moves to state q2 while popping γ from the stack. Popping γ allows to check
the rest of the word. The configuration is accepted if the run (with label ω) in Ma reaches
a final state, i.e., ifBP′ϕ reaches a state q ∈ Fa with an empty stack, i.e., a stack containing
only the bottom stack symbol]. Thus, Fa is in F′′. Since all the accepting runs of BP′ϕ
are infinite, we add a loop on every configuration in control state q ∈ Fa and having] as
content of the stack (Item 12).

The intuition behind Item 2 is similar. This item applies for ψ of the from ¬a. Items
3–10 are similar to Items 3–10 in the construction underlying Theorem 4. We get:

Theorem 5. (P, 〈p, ω〉) |=λ ϕ iff BP′ϕ has an accepting run from the configuration
〈[p, ϕ], ω〉.

From this theorem and Theorem 3, it follows that:

Corollary 2. Given a PDS P = (P, Γ, ∆,]), a regular labelling function λ, and a CTL
formula ϕ, we can construct an AMA A such that for every configuration 〈p, ω〉 of P,
(P, 〈p, ω〉) |=λ ϕ iff the AMA A recognizes the configuration 〈[p, ϕ], ω〉. This AMA can
be computed in time O(|P|3 · |Γ|2 · |ϕ|3 · k2 · |∆| · d · 25(|P||ϕ|+k)), where k =

∑
a∈AP+(ϕ) |Qa| +∑

a∈AP−(ϕ) |Q¬a| and d =
∑

a∈AP+(ϕ) |δa| +
∑

a∈AP−(ϕ) |δ¬a|.

The complexity follows from the complexity of Algorithm 1 and the fact that BP′ϕ
has O(|P||ϕ| + k) states and O

(
(|P||Γ| + |∆|)|ϕ| + d

)
transitions.

Remark 1. Note that to improve the complexity, we represent the regular valuations Ma’s
using AMAs instead of MAs. This prevents the exponential blow-up when complement-
ing these automata to compute M¬a.

12

6 Experiments

We implemented all the algorithms presented in the previous sections in a tool. As far
as we know, this is the first tool for CTL model-checking for PDSs. We applied our tool
to the verification of sequential programs. Indeed, PDSs are well adapted to model se-
quential (possibly recursive) programs [EK99,ES01]. We carried out several experiments.
We obtained interesting results. In particular, we were able to find bugs in linux drivers.
Our results are reported in Figure 3. Column formula size gives the size of the formula.
Column time(s) and mem(kb) give the time (in seconds) and memory (in kb). Column
Recu. gives the number of iterations of loop1. The last Column result gives the result
whether the formula is satisfied or not (Y is satisfied, otherwise N). The first eleven lines
of the table describe experiments done to evaluate Algorithm 1. that computes the set of
configurations from which an ABPDS has an accepting run. The second part of the table
describes experiments for “standard” CTL model-checking in which most of the speci-
fications cannot be expressed in LTL. The last part considers CTL model-checking with
regular valuations.

Plotter controls a plotter that creates random bar graphs [Sch02]. We checked three
CTL properties for this example (Plotter1, Plotter2 and Plotter3). ATM is an automatic
teller machine controller. We checked that if the pincode is correct, then the ATM will
provide money (ATM1), and otherwise, it will set an alarm (ATM2). ATM3 checks that
the ATM gives the money only if the pincode is correct, and if it is accessed from the
main session. Regular valuations are needed to express this property. Lock is a lock-
unlock program. We checked different properties that ensure that the program is correct.
Lock-err is a buggy version of the program. M-WO is a Micro-Wave Oven controller.
We checked that the oven will stop once it is hot, and that it cannot continue heating
forever. File is a file management program. W.G.C. checks to solve the Wolf, Goat and
Cabbage problem. btrfsfile.c models the source file file.c from the linux btrfs file system.
We found a lock error in this file. Bluetooth is a simplified model of a Bluetooth driver
[QW04]. We also found an error in this system. w83627ehf, w83697ehf and advantech
are watchdog linux drivers. at91rm9200 and at32ap700x are Real Time Clock drivers for
linux. pcf857x corresponds also to a driver. IEEE1394 is the IEEE 1394 driver in Linux.
As described in Figure 3, we found errors in some of these drivers. We needed regular
valuations to express the properties of the IEEE 1394 driver. For example, we needed
to check that whenever a function call hpsb send phy config is invoked, there is a path
where call hpsb send packet is called before call hpsb send phy config returns. We need
propositions about the stack to express this property. “Standard” CTL is not sufficient.
RSM are examples written by us to check the efficiency of the regular valuations part of
our tool.

7 Related Work

Alternating Büchi Pushdown Systems can be seen as non-deterministic Büchi Pushdown
Systems over trees. Emptiness of non-deterministic Büchi Pushdown Systems over trees is
solved in triple exponential time by Harel and Raz [HR94]. Our algorithm is less complex.
[Boz07] considers the emptiness problem in Alternating Parity Pushdown Automata. The

13

Examples
|P | + |Γ| Formula

Recu Time(s) Mem(kb) Result
+|∆| size

A
lg

o
rith

m
1

1 3+3+4 - 3 0 22.34 Y
2 17+5+24 - 4 0 33.23 N
3 73+5+73 - 4 0.02 128.28 Y
4 75+6+75 - 5 0.02 81.36 N
5 3+4+4 - 4 0 22.36 N
6 3+4+5 - 3 0 21.54 Y
7 3+4+4 - 3 0 20.11 Y
8 3+4+4 - 4 0 27.40 Y
9 74+6+76 - 5 0.02 87.54 Y
10 17+5+24 - 3 0 28.46 Y
11 18+5+28 - 3 0 26.15 Y

S
ta

n
d
a
rd

Plotter.1 1+19+24 2 3 0.02 41.56 Y
Plotter.2 1+19+24 2 3 0 43.52 N
Plotter.3 1+19+24 14 9 0.03 241.32 Y
ATM.1 2+18+45 8 6 0.03 169.64 Y
ATM.2 2+18+45 10 6 0.03 192.53 Y
Lock.1 6+37+82 7 11 0.11 387.15 Y
Lock.2 6+37+82 7 11 0.11 379.46 N

Lock-err 6+37+82 3 9 0.00 186.52 N
M-WO.1 1+7+12 6 2 0 40.20 Y
M-WO.2 1+7+12 6 7 0 37.28 N

File.1 1+5+9 2 3 0 34.77 Y
File.2 1+5+9 2 4 0.02 32.51 N

W.G.C. 16+1+40 23 2 0.05 202.01 Y
btrfs/file.c 2+14+20 3 10 0 64.32 N

btrfs/file.c-fixed 2+15+22 3 9 0.02 82.52 Y
bluetooth 32+12+294 5 8 0.12 821.03 N
w83627ehf 1+20+20 5 9 0.02 132.76 N

w83627ehf-fixed 1+21+22 5 4 0.03 121.69 Y
w83697ehf 1+56+57 6 11 0.35 394.61 Y
advantech 2+16+31 7 6 0.05 120.41 Y

at91rm9200 4+15+64 7 5 0.06 234.42 N
at91rm9200-fixed 4+16+67 7 6 0.12 255.62 Y

at32ap700x 4+25+105 7 8 0.15 356.04 N
at32ap700x-fixed 4+25+109 7 9 0.22 334.42 Y

pcf857x 1+98+106 10 18 0.23 541.35 Y

R
e
g
u
la

r
V

a
lu

a
tio

n

ATM.3 2+18+45 8 6 0.20 352.47 Y
File.3 1+5+9 5 5 0 33.21 Y
RSM1 1+8+11 25 4 0.06 438.23 Y
RSM2 1+8+12 30 4 0.48 1231.45 Y
RSM3 1+11+17 45 4 12.11 6206.73 Y
RSM4 1+11+18 45 4 0.72 1269.26 Y
RSM5 1+11+16 35 4 12.14 6212.2 Y

ieee1394 core 1 1+104+108 12 14 0.20 413.69 Y
ieee1394 core 2 1+104+108 13 14 0.19 422.17 Y
ieee1394 core 3 1+104+108 14 17 0.19 438.42 N
ieee1394 core 4 1+104+109 14 14 0.19 414.27 Y

Fig. 3. The performance of our tool.

14

emptiness problem of nondeterministic parity pushdown tree automata is investigated in
[KPV02,BMP05,BMP10]. ABPDSs can be seen as a subclass of these Automata. For
ABPDSs, our algorithm is more general than the ones in these works since it allows
to characterize and compute the set of configurations from which the ABPDS has an
accepting run, whereas the other algorithms allow only to check emptiness

Model-checking pushdown systems against branching time temporal logics has al-
ready been intensively investigated in the literature. Several algorithms have been pro-
posed. Walukiewicz [Wal00] showed that CTL model checking is EXPTIME-complete
for PDSs. The complexity of our algorithm matches this bound. CTL corresponds to a
fragment of the alternation-free µ-calculus and of CTL*. Model checking full µ-calculus
for PDSs has been considered in [BS95,BS97,Wal96,KV00]. These algorithms allow only
to determine whether a given configuration satisfies the property. They cannot compute
the set of all the configurations where the formula holds. As far as CTL is concerned, our
algorithm is more general since it allows to compute a finite automaton that characterizes
the set of all such configurations. Moreover, the complexity of our algorithm is compa-
rable to the ones of [BS95,BS97,Wal96,KV00] when applied to CTL, it is even better in
some cases.

[PV04,KPV10] considers the global model-checking µ-calculus problem for PDSs,
i.e., they compute the set of configurations that satisfy the formula. They reduce this prob-
lem to the membership problem in two-way alternating parity tree automata. [KPV10]
considers also µ-calculus model-checking with regular valuations. These algorithms are
more complex, technically more complicated and less intuitive than our procedure. In-
deed, the complexity of [PV04,KPV10] is (|ϕ| · |P| · |∆| · |Γ|)O(|P|·|∆|·|ϕ|)2

, whereas our com-
plexity is O(|P|2 · |ϕ|3 · (|P| · |Γ| + |∆|) · |Γ| · 25|P||ϕ|).

In [BEM97], Bouajjani et al. consider alternating pushdown systems (without the
Büchi accepting condition). They provide an algorithm to compute a finite automaton
representing the Pre∗ of a regular set of configurations for these systems. We use this
procedure in loop2 of Algorithm 1. [SSE06] showed how to efficiently implement this
procedure. We used the ideas in [SSE06] while implementing Algorithm 1. In their pa-
per, Bouajjani et al. applied their Pre∗ algorithm to compute the set of PDS configurations
that satisfy a given alternation-free µ-calculus formula. Their procedure is more complex
than ours. It is exponential in |P| · |ϕ|2 whereas our algorithm is exponential only in |P| · |ϕ|,
where |P| is the number of states of the PDS and |ϕ| is the size of the formula.

It is well known that the model-checking problem for µ-calculus is polynomially re-
ducible to the problem of solving parity games. Parity games for pushdown systems are
considered in [Cac02b,Ser03] and are solved in time exponential in (|P||ϕ|)2. As far as
CTL model-checking is concerned, our method is simpler, less complex, and more intu-
itive than these algorithms.

Model checking CTL* for PDS is 2EXPTIME-complete (in the size of the formula)
[Boz07]. Algorithms for model-checking CTL* specifications for PDSs have been pro-
posed in [FWW97,EKS03,EKS01,Boz07]. [FWW97] considers also CTL* model check-
ing with regular valuations. When applied to CTL formulas, these algorithms are more
complex than our techniques. They are double exponential in the size of the formula and
exponential in the size of the system; whereas our procedure is only exponential for both
sizes (the formula and the system).

15

LTL model-checking with regular valuations was considered in [EKS03,EKS01].
Their algorithm is based on a reduction to the “standard” LTL model-checking problem
for PDSs. The reduction is done by performing a kind of product of the PDS with the
different regular automata representing the different constraints on the stack. Compared
to these algorithms, our techniques for CTL model-checking with regular valuations are
direct, in the sense that they do not necessitate to make the product of the PDS with the
different automata of the regular constraints.

References

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata:
Application to Model Checking. In CONCUR’97. LNCS 1243, 1997.

[BMP05] Laura Bozzelli, Aniello Murano, and Adriano Peron. Pushdown module checking. In
LPAR, pages 504–518, 2005.

[BMP10] Laura Bozzelli, Aniello Murano, and Adriano Peron. Pushdown module checking. For-
mal Methods in System Design, 36(1):65–95, 2010.

[Boz07] Laura Bozzelli. Complexity results on branching-time pushdown model checking. Theor.
Comput. Sci., 379(1-2):286–297, 2007.

[BS95] Olaf Burkart and Bernhard Steffen. Composition, decomposition and model checking of
pushdown processes. Nord. J. Comput., 2(2):89–125, 1995.

[BS97] Olaf Burkart and Bernhard Steffen. Model checking the full modal mu-calculus for
infinite sequential processes. In ICALP, pages 419–429, 1997.

[Cac02a] Thierry Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP,
pages 704–715, 2002.

[Cac02b] Thierry Cachat. Uniform solution of parity games on prefix-recognizable graphs. Electr.
Notes Theor. Comput. Sci., 68(6), 2002.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithm for model
checking pushdown systems. In CAV’00, volume 1885 of LNCS, 2000.

[EK99] J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow
analysis. In FOSSACS’99. LNCS 1578, 1999.

[EKS01] Javier Esparza, Antonı́n Kucera, and Stefan Schwoon. Model-checking ltl with regular
valuations for pushdown systems. In TACS, pages 316–339, 2001.

[EKS03] Javier Esparza, Antonı́n Kucera, and Stefan Schwoon. Model checking ltl with regular
valuations for pushdown systems. Inf. Comput., 186(2):355–376, 2003.

[ES01] J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs. In In
Proc. of CAV’01, 2001.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A Direct Symbolic Approach to Model Checking
Pushdown Systems. In Infinity’97, ENTCS 9. Elsevier Sci. Pub., 1997.

[HR94] David Harel and Danny Raz. Deciding emptiness for stack automata on infinite trees.
Inf. Comput., 113(2):278–299, 1994.

[KPV02] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Pushdown specifications. In LPAR,
pages 262–277, 2002.

[KPV10] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. An automata-theoretic approach to
infinite-state systems. In Essays in Memory of Amir Pnueli, pages 202–259, 2010.

[KV00] Orna Kupferman and Moshe Y. Vardi. An automata-theoretic approach to reasoning
about infinite-state systems. In CAV, pages 36–52, 2000.

[PV04] Nir Piterman and Moshe Y. Vardi. Global model-checking of infinite-state systems. In
CAV, pages 387–400, 2004.

16

[QW04] S. Qadeer and D. Wu. Kiss: Keep it simple and sequential. In PLDI 04: Programming
Language Design and Implementation, pages 14–24, 2004.

[Sch02] Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München, 2002.

[Ser03] Olivier Serre. Note on winning positions on pushdown games with [omega]-regular
conditions. Inf. Process. Lett., 85(6):285–291, 2003.

[SSE06] Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. Efficient algorithms
for alternating pushdown systems with an application to the computation of certificate
chains. In ATVA, pages 141–153, 2006.

[Wal96] Igor Walukiewicz. Pushdown processes: Games and model checking. In CAV, pages
62–74, 1996.

[Wal00] Igor Walukiewicz. Model checking ctl properties of pushdown systems. In FSTTCS,
pages 127–138, 2000.

A Appendix

A.1 Proof of Lemma 1

Lemma 1. BP has a run ρ from a configuration 〈p, ω〉 such that each path of ρ visits
configurations with control locations in F at least k times iff 〈p, ω〉 ∈ Xk.

Proof: (=⇒) The proof proceeds by induction on k. We directly obtain that 〈p, ω〉 ∈ X0 =

P × Γ∗. We only need to show that 〈p, ω〉 ∈ Xk when k ≥ 1.
Let 〈p1, ω1〉, .., 〈pn, ωn〉 be the first nodes of ρ that are visited in each path of ρ such

that pi ∈ F. Then we get: (a) 〈p, ω〉 =⇒BP {〈p1, ω1〉, .., 〈pn, ωn〉}, (b) for every 1 ≤ i ≤
n, pi ∈ F, (c) for every 1 ≤ i ≤ n, BP has a run ρi from the configuration 〈pi, ωi〉 such
that all the paths of ρi can visit some configurations with control locations in F at least
k − 1 times.

By applying the induction hypothesis to (c): we obtain that 〈pi, ωi〉 ∈ Xk−1 for every
1 ≤ i ≤ n. Since pi ∈ F for every 1 ≤ i ≤ n, we have 〈pi, ωi〉 ∈ Xk−1 ∩ F × Γ∗ for every
1 ≤ i ≤ n. Since Xk = Pre+(Xk−1 ∩ F × Γ∗) and from (a), we get that 〈p, ω〉 ∈ Xk.

(⇐=) Let’s apply the induction on k. It is straightforward when k = 0. We only need to
show that BP has a run ρ from the configuration 〈p, ω〉 such that each path of ρ can visit
some configurations with control locations in F at least k times when k ≥ 1.

Since 〈p, ω〉 ∈ Xk where Xk = Pre+(Xk−1 ∩ F × Γ∗), we obtain that 〈p, ω〉 =⇒BP
{〈p1, ω1〉, .., 〈pn, ωn〉}, and 〈pi, ωi〉 ∈ Xk−1 ∩ F × Γ∗ for each 1 ≤ i ≤ n.

By applying the induction hypothesis to 〈pi, ωi〉 ∈ Xk−1 for each 1 ≤ i ≤ n, we get
that BP has a run ρi from the configuration 〈pi, ωi〉 such that each path of ρi can visit
some configurations with control locations in F at least k − 1 times. Thus BP has a run ρ
from the configuration 〈p, ω〉 such that each path of ρ can visit some configurations with
control locations in F at least k times. �

A.2 Proof of Theorem 1

Theorem 1. BP has an accepting run from a configuration 〈p, ω〉 iff 〈p, ω〉 ∈ YBP.

17

Proof: (=⇒) First we show that if BP has an accepting run from the configuration 〈p, ω〉,
then the configuration 〈p, ω〉 must be in YBP. We prove that if the configuration 〈p, ω〉 is
not in YBP, then BP has not any accepting run from 〈p, ω〉.

Since 〈p, ω〉 < YBP and YBP =
⋂

i≥0 Xi, there exists k ≥ 0 such that 〈p, ω〉 < Xk. By
Lemma 1, all the runs from the configuration 〈p, ω〉 can visit configurations with control
locations in F at most k − 1 times, otherwise 〈p, ω〉 ∈ Xk, which contradicts the fact that
〈p, ω〉 < Xk. Thus, BP has not any accepting run from the configuration 〈p, ω〉.

(⇐=) Now we prove the other direction, i.e., we prove that if the configuration 〈p, ω〉 is
in YBP, then BP has an accepting run from 〈p, ω〉.

Since YBP is the greatest fixpoint of the function f (X) = Pre+(X ∩ F × Γ∗), we get
that YBP = Pre+(YBP ∩ F × Γ∗).

Since 〈p, ω〉 ∈ YBP, we get 〈p, ω〉 ∈ Pre+(YBP ∩ F × Γ∗). By the definition of
Pre+, there exists a set of configurations {〈p1, ω1〉, ..., 〈pn, ωn〉} ⊆ YBP ∩ F × Γ∗ such
that 〈p, ω〉 =⇒BP {〈p1, ω1〉, ..., 〈pn, ωn〉}.

Since {〈p1, ω1〉, ..., 〈pn, ωn〉} ⊆ YBP ∩ F ×Γ∗, we obtain that 〈pi, ωi〉 ∈ YBP and pi ∈ F
for every 1 ≤ i ≤ n. Let’s construct a finite tree ρ with root 〈p, ω〉, the leaves of ρ are
〈p1, ω1〉, ..., 〈pn, ωn〉, the inner nodes of ρ are the successors during the run 〈p, ω〉 =⇒BP
{〈p1, ω1〉, ..., 〈pn, ωn〉}. Each path of ρ can visit some configurations with control locations
in F at least once.

Since 〈pi, ωi〉 ∈ YBP for every 1 ≤ i ≤ n, we can repeatedly construct a finite tree ρi

for the configuration 〈pi, ωi〉 such that ρi has the same properties as ρ. Let’s replace each
leaf 〈pi, ωi〉 in ρ by the tree ρi and obtain a new tree ρ such that each path of the new tree
ρ can visit some configurations with control locations in F at least twice.

Now we infinitely repeat this procedure to the leaves of the latest tree ρ. Finally, each
path of the latest tree ρ can infinitely often visit some configurations with control locations
in F. We obtain that ρ is an accepting run.

�

A.3 Proof of Proposition 2

Proposition 2. In Algorithm 1, for every γ ∈ Γ, p ∈ P, S ⊆ Q; at each step i ≥ 2, if
pi γ
−→ S ∈ δ, then pi−1 γ

−→ π−1(πi(S)
)
∈ δ.

Proof: The proposition states that pi γ
−→ S ∈ δ =⇒ pi−1 γ

−→ π−1(πi(S)) ∈ δ in the
Algorithm 1. Note that the transition rule is added by the saturation procedure (lines 5−9)
and may be replaced by the substitution (line 11). Both situations should be considered.
We proceed by induction on i.
Basis. i = 2. Let n be the number of transition rules that were added by the saturation
procedure. We will prove that p2 γ

−→ S ∈ δ =⇒ p1 γ
−→ π−1(π2(S)) ∈ δ by induction on n.

– Basis. n = 0. Then there is only p2 ε
−→ p1 ∈ δ for p ∈ F. So there is no p2 γ

−→ S for
every p ∈ P, γ ∈ Γ, S ⊆ P × {1, 2} ∪ {q f }.

18

– Step. n ≥ 1. Let t = p2 γ
−→ S be the n-th transition rule added by the saturation

procedure. Then there exists a transition rule
〈p, γ〉 −→ {〈p1, ω1〉, ..., 〈pm, ωm〉} ∈ ∆ (1)

such that p2
j

ω j
−→δ S j for every 1 ≤ j ≤ m and S =

⋃m
j=1 S j.

Because of (1), it is sufficient to prove that p1
j

ω j
−→δ π−1(π2(S j)) existed in the

saturation procedure of the first iteration of loop1 for every 1 ≤ j ≤ m by applying
induction on |ω j| the length of ω j.

• Basis. |ω j| = 0. Then ω j = ε. Since p2
j

ε
−→δ S j and there are transition rules

p2
j

ε
−→δ p2

j and p2
j

ε
−→δ p1

j for p j ∈ F. We get S j = {p2
j } or S j = {p1

j }. Since

π−1(π2({p2
j })) = p1

j , π
−1(π2({p1

j })) = p1
j and there existed p1

j
ε
−→δ p1

j in the satura-

tion procedure of the first iteration of loop1, we obtain that p1
j

ε
−→δ π

−1(π2(S j))
existed in the saturation procedure of the first iteration of loop1.

• Step. |ω j| ≥ 1. We prove that p1
j

ω j
−→δ π

−1(π2(S j)) existed in the saturation pro-
cedure of the first iteration of loop1 depending on the case whether the first step

of p2
j

ω j
−→δ S j is the ε-transition p2

j
ε
−→ p1

j or not.

∗ The first step is p2
j

ε
−→ p1

j . Then we have p2
j

ε
−→ p1

j

ω j
−→δ S j. By the

definition of project function πi, the substitution procedure will not change

any transition rules in the first iteration of loop1, we obtain that p1
j

ω j
−→δ S j

already existed in the saturation procedure of first iteration of loop1. Since
the successor of the state q1 ∈ P × {1} is a subset of P × {1} ∪ {q f }, we have

π−1(π2(S j)) = S j. Hence p1
j

ω j
−→δ π

−1(π2(S j)).

∗ The first step is not p2
j

ε
−→ p1

j . Then there exists γ′ ∈ Γ, u ∈ Γ∗ and

R ∈ P × {2, 1} ∪ {q f } such that ω j = γ′u and p2
j

γ′

−→ R
u
−→δ S j.

Since p2
j

γ′

−→ R already existed before adding the n-th transition rule,
by applying the induction hypothesis (induction on n), we get that

p1
j

γ′

−→ π−1(π2(R)) existed in the saturation procedure of the first iteration of
loop1.

Let R = {q2
1, ..., q

2
g1
, q1

g1+1, ..., q
1
g2
}, since R

u
−→δ S j, we obtain that q2

k
u
−→δ Rk

existed in the saturation procedure of the second iteration of loop1 for every
1 ≤ k ≤ g1, and q1

k
u
−→δ Rk existed in the saturation procedure of the second

iteration of loop1 for every g1 + 1 ≤ k ≤ g2 and S j =
⋃g2

k=1 Rk.

Since |u| < |ω j|, by applying the induction hypothesis (induction on |ω j|) to
q2

k
u
−→δ Rk for every 1 ≤ k ≤ g1, we get that q1

k
u
−→δ π

−1(π2(Rk)) existed in
the saturation procedure of the second iteration of loop1. Then we obtain
that {q1

1, ..., q
1
g1
, q1

g1+1, ..., q
1
g2
}

u
−→δ

⋃g1
k=1 π

−1(π2(Rk)) ∪
⋃g2

k=g1+1 Rk existed in

19

the saturation procedure of the first iteration of loop1.

Since π−1(π2(S j)) = π−1(π2(
⋃g1

k=1 Rk ∪
⋃g2

k=g1+1 Rk)) =
⋃g1

k=1 π
−1(π2(Rk)) ∪⋃g2

k=g1+1 Rk, we obtain that p1
j

γ′

−→ π−1(π2(R))
u
−→δ π

−1(π2(S j)) existed in the
saturation procedure of the second iteration of loop1. Since ω j = γ′u and
line 11 will not change any transition rules at the end of the first iteration,

we obtain that p1
j

ω j
−→δ π

−1(π2(S j)) existed in the saturation procedure of the
first iteration of loop1.

Step. i ≥ 3. Let n be the number of transition rules added by the saturation procedure.
We will proceed by applying induction on n.

– Basis. n = 0. Then there is only pi ε
−→ pi−1 for p ∈ F. So there is no pi γ

−→ S for
every p ∈ P, γ ∈ Γ, S ⊆ P × {i, i − 1} ∪ {q f }. Note that each state of P × {i − 2} and
transition rules from the states P × {i − 2} can be erased as soon as the (i − 1)-th
iteration of loop1 finished.

– Step. n ≥ 1. Let t = pi γ
−→ S be the n-th transition added by the saturation procedure.

Then there exists a transition rule
〈p, γ〉 −→ {〈p1, ω1〉, ..., 〈pm, ωm〉} in ∆ (2)

such that pi
j

ω j
−→δ S j for every 1 ≤ j ≤ m and S =

⋃m
j=1 S j.

Because of (2), it is sufficient to prove that there exists R j ⊆ P × {i − 1, i − 2} ∪ {q f }

such that pi−1
j

ω j
−→δ R j existed in the saturation procedure of the (i − 1)-th iteration of

loop1 and πi−1(R j) = π−1(πi(S j)) by applying induction on |ω j| the length of ω j.

• Basis. |ω j| = 0. Then ω j = ε. Since pi
j

ε
−→δ S j and there are transition rules

pi
j

ε
−→δ pi

j and pi
j

ε
−→ pi−1

j for p ∈ F. We get S j = {pi
j} or S j = {pi−1

j }. Since

π−1(πi({pi
j})) = {pi−1

j }, π
−1(πi({pi−1

j })) = pi−1
j and there existed pi−1

j
ε
−→δ pi−1

j
in the saturation procedure of the (i − 1)-th iteration of loop1, we obtain that
pi−1

j
ε
−→δ π

−1(πi(S j)) existed in the saturation procedure of the (i−1)-th iteration
of loop1.

• Step. |ω j| ≥ 1. We will prove that there exists R j ⊆ P × {i − 1, i − 2} ∪ {q f } such

that pi−1
j

ω j
−→δ R j existed in the saturation procedure at the (i − 1)-th iteration of

loop1 and πi−1(R j) = π−1(πi(S j)) depending on the case whether the first step of

pi
j

ω j
−→δ S j is the ε-transition pi

j
ε
−→ pi−1

j or not.

∗ The first step is pi
j

ε
−→ pi−1

j . Then we have pi
j

ε
−→ pi−1

j

ω j
−→δ S j in the i-th

iteration of loop1 and p j ∈ F. Since the (i − 1)-th iteration of loop1 has
finished, by line 11, we obtain S j ⊆ P× {i− 1} ∪ {q f }. First we will show that

there exists pi−2
j

ω j
−→δ π

−1(S j) in the (i− 1)-th iteration of loop1 by induction

20

on |ω j| the length of ω j.

· Basis. |ω j| = 1. Then ω j ∈ Γ. Since pi−1
j

ω j
−→δ S j existed in the i-th

iteration of loop1, we get that there exists P2 ⊆ P × {i − 1, i − 2} ∪ {q f }

such that pi−1
j

ω j
−→ P2 is added by the saturation procedure of the

(i − 1)-th iteration of loop1 and Pi−1
2 = S j, by applying the induction

hypothesis (induction on i), we get that pi−2
j

ω j
−→δ π

−1(πi−1(P2)) existed
in the (i − 1)-th iteration of loop1.

· Step. |ω j| ≥ 2. Since S j ⊆ P × {i − 1} ∪ {q f }, there exists
γ′ ∈ Γ, u ∈ Γ∗,R ⊆ P × {i − 1} ∪ {q f } such that ω j = γ′u and

pi−1
j

γ′

−→ R
u
−→δ S j exists in the i-th iteration of loop1.

Since pi−1
j

γ′

−→ R existed in the (i − 1)-th iteration of loop1, there exists

R1 ⊆ P× {i− 1, i− 2} such that R = πi−1(R1) and pi−1
j

γ′

−→ R1 is added by
the saturation procedure of the (i − 1)-th iteration of loop1. By applying

the induction hypothesis (induction on i) to pi−1
j

γ′

−→ R1, we get that

pi−2
j

γ′

−→ π−1(R) existed in the (i − 1)-th iteration of loop1.

Since |u| < |ω j| and R ⊆ P × {i − 1} ∪ {q f }, by applying the induction hy-
pothesis (induction on |ω j|) to each transition rule whose left-hand side
is an element of R and the input is u, we get that π−1(R)

u
−→δ π

−1(S j)
existed in the (i − 1)-th iteration of loop1. Hence we obtain that

pi−2
j

γ′

−→ π−1(R)
u
−→δ π

−1(S j) existed in the (i − 1)-th iteration of loop1.

Since ω j = γ′u, we obtain that pi−2
j

ω j
−→δ π

−1(S j) existed in the (i− 1)-th
iteration of loop1.

Since p j ∈ F and line 4, there existed pi−1
j

ε
−→ pi−2

j

ω j
−→δ R j in the saturation

procedure of the (i − 1)-th iteration of loop1, where R j = π−1(S j).

∗ The first step is not pi
j

ε
−→ pi−1

j . Then there exists γ′ ∈ Γ, u ∈ Γ∗,R =

{gi
1, ..., g

i
n1
, gi−1

n1+1, ..., g
i−1
n2
} ⊆ P × {i, i − 1} ∪ {q f } such that

· ω j = γ′u,

· pi
j

γ′

−→ {gi
1, ..., g

i
n1
, gi−1

n1+1, ..., g
i−1
n2
} existed in the i-th iteration of loop1,

· gi
k

u
−→δ Pk existed in the i-th iteration of loop1 for every 1 ≤ k ≤ n1,

· gi−1
k

u
−→δ Pk existed in the i-th iteration of loop1 for every n1 + 1 ≤ k ≤

n2,
· S j =

⋃n2
k=1 Pk.

21

Since pi
j

γ′

−→ R already existed before the n-th transition rule added, by

applying the induction hypothesis (induction on n) to pi
j

γ′

−→ R, we get

that pi−1
j

γ′

−→ {gi−1
1 , ..., gi−1

n2
} existed in the i-th iteration of loop1. Thus there

exists R1 ⊆ P × {i − 1, i − 2} ∪ {q f } such that πi−1(R1) = {gi−1
1 , ..., gi−1

n2
} and

pi−1
j

γ′

−→ R1 was added by the saturation procedure of the (i − 1)-th iteration
of loop1.

Since gi
k

u
−→δ Pk existed in the i-th iteration of loop1 for every 1 ≤ k ≤ n1

and |u| < |ω j|, by applying the induction hypothesis (induction on |ω j|), we
get that gi−1

k
u
−→δ π

−1(πi(Pk)) existed in the i-th iteration of loop1 for every
1 ≤ k ≤ n1. This implies that there exists Qk ⊆ P × {i − 1, i − 2} ∪ {q f } such
that gi−1

k
u
−→δ Qk was added by the saturation procedure of the (i − 1)-th

iteration of loop1 and πi−1(Qk) = π−1(πi(Pk)) for every 1 ≤ k ≤ n1.

Since gi−1
k

u
−→δ Pk existed in the i-th iteration of loop1 for every

n1 + 1 ≤ k ≤ n2 and gi−1
k

u
−→δ Pk is obtained from the (i − 1)-th iteration

of loop1, there exists Qk ⊆ P × {i − 1, i − 2} ∪ {q f } such that gi−1
k

u
−→δ Qk

was added by the saturation procedure of the (i− 1)-th iteration of loop1 and
πi−1(Qk) = π−1(πi(Pk)) for every n1 + 1 ≤ k ≤ n2. By applying the induction
on the length of u and by the induction hypothesis (induction on i), we can
get that gi−2

k
u
−→δ π

−1(πi−1(Qk)) existed in the (i − 1)-th iteration of loop1 for
every n1 + 1 ≤ k ≤ n2.

Putting pi−1
j

γ′

−→ R1, gi−1
k

u
−→δ Qk and gi−2

k
u
−→δ π

−1(πi−1(Qk)) for every

1 ≤ k ≤ n1, and gi−2
k

u
−→δ π

−1(πi−1(Qk)) for every n1 + 1 ≤ k ≤ n2 together,

we obtain pi−1
j

γ′

−→ R1
u
−→δ existed in the saturation procedure of the

(i − 1)-th iteration of loop1, where R j is computed depending on the states
of R1.

Since ω j = γ′u, we obtain that pi−1
j

ω
−→δ R j existed in the saturation

procedure of the (i − 1)-th iteration of loop1.

By applying the saturation procedure to (2), we get pi−1 γ
−→

⋃m
j=1 R j was added by

the saturation procedure of the (i − 1)-th iteration of loop1. Because of line 11, we
get that pi−1 γ

−→ π−1(πi(S)) existed in the i-th iteration of loop1.

Now we consider that the transition rule is added by line 11. Suppose the transi-
tion rule pi γ

−→ S is substituted by pi γ
−→ R where R = πi(S), since π−1(πi(R)) =

π−1(πi(πi(S))) = π−1(πi(S)) and pi γ
−→ S is added by the saturation procedure, we

still have pi−1 γ
−→ π−1(πi(S)) in the i-th iteration of loop1.

22

�

A.4 Proof of Theorem 2

Theorem 2. Algorithm 1 always terminates and produces YBP.

In order to proof theorem 2, we first prove some auxiliary lemmas.

Lemma 2. In Algorithm 1, for every i ≥ 2, ω ∈ Γ∗, if pi ω
−→δ {qi} ∪ R, or pi ω

−→δ

{qi−1} ∪ R, for some R ⊆ Q and q ∈ P, then there exist 〈p1, ω1〉, ..., 〈pn, ωn〉 ∈ P × Γ∗ s.t.
〈p, ω〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}.

Proof: First, we consider the case ω = ε, then pi ε
−→δ {qi−1}∪R or pi ε

−→δ {qi}∪R. Since
every transition in the form of pi ε

−→ {pi−1} is only added by line 4 for p ∈ F, and there is
a transition pi ε

−→δ {pi} according to the definition of the relation −→δ. Then, necessarily,
q is equal to p and R = ∅. So we have 〈p, ω〉 =⇒BP {〈q, ε〉} according to the definition of
the relation =⇒BP.

Now, we consider ω ∈ Γ+. Let k be the number of transition rules added by Algorithm
1 after i ≥ 2. We can show that k ≥ 1. Since there does not exist any transition rule in the
form of pi γ

−→δ S when k = 0 and i ≥ 2. We proceed by induction on k.

– Basis k = 1: We can show that the first transition rule must be added at the second
step. If it does not, then there does not exist any transition rule in the form of p2 γ

−→ S
and there does not exist any state p ∈ P s.t. p ∈ F (Note that if there exists a state
p ∈ P s.t. p ∈ F, then line 4 will add a transition p2 ε

−→ {p1}). This implies that the
third step will not add any transition rule and the algorithm will terminate at the third
step. The proof depends on the case whether the first transition rule is added by line
4, by the saturation procedure (lines 6-8) or by the substitution (line 11).

• Suppose the first transition rule p2 ε
−→ {p1} is added by line 4. Then the path

pi ω
−→δ {qi} ∪ R exists only if ω = ε, this case has been discussed above.

Let us consider the path pi ω
−→δ {qi−1} ∪ R which can be decomposed

as p2 ε
−→ p1 ω

−→δ {q1} ∪ R. It is sufficient to prove that 〈p, ω〉 =⇒BP

{〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉} for every p1 ω
−→δ {q1} ∪ R. Let m be the number

of transition rules added by the saturation procedure at the first step. Since each
transition rule added by line 4 is in the form of p1 ε

−→ {q f }, then there does not
exist any path in the form of p1 ω

−→δ {q1} ∪ R. We proceed by induction on m to
show that 〈p, ω〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}. We can show that m ≥ 1.
Since there are only transition rules in the form of q f

γ
−→ {q f } when m = 0.

23

∗ Basis m = 1: Let p1 γ
−→ {q1} ∪ R be the first transition rule added by

the saturation procedure at the first step. Then, necessarily, there exists
〈p, γ〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉} according to the definition of the
saturation procedure.

∗ Step m ≥ 2: Let p′1
γ
−→ Q be the mth transition rule added by the saturation

procedure at the first step and used by p1 ω
−→δ {q1} ∪R. Since if the mth tran-

sition is not used by p1 ω
−→δ {q1} ∪ R, then p1 ω

−→δ {q1} ∪ R already existed
before adding the mth transition rule, by applying the induction hypothesis
(induction on m), we obtain that 〈p, ω〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}

for every p1 ω
−→δ {q1} ∪ R. The proof depends on the case whether the tran-

sition rule p′1
γ
−→ Q is in the form of p′1

γ
−→ {q f } or p′1

γ
−→ {q′1} ∪ R1.

First, suppose the transition p′1
γ
−→ Q is in the form of p′1

γ
−→ {q f }. Then,

there exist u, v ∈ Γ∗, γ ∈ Γ,R2,R3,R4 ⊆ Q such that ω = uγv, and
1. p1 u

−→δ {p′1} ∪ R2;
2. R2

γv
−→δ R3;

3. {q1} ∪ R = R3 ∪ {q f };

Since p′1
γ
−→ {q f } and q f

γ′

−→ {q f } for every γ′ ∈ Γ according to the defini-

tion ofA, we obtain that p′1
γv
−→δ {q f }.

Since {q1} ∪ R = R3 ∪ {q f }, q ∈ P and q f < P, we get {q1} ∈ R3. We can

show that there exists a state q′1 ∈ R2 such that q′1
γv
−→δ {q1} ∪ R4 for some

R4 ⊆ R3. By applying the induction hypothesis (induction on m), we get that
〈q′, γv〉 =⇒BP {〈q, ε〉, 〈q1, v1〉, ..., 〈qh, vh〉}.

Since q′1 ∈ R2, by applying the induction hypothesis (induc-
tion on m) to p1 u

−→δ {p′1} ∪ R2, we have 〈p, u〉 =⇒BP
{〈q′, ε〉, 〈q′1, v

′
1〉, ..., 〈q

′
h′ , v

′
h′〉}. Thus, we obtain that 〈p, uγv〉 =⇒BP

{〈q, ε〉, 〈q1, v1〉, ..., 〈qh, vh〉, 〈q′1, u
′
1γv〉, ..., 〈q′h′ , u

′
h′γv〉}.

Now, we consider that the transition p′1
γ
−→ Q is in the form of p′1

γ
−→

{q′1}∪R1. Then, there exist u, v ∈ Γ∗, γ ∈ Γ,R2,R3,R4 ⊆ Q such thatω = uγv,
and
1. p1 u

−→δ {p′1} ∪ R2;
2. R2

γv
−→δ R3;

3. {q′1} ∪ R1
v
−→δ R4;

4. {q1} ∪ R = R3 ∪ R4;

Since {q1} ∪ R = R3 ∪ R4, we get that {q1} ∈ R3 or {q1} ∈ R4. The proof
depends on the case whether {q1} ∈ R3 or {q1} ∈ R4.
· Suppose {q1} ∈ R3, then there exists a state g1 ∈ R2 s.t. g1 γv

−→δ

{q1} ∪ R5 and R5 ⊆ R3. By applying the induction hypothesis (in-
duction on m) to g1 γv

−→δ {q1} ∪ R5, we obtain that 〈g, γv〉 =⇒BP
{〈q, ε〉, 〈g1, v1〉, ..., 〈gh, vh〉}.

24

Since {g1} ∈ R2, by applying the induction hypothesis (induc-
tion on m) to p1 u

−→δ {p′1} ∪ R2, we get that 〈p, u〉 =⇒BP
{〈p′, ε〉, 〈g, ε〉, 〈q1, u1〉, ..., 〈qh′ , uh′〉}.

Since p′1
γ
−→ {q′1} ∪ R1 is added by the saturation procedure at

the first step, then we obtain that 〈p′, γ〉 ↪→ {〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉},

and p′j
ω′j
−→δ S j for every 1 ≤ j ≤ n′ s.t. {q′1} ∪ R1 =

⋃n′
j=1 S j.

Then, necessarily, there exist 1 ≤ j ≤ n′ s.t. {q′1} ∈ S j. W.l.o.g., we

suppose {q′1} ∈ S 1. Let S 1 = {q′1} ∪ S , then p′1
ω′1
−→δ {q′1} ∪ S . By

applying the induction hypothesis (induction on m) to p′1
ω′1
−→δ {q′1} ∪ S

(since it existed before adding the mth transition rule), we get that
〈p′1, ω

′
1〉 =⇒BP {〈q′, ε〉, 〈p′′1 , ω

′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉}. Then, we have

〈p′, γ〉 =⇒BP {〈q′, ε〉, 〈p′′1 , ω
′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉, 〈p

′
2, ω

′
2〉, ..., 〈p

′
n′ , ω

′
n′〉}.

Thus, we obtain that 〈p, uγv〉 =⇒BP
{〈p′, γv〉, 〈q, ε〉, 〈g1, v1〉, ..., 〈gh, vh〉, 〈q1, u1γv〉, ..., 〈qh′ , uh′γv〉}.

· Suppose {q1} ∈ R4, then q′1
v
−→δ {q1} ∪ R5 and R5 ⊆ R4 or there exists

g1 ∈ R1 s.t. g1 v
−→δ {q1} ∪ R5 and R5 ⊆ R4. The proof depends on the

case whether q′1
v
−→δ {q1} ∪ R5 and R5 ⊆ R4 or there exists g1 ∈ R1 s.t.

g1 v
−→δ {q1} ∪ R5 and R5 ⊆ R4.

Case 1: Suppose q′1
v
−→δ {q1} ∪ R5, then by applying the in-

duction hypothesis (induction on m), we obtain that 〈q′, v〉 =⇒BP
{〈q, ε〉, 〈q1, v1〉, ..., 〈qh, vh〉}.

Since p′1
γ
−→ {q′1} ∪ R1 is added by the saturation procedure at

the first step, then we obtain that 〈p′, γ〉 ↪→ {〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉},

and p′j
ω′j
−→δ S j for every 1 ≤ j ≤ n′ s.t. {q′1} ∪ R1 =

⋃n′
j=1 S j.

Then, necessarily, there exist 1 ≤ j ≤ n′ s.t. {q′1} ∈ S j. W.l.o.g., we

suppose {q′1} ∈ S 1. Let S 1 = {q′1} ∪ S , then p′1
ω′1
−→δ {q′1} ∪ S . By

applying the induction hypothesis (induction on m) to p′1
ω′1
−→δ {q′1} ∪ S

(since it existed before adding the mth transition rule), we get that
〈p′1, ω

′
1〉 =⇒BP {〈q′, ε〉, 〈p′′1 , ω

′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉}. Then, we have

〈p′, γ〉 =⇒BP {〈q′, ε〉, 〈p′′1 , ω
′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉, 〈p

′
2, ω

′
2〉, ..., 〈p

′
n′ , ω

′
n′〉}.

Thus, we obtain that 〈p′, γv〉 =⇒BP
{〈q, ε〉, 〈q1, v1〉, ..., 〈qh, vh〉, 〈p′′1 , ω

′′
1 v〉, ..., 〈p′′n′′ , ω

′′
n′′v〉, 〈p

′
2, ω

′
2v〉, ..., 〈p′n′ , ω

′
n′v〉}.

By applying the induction hypothesis (induction on m)
to p1 u

−→δ {p′1} ∪ R2, we get that 〈p, u〉 =⇒BP
{〈p′, ε〉, 〈q1, u1〉, ..., 〈qh′ , uh′〉}. Hence, 〈p, uγv〉 =⇒BP
{〈q, ε〉, 〈q1, v1〉, ..., 〈qh, vh〉, 〈p′′1 , ω

′′
1 v〉, ..., 〈p′′n′′ , ω

′′
n′′v〉, 〈p

′
2, ω

′
2v〉, ...,

〈p′n′ , ω
′
n′v〉, 〈q1, u1γv〉, ..., 〈qh′ , uh′γv〉}.

25

Case 2: Suppose there exists g1 ∈ R1 s.t. g1 v
−→δ {q1} ∪ R5 and R5 ⊆ R4,

then by applying the induction hypothesis (induction on m), we obtain
that 〈g, v〉 =⇒BP {〈q, ε〉, 〈g1, v1〉, ..., 〈gh, vh〉}.

Since p′1
γ
−→ {q′1} ∪ R1 is added by the saturation procedure at

the first step, then we obtain that 〈p′, γ〉 ↪→ {〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉},

and p′j
ω′j
−→δ S j for every 1 ≤ j ≤ n′ s.t. {q′1} ∪ R1 =

⋃n′
j=1 S j.

Then, necessarily, there exist 1 ≤ j ≤ n′ s.t. {g1} ∈ S j. W.l.o.g., we

suppose {g1} ∈ S 1. Let S 1 = {g1} ∪ S , then p′1
ω′1
−→δ {g1} ∪ S . By

applying the induction hypothesis (induction on m) to p′1
ω′1
−→δ {g1} ∪ S

(since it existed before adding the mth transition rule), we get
that 〈p′1, ω

′
1〉 =⇒BP {〈g, ε〉, 〈p′′1 , ω

′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉}. Then, we have

〈p′, γ〉 =⇒BP {〈g, ε〉, 〈p′′1 , ω
′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉, 〈p

′
2, ω

′
2〉, ..., 〈p

′
n′ , ω

′
n′〉}.

Thus, we obtain that 〈p′, γv〉 =⇒BP
{〈q, ε〉, 〈g1, v1〉, ..., 〈gh, vh〉, 〈p′′1 , ω

′′
1 v〉, ..., 〈p′′n′′ , ω

′′
n′′v〉, 〈p

′
2, ω

′
2v〉, ..., 〈p′n′v, ω

′
n′v〉}.

By applying the induction hypothesis (induction on m)
to p1 u

−→δ {p′1} ∪ R2, we get that 〈p, u〉 =⇒BP
{〈p′, ε〉, 〈q1, u1〉, ..., 〈qh′ , uh′〉}. Hence, 〈p, uγv〉 =⇒BP
{〈q, ε〉, 〈g1, v1〉, ..., 〈gh, vh〉, 〈p′′1 , ω

′′
1 v〉, ..., 〈p′′n′′ , ω

′′
n′′v〉, 〈p

′
2, ω

′
2v〉, ...,

〈p′n′ , ω
′
n′v〉, 〈q1, u1γv〉, ..., 〈qh′ , uh′γv〉}.

• Suppose the first transition rule p′2
γ
−→ R′ is added by the saturation procedure.

Then we get that there does not exist any transition rule added by line 4 at the
second step, which implies that there only exist p2 ε

−→δ {p2} according to the
definition of the relation −→δ. Then there does not exist a path in the form of
p2 ω
−→δ {q1} ∪ R.

Since p′2
γ
−→ R′ is added by the saturation procedure, then we obtain that

〈p′, γ〉 ↪→ {〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉}, and p′j

ω′j
−→δ S j for every 1 ≤ j ≤ n′

s.t. R =
⋃n′

j=1 S j. Then, necessarily, ω′j = ε and S j = {p′j} for every 1 ≤
j ≤ n′. Hence 〈p′, γ〉 ↪→ {〈p′1, ε〉, ..., 〈p

′
n′ , ε〉}, which implies that 〈p, ω〉 ↪→

{〈q, ε〉, 〈p1, ε〉, ..., 〈pn, ε〉} for every p2 ω
−→δ {q2} ∪ R.

• The first transition rule is added by the substitution (line 11). This case is not pos-
sible. Indeed, since the substitution can be fired iff there are some transition rules
in the form of p′2

γ
−→ R′ which should be added by the saturation procedure.

Since there does not exist any transition rule added by the saturation procedure.
Thus, the substitution will not add any transition rule.

– Step k ≥ 2: Let i be the step when the kth transition rule is added. We note that the kth

transition can be added by (1) the line 4, (2) the saturation procedure (lines 6-8) and
(3) the substitution (line 11). We show that 〈p, ω〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}

by depending on the case whether the kth transition is added by line 4, the saturation
procedure or the substitution.

26

• Case (1): Suppose the kth transition rule pi ε
−→ pi−1 is added by line 4. Then

there does not exist any path in the form of pi ω
−→δ {qi} ∪ R (Indeed there does

not exist any transition rule in the form of pi γ
−→ {qi} ∪ R), and every path in the

form of pi ω
−→δ {qi} ∪ R can be decomposed as pi ε

−→ pi−1 ω
−→δ {qi−1} ∪ R. By

applying the induction hypothesis (induction on k) to pi−1 ω
−→δ {qi−1} ∪ R, we

obtain 〈p, ω〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}.

• Case (2): Suppose the kth transition rule t = p′i
γ
−→ S for some S ⊆ Q is added

by the saturation procedure. W.l.o.g., we suppose that this transition rule is used
by pi ω

−→δ {qi} ∪ R or pi ω
−→δ {qi−1} ∪ R. Indeed, if the transition t is not used,

we can apply the induction hypothesis (induction on k) to obtain 〈p, ω〉 =⇒BP
{〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}. Then there exist u, v ∈ Γ∗,R1,R2,R3 ⊆ Q such that
ω = uγv, and

1. pi u
−→δ {p′i} ∪ R1;

2. R1
γv
−→δ R2;

3. S
v
−→δ R3;

4. {qi} ∪ R = R2 ∪ R3 for pi ω
−→δ {qi} ∪ R,

5. {qi−1} ∪ R = R2 ∪ R3 for pi ω
−→δ {qi−1} ∪ R;

Let α ∈ {i, i−1}, since {qα}∪R = R2∪R3, then we get that {qα} ∈ R2 or {qα} ∈ R3.
The proof depends on the case whether {qα} ∈ R2 or {qα} ∈ R3.

∗ Suppose {qα} ∈ R2, then there exists a state gβ ∈ R1 such that gβ
γv
−→δ {qα}∪R4

and R4 ⊆ R2 where β ∈ {i, i − 1}. Note that if α = i, then β must be i. Since

there does not exist any transition rule in the form of p′i−1 γ′

−→ {q′i} ∪ Q.

By applying the induction hypothesis (induction on k) to gβ
γv
−→δ {qα} ∪ R4,

we obtain that 〈g, γv〉 =⇒BP {〈q, ε〉, 〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉}. Since gβ ∈ R1,

by applying the induction hypothesis (induction on k) to pi u
−→δ {p′i} ∪

R1, we obtain 〈p, u〉 =⇒BP {〈g, ε〉, 〈p′′1 , ω
′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉}. Thus we have

〈p, uγv〉 =⇒BP {〈q, ε〉, 〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉, 〈p

′′
1 , ω

′′
1 γv〉, ..., 〈p′′n′′ , ω

′′
n′′γv〉}.

∗ Suppose {qα} ∈ R3, then there exists a state gβ ∈ S such that gβ
v
−→δ {qα}∪R4

and R4 ⊆ R3 where β ∈ {i, i − 1}. Note that if α = i, then β must be i. Since

there does not exist any transition rule in the form of p′i−1 γ′

−→ {q′i} ∪ Q.

By applying the induction hypothesis (induction on k) to gβ
v
−→δ {qα} ∪ R4,

we obtain that 〈g, v〉 =⇒BP {〈q, ε〉, 〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉}.

By applying the induction hypothesis (induction on k) to pi u
−→δ {p′i} ∪ R1,

we obtain 〈p, u〉 =⇒BP {〈p′, ε〉, 〈p′′1 , ω
′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉}.

Since the transition rule p′i
γ
−→ S is added by the saturation procedure,

then there exists 〈p′, γ〉 ↪→ {〈q1, u1〉, ..., 〈qh, uh〉} s.t. qi
j

u j
−→δ S j for every

1 ≤ j ≤ h and S =
⋃h

j=1 S j. Since gβ ∈ S , then there exists 1 ≤ j ≤ h s.t.

27

gβ ∈ S j. W.l.o.g., we suppose gβ ∈ S 1. Let S 1 = {gα} ∪ S ′ for some S ′ ⊆ Q.
By applying the induction hypothesis (induction on k) to qi

1
u1
−→δ {gα} ∪ S ′,

we obtain that 〈q1, u1〉 =⇒BP {〈g, ε〉, 〈q′1, u
′
1〉, ..., 〈q

′
h′ , u

′
h′〉}. Thus we have

〈p′, γ〉 =⇒BP {〈g, ε〉, 〈q′1, u
′
1〉, ..., 〈q

′
h′ , u

′
h′〉, 〈q2, u2〉, ..., 〈qh, uh〉}.

Hence, we obtain that 〈p, uγv〉 =⇒BP
{〈q, ε〉, 〈p′1, ω

′
1〉, ..., 〈p

′
n′ , ω

′
n′〉, 〈q

′
1, u
′
1v〉, ..., 〈q′h′ , u

′
h′v〉, 〈q2, u2v〉, ..., 〈qh, uhv〉,

〈p′′1 , ω
′′
1 γv〉, ..., 〈p′′n′′ , ω

′′
n′′γv〉}.

• Case (3): Suppose the kth transition rule p′i
γ
−→ πi(S) is added by the substitution

because there exists a transition rule p′i
γ
−→ S . Let α ∈ {i, i − 1}. We proceed by

induction on the length of ω.
∗ Basis |ω| = 0: then the path pi ω

−→δ {qα} ∪ R does not use the transition
rule p′i

γ
−→ πi(S). By applying the induction hypothesis (induction on k), we

have 〈p, ω〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}.

∗ Step |ω| ≥ 1: suppose the path pi ω
−→δ {qα} ∪ R uses the transition rule

p′i
γ
−→ πi(S). Indeed if it does not, then by applying the induction hypothesis

(induction on k), we have 〈p, ω〉 =⇒BP {〈q, ε〉, 〈p1, ω1〉, ..., 〈pn, ωn〉}.

Since p′i
γ
−→ πi(S) is used by the path pi ω

−→δ {qα} ∪ R, then there exist
u, v ∈ Γ∗,R1,R2,R3 ⊆ Q such that ω = uγv, and
· pi u
−→δ {p′i} ∪ R1;

· R1
γv
−→δ R2;

· πi(S)
v
−→δ R3;

· {qα} ∪ R = R2 ∪ R3.
Since {qα} ∪ R = R2 ∪ R3, then {qα} ∈ R2 or {qα} ∈ R3. The proof depends on
the case whether {qα} ∈ R2 or {qα} ∈ R3.
· Suppose {qα} ∈ R2, then these exists a state gβ ∈ R1 such that

gβ
γv
−→δ {qα} ∪ R4 for some R4 ⊆ R2 and β ∈ {i, i − 1}. By apply-

ing the induction hypothesis to gβ
γv
−→δ {qα} ∪ R4, we obtain that

〈g, γv〉 =⇒BP {〈q, ε〉, 〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉}. By applying the induc-

tion hypothesis to pi u
−→δ {p′i} ∪ R1, we obtain that 〈p, u〉 =⇒BP

{〈g, ε〉, 〈p′′1 , ω
′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉}. Thus, we have 〈p, uγv〉 =⇒BP

{〈q, ε〉, 〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉, 〈p

′′
1 , ω

′′
1 γv〉, ..., 〈p′′n′′ , ω

′′
n′′γv〉}.

· Suppose {qα} ∈ R3, then there exists a state gi ∈ πi(S) such that
gi v
−→δ {qα} ∪ R4 for some R4 ⊆ R3. By applying the induc-

tion hypothesis to gi v
−→δ {qα} ∪ R4, we obtain that 〈g, v〉 =⇒BP

{〈q, ε〉, 〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉}.

By applying the induction hypothesis to pi u
−→δ {p′i} ∪ R1, we obtain

that 〈p, u〉 =⇒BP {〈p′, ε〉, 〈p′′1 , ω
′′
1 〉, ..., 〈p

′′
n′′ , ω

′′
n′′〉}.

Since p′i
γ
−→ πi(S) is added because the transition p′i

γ
−→ S already

exist at the saturation procedure. Since gi ∈ πi(S), according to the defi-
nition of the projection function πi, we obtain that there exists β ∈ {i, i−1}

28

such that gβ ∈ S . By applying the induction hypothesis (induction on k)
to p′i

γ
−→ S , we obtain that 〈p′, γ〉 =⇒BP {〈g, ε〉, 〈q1, u1〉, ..., 〈qh, uh〉}.

Thus, we have 〈p, uγv〉 =⇒BP {〈q, ε〉, 〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉, 〈q1, u1v〉, ...,

〈qh, vhv〉, 〈p′′1 , ω
′′
1 γv〉, ..., 〈p′′n′′ , ω

′′
n′′γv〉}

�

Lemma 3. Let n be the first number in Algorithm 1 such that for every p ∈ P, γ ∈ Γ, S ⊆
P × {n + 1} ∪ {q f }, pn+1 γ

−→ S ∈ δ ⇐⇒ pn γ
−→ π−1(S) ∈ δ. If we remove the termination

condition of loop1, then for every i ≥ n, L(Ai+1) = L(An).

Proof: Since line 11 of Algorithm 1 will replace pi+1 γ
−→ S by pi+1 γ

−→ πi+1(S), then
each path pi+1 ω

−→δ {q f } only uses states of P × {i + 1} ∪ {q f }. In order to prove L(Ai+1) =

L(An), for every i ≥ n, it is sufficient to prove that for every p ∈ P, γ ∈ Γ, pi+1 γ
−→

{qi+1
1 , ..., qi+1

m } ∈ δ⇐⇒ pn γ
−→ {qn

1, ..., q
n
m} ∈ δ by applying induction on i.

– Basis. i = n. We get directly from the condition of n that

pn+1 γ
−→ {qn+1

1 , ..., qn+1
m } ∈ δ⇐⇒ pn γ

−→ {qn
1, ..., q

n
m} ∈ δ (0)

– Step. i > n. Since the transition rule
pi+1 γ
−→ {qi+1

1 , ..., qi+1
m } is added based on ∆ and Ai, for every p ∈ P, γ ∈ Γ. (1)

pn+1 γ
−→ {qn+1

1 , ..., qn+1
m } is added based on ∆ and An, for every p ∈ P, γ ∈ Γ (2)

By applying the induction hypothesis (induction on i): we have
for every p ∈ P, γ ∈ Γ, pi γ

−→ {qi
1, ..., q

i
m} ∈ δ⇐⇒ pn γ

−→ {qn
1, ..., q

n
m} ∈ δ (3)

From (1), (2) and (3), we obtain:

pi+1 γ
−→ {qi+1

1 , ..., qi+1
m } ∈ δ⇐⇒ pn+1 γ

−→ {qn+1
1 , ..., qn+1

m } ∈ δ

From (0), we get pi+1 γ
−→ {qi+1

1 , ..., qi+1
m } ∈ δ⇐⇒ pn γ

−→ {qn
1, ..., q

n
m} ∈ δ.

�

Proof of Theorem 2:
Proof: we prove termination and correctness.
Termination: There are two loops in Algorithm 1, we need to prove that both loops
terminate.

Loop2 : Suppose loop2 is in the i-th iteration of loop1. Due to the line 11, there is no
S * P × {i − 1} ∪ {q f } such that pi−1 γ

−→ S ∈ δ.
Since the addition of the ε-transition does not introduce any new state into A, then

the number of states of A is finite. This implies that there is a finite number of transition
rules from the initial states P × {i} inA. Hence loop2 will always terminate.

29

Loop1: Now we consider the termination of loop1. As discussed above, the number
of transition rules in A is bounded. By Proposition 2, the number of transition rules in
the (i + 1)-th iteration is smaller than in the i-th iteration where i ≥ 1. Thus Algorithm 1
will always terminate.

Correctness: Let Ai denote the AMA A in the i-th iteration of loop1, let L(Ai) represent
the configurations recognized by Ai from the initial states P × {i}. Let n be the fixpoint of
Algorithm 1 such that for every p ∈ P, γ ∈ Γ, S ⊆ P × {n + 1} ∪ {q f }, pn+1 γ

−→ S ∈ δ⇐⇒

pn γ
−→ π−1(S) ∈ δ. Then L(An) = L(An+1). We will prove L(An) = YBP.
Suppose Algorithm 1 removed the termination condition of loop1, then there is an

infinite sequence of AMA Ai for every i ≥ 0. By the Lemma 3, we have
L(Ai) = L(Ai−1) =, ...,= L(An) ⊆ L(An−1) ⊆, ...,⊆ L(A1) (1).

(⊆) We prove L(An) ⊆ YBP. From (1), the definition of YBP =
⋂

i≥0 Xi and the definition
of Xi+1 = Pre+(Xi ∩ F × Γ∗): it is sufficient to that prove L(Ai) ⊆ Xi for every i ≥ 1. We
proceed by induction on i.

– Basis. i = 1. We will show that L(A1) ⊆ X1. Since X1 = Pre+(X0 ∩ F × Γ∗) =

Pre+(F × Γ∗), by the initialization of Algorithm 1: L(A0) = P × Γ∗, then we get that
X1 = Pre+(L(A0)) (2)

From the algorithm 1, A1 is constructed based on A0, after the saturation procedure
(lines 5-9), we have Pre∗(L(A0)).

By line 10, the ε-transition rules are removed, we get Pre+(L(A0)).

By the definition of function πi: line 11 of Algorithm 1 will not change any transition
rule at the end of the first iteration of loop1. Hence we have L(A1) = X1 (3)

We get L(A1) ⊆ X1.
– Step. i ≥ 2. We will show that L(Ai) ⊆ Xi. By applying the induction hypothesis

(induction on i): we get L(Ai−1) ⊆ Xi−1. By the definition of Xi = Pre+(Xi−1∩F×Γ∗),
we obtain

Pre+(L(Ai−1) ∩ F × Γ∗) ⊆ Xi (4)

Before line 11 of the algorithm: we have Pre+(L(Ai−1) ∩ F × Γ∗). By Proposition 2,
the line 11 can only reduce the language of Ai, we obtain

L(Ai) ⊆ Pre+(L(Ai−1) ∩ F × Γ∗). (5)

From (4) and (5): we get L(Ai) ⊆ Xi.

(⊇) We show YBP ⊆ L(An). From (1), it is sufficient to prove that YBP ⊆ L(Ai) for every
i ≥ 1. We proceed by induction on i.

30

– Basis. i = 1. We show that YBP ⊆ L(A1). By the definition of YBP =
⋂

i≥0 Xi and the
definition of Xi+1 = Pre+(Xi ∩ F × Γ∗), we get YBP ⊆ X1. (6)

From (3) and (6): we obtain that YBP ⊆ L(A1).
– Step. i ≥ 2. Since YBP = Pre+(YBP ∩ F × Γ∗) and by the induction hypothesis

YBP ⊆ L(Ai−1), we get YBP ⊆ Pre+(L(Ai−1) ∩ F × Γ∗). (7)

From the Algorithm 1, Pre+(L(Ai−1) ∩ F × Γ∗) represents the configura-
tions accepted by A after line 10. We will prove that for every configuration
〈p, ω〉 ∈ Pre+(L(Ai−1) ∩ F × Γ∗), if 〈p, ω〉 < L(Ai), then 〈p, ω〉 < YBP, which implies
that the configurations removed by line 11 are not in YBP. We proceed by induction
on |ω| the length of ω. Note that in this case |ω| ≥ 2, because transition rules in the
form of pi ε

−→δ q f do not exist after line 10 and line 11 does not change transition

rules of the form pi γ
−→δ q f .

• Basis. |ω| = 2. There exist γ1, γ2 ∈ Γ such that ω = γ1γ2. Since
〈p, ω〉 ∈ Pre+(L(Ai−1) ∩ F × Γ∗), we have r = pi γ1

−→ R
γ1
−→ q f after line

10.

Since 〈p, ω〉 < L(Ai), then there exists a state qi−1 in R such that qi γ2
−→ q f is not

in Ai. Since line 11 does not change transition rules of the form qi γ2
−→ q f , we get

that 〈q, γ2〉 < Pre+(L(Ai−1) ∩ F × Γ∗). From (7), we obtain that 〈q, γ2〉 < YBP.

By Lemma 2, we obtain that 〈p, γ1〉 =⇒BP {〈p1, ω1〉, ..., 〈pn, ωn〉, 〈q, ε〉}. Then we
have 〈p, γ1γ2〉 =⇒BP {〈p1, ω1γ2〉, ..., 〈pn, ωnγ2〉, 〈q, γ2〉} such that 〈q, γ2〉 < YBP.

Since YBP = Pre+(YBP ∩ F × Γ∗), suppose there exists a path
t = 〈p, ω〉 =⇒BP {〈q1, u1〉, ..., 〈qm, um〉} such that 〈p, ω〉 ∈ YBP and for
each 1 ≤ j ≤ m, 〈q j, u j〉 ∈ YBP.

By the definition of the saturation procedure there exists a corresponding path r′

in the form of pi ω
−→ q f in Ai after line 10.

We apply the same reasoning to path r′, we obtain that there exists necessarily
an index j s.t. 1 ≤ j ≤ m and 〈q j, u j〉 < YBP. This implies that for every run
of the form 〈p, ω〉 =⇒BP {〈q1, u1〉, ..., 〈qm, um〉}, there exists 1 ≤ j ≤ m s.t.
〈q j, u j〉 < YBP. Since YBP = Pre+(YBP ∩ F × Γ∗), we get 〈p, ω〉 < YBP.

• Step. |ω| ≥ 3. Then pi ω
−→δ q f ; existed after line 10. Since 〈p, ω〉 < L(Ai) and

there does not exist any transition in the form of pi ε
−→δ {pi−1} for every p ∈ P

after line 10, there exist u, v ∈ Γ∗, γ ∈ Γ, R1,R2 ⊆ Q such that ω = uγv, and
1. pi u

−→δ {p′i} ∪ R1;
2. p′i

γ
−→ {qi−1} ∪ R2

v
−→δ q f ;

3. R1
γv
−→δ q f ;

31

4. qi u
−→δ q f is not in Ai;

Item 4 implies that 〈q, u〉 < L(Ai). Let’s first show that 〈q, u〉 < YBP.

∗ If qi u
−→δ q f exists after line 10, then we get 〈q, u〉 ∈ Pre+(L(Ai) ∩ F × Γ∗),

by applying the induction hypothesis to 〈q, u〉, we get 〈q, u〉 < YBP.

∗ If qi u
−→δ q f does not exist after line 10, then 〈q, u〉 < Pre+(L(Ai) ∩ F × Γ∗).

Since YBP ⊆ Pre+(L(Ai) ∩ F × Γ∗), we obtain that 〈q, u〉 < YBP.

Since qi u
−→δ q f does not exist after the line 11, we get q , q f .

By applying Lemma 2 to Item (1) and p′i
γ
−→ qi−1 ∪ R2,

we obtain that 〈p, u〉 =⇒BP {〈p′1, ω
′
1〉, ..., 〈p

′
n′ , ω

′
n′〉, 〈p

′, ε〉} and
〈p′, γ〉 =⇒BP {〈p1, ω1〉, ..., 〈pn, ωn〉, 〈q, ε〉}. Then we have 〈p, ω〉 =⇒BP
{〈p1, ω1v〉, ..., 〈pn, ωnv〉, 〈p′1, ω

′
1γv〉, ..., 〈p′n′ , ω

′
n′γv〉, 〈q, v〉} such that 〈q, v〉 < YBP.

Since YBP = Pre+(YBP ∩ F × Γ∗), suppose there exist a path
t = 〈p, ω〉 =⇒BP {〈q1, u1〉, ..., 〈qm, um〉} such that 〈p, ω〉 ∈ YBP and for ev-
ery 1 ≤ j ≤ m : 〈q j, u j〉 ∈ YBP.

By the definition of the saturation procedure there exists a corresponding path r′

in the form of pi ω
−→ q f in Ai after line 10. We apply the same reasoning to path r′,

we obtain that there exists necessarily an index j s.t. 1 ≤ j ≤ m and 〈q j, u j〉 < YBP.
This implies that for every run of the form 〈p, ω〉 =⇒BP {〈q1, u1〉, ..., 〈qm, um〉},
there exists 1 ≤ j ≤ m s.t. 〈q j, u j〉 < YBP. Since YBP = Pre+(YBP ∩ F × Γ∗), we
get 〈p, ω〉 < YBP.

�

A.5 Proof of Theorem 3

Theorem 3. Given an ABPDS BP = (P, Γ, ∆, F), we can effectively compute an AMA A
with O(|P|) states and O(|P| · |Γ| · 2|P|) transition rules that recognizes L(BP). This AMA
can be computed in time O(|P|2 · |∆| · |Γ| · 25|P|).

Proof: The correctness follows from Theorem 1 and Theorem 2.

Complexity: D. Suwimonteerabuth et al implemented an efficient algorithm computing
Pre∗ of a given AMA A for alternating pushdown systems in O(n · |∆| · 22n) time [SSE06],
where n is the number of states of A. We integrated this efficient algorithm into our satu-
ration procedure (loop2). First, let’s consider the number of states n in our algorithm.

Thanks to the line 11 of Algorithm 1, we only need to keep P × {i, i − 1} states in the
i-th iteration of loop1. Thus the state space of loop2 is at most 2|P| + 1 which implies that
n is equal to 2|P| + 1.

In line 4 and line 10, adding or removing ε-transition rule is executed |F| times.

32

Since the number of transition rules ofA is at most |Γ| · |P| · 22|P|+1 after line 10 and at
most |Γ| · |P| · 2|P|+1 after line 11. The number of times of substitution (line 11) is at most
|Γ| · |P| · 22|P|+1. The termination condition can be done in time |Γ| · |P| · 2|P|+1. At each
iteration of loop1, the number of transition rules of A will be smaller and smaller until
reaching a fixpoint. The number of times that loop1 is executed is at most |P| · |Γ| · 2|P|+1.

The global complexity of Algorithm 1 is O(((2|P| + 1) · |∆| · 24|P|+2 + |Γ| · |P| · 2|P|+1 +

|Γ| · |P| · 22|P|+1) · |P| · |Γ| · 2|P|+1) simplified to O(|P|2 · |∆| · |Γ| · 25|P|). �

A.6 Proof of Theorem 4

Theorem 4. Let P = (P, Γ, ∆,]) be a PDS, f : AP −→ 2P a labelling function, ϕ a CTL
formula, and 〈p, ω〉 a configuration of P. (P, 〈p, ω〉) |=λ f ϕ iff BPϕ has an accepting run
from the configuration 〈[p, ϕ], ω〉.

Proof: Theorem 4 is a special case of Theorem 5. We refer the reader to the proof of
Theorem 5. �

A.7 Proof of Theorem 5

Let us start by introducing the reachability relation of a PDS. Given a PDSP = (P, Γ, ∆,]),
the reachability relation =⇒P⊆ (P × Γ∗) × (P × Γ∗) is the reflexive and transitive closure
of the immediate successor relation. Formally =⇒P is defined as follows: (1) c =⇒P c for
every c ∈ P × Γ∗, (2) if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉 =⇒P 〈q, ωω′〉 for every ω′ ∈ Γ∗,
(3) if c =⇒P c′′ and c′′ =⇒P c′, then c =⇒P c′.

Theorem 5. (P, 〈p, ω〉) |=λ ϕ iff BP′ϕ has an accepting run from the configuration
〈[p, ϕ], ω〉.

Proof: (=⇒) Let (P, 〈p, ω〉) |=λ ψ, we show that BP′ψ has an accepting run from the
configuration 〈[p, ψ], ω〉 by induction on the structure of ψ.

Case ψ = a: Since (P, 〈p, ω〉) |=λ ψ, then 〈p, ω〉 ∈ λ(a). By the definition of Ma, Ma has
an accepting run from the initial state, pa

ω
−→δ f where f ∈ Fa.

We will prove that BP′ψ has an accepting run from 〈pa, ω〉 by induction on m the
length of ω which should be greater than 0.

– Basis. m = 1 (Note that] will never be popped). Then pa
]
−→δ f . We get

〈pa,]〉 =⇒BP′ψ 〈 f ,]〉 =⇒BP′ψ 〈 f ,]〉.

Since f is an accepting control location, BP′ψ has an accepting run from 〈pa,]〉. In
this special case, we have pa = f .

– Step. m ≥ 2. Then there exists γ ∈ Γ, u ∈ Γ∗, q ∈ Qa such that ω = γu and

33

pa
γ
−→ q

u
−→δ f in Ma.

By applying the induction hypothesis (induction on m) to q
u
−→δ f , BP′ψ has an

accepting run from 〈q, u〉. Since 〈pa, γu〉 =⇒BP′ψ 〈q, u〉, BP
′
ψ has an accepting from

〈pa, ω〉.

Since 〈[p, a], ω〉 =⇒BP′ψ 〈pa, ω〉, we get that BP′ψ has an accepting from 〈[p, a], ω〉.

Case ψ = ¬a: Since (P, 〈p, ω〉) |=λ ψ, then 〈p, ω〉 < λ(a). By the definition of M¬a, M¬a

has an accepting path p¬a
ω
−→δ f where f ∈ F¬a.

We will prove that BP′ψ has an accepting run from 〈[p, p¬a], ω〉 by induction on m the
length of ω.

– Basis. m = 1. then p¬a
]
−→δ f . Since we have 〈[p, p¬a],]〉 =⇒BP′ψ 〈 f ,]〉 =⇒BP′ψ

〈 f ,]〉, BP′ψ has an accepting run from 〈 f ,]〉.

– Step. m ≥ 2. Then there exists γ ∈ Γ, u ∈ Γ∗, q ∈ Q¬a such that ω = γu and

pq
γ
−→ q

u
−→δ f in M¬a.

By the induction hypothesis (induction on m), BP′ψ has an accepting from 〈q, u〉.
Since 〈p¬a, ω〉 =⇒BP′ψ 〈q, u〉, BP

′
ψ has an accepting run from 〈p¬a, ω〉.

Since 〈[p, ψ], ω〉 =⇒BP′ψ 〈p¬a, ω〉, BP′ψ has an accepting run from 〈[p, ψ], ω〉.

Case ψ = ψ1∧ψ2: Since (P, 〈p, ω〉) |=λ ψ, we get (P, 〈p, ω〉) |=λ ψ1 and (P, 〈p, ω〉) |=λ ψ2.
By applying the induction hypothesis: BP′ψ has an accepting run from the configura-

tion 〈[p, ψ1], ω〉, and BP′ψ has an accepting run from the configuration 〈[p, ψ2], ω〉.
Since 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∧ 〈[p, ψ2], γ〉, we get 〈[p, ψ], ω〉 =⇒BP′ψ 〈[p, ψ1], ω〉 ∧

〈[p, ψ2], ω〉.
So BP′ψ has an accepting run from the configuration 〈[p, ψ], ω〉.

Case ψ = ψ1 ∨ ψ2: Since (P, 〈p, ω〉) |=λ ψ, we get (P, 〈p, ω〉) |=λ ψ1 or (P, 〈p, ω〉) |=λ ψ2.
By applying the induction hypothesis: BP′ψ has an accepting run from the configura-

tion 〈[p, ψ1], ω〉 or BP′ψ has an accepting run from the configuration 〈[p, ψ2], ω〉.
Since 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∨ 〈[p, ψ2], γ〉, we get 〈[p, ψ], ω〉 =⇒BP′ψ 〈[p, ψ1], ω〉 ∨

〈[p, ψ2], ω〉.
So BP′ψ has an accepting run from the configuration 〈[p, ψ], ω〉.

Case ψ = EXψ1: Since (P, 〈p, ω〉) |=λ ψ, then there exists an immediate successor 〈p′, ω′〉
of 〈p, ω〉, such that (P, 〈p′, ω′〉) |=λ ψ1. By applying the induction hypothesis: BP′ψ has
an accepting run from the configuration 〈[p′, ψ1], ω′〉.

Since 〈[p, ψ], γ〉 ↪→
∨
〈p,r)↪→〈p,ω〉〈[p′, ψ1], ω〉, we have 〈[p, ψ], ω〉 =⇒BP′ψ

〈[p′, ψ1], ω′〉. Hence BP′ψ has an accepting run from the configuration 〈[p, ψ], ω〉.

34

Case ψ = AXψ1 is similar to ψ = EXψ1.

Case ψ = E[ψ1Uψ2]: Since (P, 〈p, ω〉) |=λ E[ψ1Uψ2], then there exists a path 〈p0, ω0〉,
〈p1, ω1〉, 〈p2, ω2〉... from 〈p, ω〉 such that there exists i ≥ 0, (P, 〈pi, ωi〉) |=λ ψ2 and for
every 0 ≤ j < i, (P, 〈p j, ω j〉) |=λ ψ1. Since (P, 〈pi, ωi〉) |=λ ψ2 and (P, 〈p j, ω j〉) |=λ ψ1,
for every 0 ≤ j < i. By the induction hypothesis, we have BP′ψ has an accepting run from
〈[pi, ψ2], ωi〉 and

For all 0 ≤ j < i, BP′ψ is an accepting run from the configuration 〈[p j, ψ1], ω j〉.

Since 〈[pi, ψ], γ〉 ↪→ 〈[pi, ψ2], γ〉 ∨
∨
〈pi,r〉↪→〈p′,ω〉(〈[pi, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉), we get

〈[pi, ψ], ωi〉 =⇒BP′ψ 〈[pi, ψ2], ωi〉, so BP′ψ has an accepting run from 〈[pi, ψ], ωi〉.

If i = 0, then 〈[p, ψ], ω〉 = 〈[pi, ψ], ωi〉, BP′ψ has an accepting run from 〈[p, ψ], ω〉.
Otherwise i > 0, we show that BP′ψ has an accepting run from 〈[p j, ψ], ω j〉 by induc-

tion on l = i − j. (Notes that 〈[p0, ψ], ω0〉 = 〈[p, ψ], ω〉.)

– Basis. l = 1. 〈pi, ωi〉 is an immediate successor of 〈p j, ω j〉. Since
〈[p j, ψ], ω j〉 =⇒BP′ψ 〈[p j, ψ1], ω j〉 ∧ 〈[pi, ψ], ωi〉, BP′ψ has an accepting run
from 〈[p j, ψ], ω j〉.

– Step. l > 1. then there exists 〈p j+1, ω j+1〉, such that 〈p j, ω j〉 =⇒P 〈p j+1, ω j+1〉 =⇒P
〈pi, ωi〉. By the induction hypothesis (induction on l), we obtain BP′ψ has an
accepting run from 〈[p j+1, ψ], ω j+1〉.

Since (P, 〈p j, ω j〉) |=λ ψ1, by induction hypothesis (induction on the structure of ψ):
BP′ψ has an accepting run from 〈[p j, ψ1], ω j〉.

Since 〈[p j, ψ], ω j〉 =⇒BP′ψ 〈[p j, ψ1], ω j〉 ∧ 〈[p j+1, ψ], ω j+1〉, BP′ψ has an accepting
run from 〈[p, ψ], ω〉.

Case ψ = A[ψ1Uψ2] is similar to ψ = E[ψ1Uψ2].

Case ψ = E[ψ1Ũψ2]: Since (P, 〈p, ω〉) |=λ E[ψ1Ũψ2], according to the semantic of CTL,
P has a path 〈p0, ω0〉, 〈p1ω1〉, 〈p2, ω2〉... from 〈p, ω〉 such that

1. for every i ≥ 0, (P, 〈pi, ωi〉) |=λ ψ2,
2. or there exists i ≥ 0 such that (P, 〈pi, ωi〉) |=λ ψ1 and for every 0 ≤ j ≤

i, (P, 〈pi, ωi〉) |=λ ψ2

First consider Item 2, it can be proved that BP′ψ has an accepting run from 〈[p, ψ], ω〉
by applying the induction on i − j as in the case of ψ = E[ψ1Uψ2].

Let’s consider the Item 1), we will show that BP′ψ has an accepting run
from 〈[p, ψ], ω〉. According to the semantic of CTL, P has an infinite path r =

35

〈p0, ω0〉, 〈p1ω1〉, 〈p2, ω2〉, ..., 〈pi, ωi〉, ... such that 〈pi, ωi〉 |=λ ψ2. Since the number of con-
trol locations and stack alphabet of P is finite and the path r is infinite, there exists a con-
figuration 〈pm, γu〉 such that ωm = γu, 〈p0, ω0〉 =⇒P 〈pm, γu〉 and 〈pm, γ〉 =⇒P 〈pm, γv〉
from the proposition 3.1 of [BEM97]. This implies that 〈pm, γu〉 =⇒P 〈pm, γvu〉. Let
〈pn, ωn〉 be the first configuration such that 〈pn, ωn〉 = 〈pm, γvu〉.

Since we have

〈[pk, ψ], ωk〉 =⇒BP′ψ 〈[pk, ψ2], ωk〉 ∧ 〈[pk+1, ψ], ωk+1〉, for every k ≥ 0

each configuration 〈pk, ωk〉 in 〈pm, γu〉 =⇒P 〈pm, γvu〉 has 〈[pk, ψ], ωk〉 =⇒BP′ψ
〈[pk, ψ2], ωk〉 ∧ 〈[pk+1, ψ], ωk+1〉. According to the definition of the reachability relation
=⇒BP′ψ , we obtain that

〈[pm, ψ], γu〉 =⇒BP′ψ
∧n−m

j=0 〈[pm+ j, ψ2], ωm+ j〉 ∧ 〈[pm, ψ], γvu〉

Since (P, 〈pi, ωi〉) |=λ ψ2 for all i ≥ 0, by the induction hypothesis, BP′ψ has an
accepting run from 〈[pi, ψ2], ωi〉.

Since for each i ≥ 0 [pi, ψ] is an accepting control location, then BP′ψ has a run from
〈[p, ψ], ω〉 such that each path will infinitely often visit some configurations 〈[pi, ψ], ωi〉

with control location [pi, ψ] ∈ F. Thus BP′ψ has an accepting run from 〈[p, ψ], ω〉.

Case ψ = A[ψ1Ũψ2]: it can be proved as for ψ = E[ψ1Ũψ2].

(⇐=)BP′ψ has an accepting run from the configuration 〈[p, ψ], ω〉, we show that
(P, 〈p, ω〉) |=λ ψ by induction on the structure of ψ.

Case ψ = a: We have 〈[p, ψ], γ〉 ↪→ 〈pa, γ〉 for every γ ∈ Γ, 〈q1, γ〉 ↪→ 〈q2, ε〉

for every q1
γ
−→δ q2 in δa and 〈 f ,]〉 ↪→ 〈 f ,]〉 for every f ∈ Fa. Since

BP′ψ has an accepting from 〈[p, ψ], ω〉, there exists a state f ∈ Fa such that
〈[p, a], ω〉 =⇒BP′ψ 〈pa, ω〉 =⇒BP′ψ 〈 f ,]〉 =⇒BP′ψ 〈 f ,]〉. Thus Ma has a correspond-

ing path: pa
ω
−→δ f which implies that 〈p, ω〉 ∈ L(Ma). Thus we have 〈p, ω〉 ∈ λ(a). We

obtain that (P, 〈p, ω〉) |=λ ψ.

Case ψ = ¬a: from the product of BP′ψ, we have 〈[p,¬a], γ〉 ↪→ 〈p¬a, γ〉 for all γ ∈ Γ,

〈q1, γ〉 ↪→ 〈q2, ε〉, for all q1
γ
−→δ q2 in δ¬a and 〈 f ,]〉 ↪→ 〈 f ,]〉, for every f ∈ F¬a. Since

BP′ψ has an accepting run from 〈[p,¬a], ω〉, there exists a state f ∈ F¬a such that

〈[p,¬a], ω〉 =⇒BP′ψ 〈p¬a, ω〉 =⇒BP′ψ 〈 f ,]〉 =⇒BP′ψ 〈 f ,]〉.

Then M¬a has a corresponding path: p¬a
ω
−→δ f , which implies that 〈p, ω〉 ∈ L(M¬a).

Thus we have 〈p, ω〉 < λ(a). We obtain that (P, 〈p, ω〉) |=λ ψ.

Case ψ = ψ1 ∧ ψ2: BP′ψ has 〈[p, ψ], ω〉 =⇒BP′ψ 〈[p, ψ1], ω〉 ∧ 〈[p, ψ2], ω〉. So BP′ψ has an
accepting run from the configuration 〈[p, ψ1], ω〉 and BP′ψ has an accepting run from the
configuration 〈[p, ψ2], ω〉.

36

By applying the induction hypothesis: we get (P, 〈p, ω〉) |=λ ψ1 and (P, 〈p, ω〉) |=λ ψ2.
Thus, we get that (P, 〈p, ω〉) |=λ ψ.

Case ψ = ψ1 ∨ ψ2: BP′ψ has 〈[p, ψ], ω〉 =⇒BP′ψ 〈[p, ψ1], ω〉 ∨ 〈[p, ψ2], ω〉. So BP′ψ has an
accepting run from the configuration 〈[p, ψ1], ω〉 or BP′ψ has an accepting run from the
configuration 〈[p, ψ2], ω〉.

By applying the induction hypothesis: we get (P, 〈p, ω〉) |=λ ψ1 or (P, 〈p, ω〉) |=λ ψ2.
This implies that (P, 〈p, ω〉) |=λ ψ.

Case ψ = EXψ1 is similar to case ψ = AXψ1.

Case ψ = AXψ1: Let the immediate successors {〈[p1, ψ1], ω1〉, ..., 〈[pn, ψ1], ωn〉} of
〈[p, ψ], ω〉 be the children of 〈[p, ψ], ω〉 in the accepting run. Then BP′ψ has an accept-
ing run from 〈[pi, ψ1], ωi〉, for each 1 ≤ i ≤ n. By the induction hypothesis: we get that
(P, 〈pi, ωi〉) |=λ ψ1, for each 1 ≤ i ≤ n.

The immediate successors of 〈p, ω〉 are 〈pi, ωi〉 for all 1 ≤ i ≤ n. Thus, we obtain that
(P, 〈p, ω〉) |=λ ψ.

Case ψ = E[ψ1Uψ2]: Let ρ be the accepting run from 〈[p, ψ], ω〉. Each configuration
〈[pi, ψ], ωi〉 in ρ have at most two children 〈[pi, ψ1], ωi〉 and 〈[pi+1, ψ], ωi+1〉 or has only
one child 〈[pi, ψ2], ωi〉.

Since ρ is an accepting run, there exists a configuration 〈[pn, ψ], ωn〉 in ρ such that
〈[pn, ψ], ωn〉 has only one child 〈[pn, ψ2], ωn〉. Let 〈[p0, ψ], ω0〉, ..., 〈[pn, ψ], ωn〉, ... be a
path of ρ, then BP′ψ has an accepting run from 〈[pi, ψ1], ωi〉 for each 1 ≤ i ≤ n, and BP′ψ
has an accepting run from 〈[pn, ψ2], ωn〉.

By the induction hypothesis: (P, 〈pn, ωn〉) |=λ ψ2 and (P, 〈pi, ωi〉) |=λ ψ1, for each
1 ≤ i < n.

Since 〈p, ω〉 =⇒P 〈pi, ωi〉 =⇒P 〈pn, ωn〉, we get that (P, 〈p, ω〉) |=λ ψ.

Case ψ = A[ψ1Uψ2]: This case is similar to ψ = E[ψ1Uψ2].

Case ψ = E[ψ1Ũψ2]: Let ρ be an accepting run from 〈[p, ψ], ω〉, then each configuration
〈[pi, ψ], ωi〉 in ρ has two children 1) 〈[pi, ψ2], ωi〉 and 〈[pi+1, ψ], ωi+1〉, or 2) 〈[pi, ψ1], ωi〉

and 〈[pi, ψ2], ωi〉.

– First we consider 1). Since [pi, ψ] is an accepting control location, then every con-
figuration 〈[pi, ψ], ωi〉 in ρ has two children 〈[pi, ψ2], ωi〉 and 〈[pi+1, ψ], ωi〉. Then
BP′ψ has an infinite path 〈[p0, ψ], ω0〉, ..., 〈[pi+1, ψ], ωi+1〉, ..., in the accepting run
where 〈[p0, ψ], ω0〉 = 〈[p, ψ], ω〉, and BP′ψ has an accepting run from the config-
uration 〈[pi, ψ2], ωi〉 for every i ≥ 0. By applying the induction hypothesis, we
get (P, 〈pi, ωi〉) |=λ ψ2 for every i ≥ 0. Thus, we get 〈p, ω〉 =⇒P 〈pi, ωi〉 and
(P, 〈p, ω〉) |=λ ψ.

– Let’s consider 2). There exists a configuration 〈[pn, ψ], ωn〉 in ρ whose
children are 〈[pn, ψ1], ωn〉 and 〈[pn, ψ2], ωn〉. Then BP′ψ has an infinite
path 〈[p0, ψ], ω0〉, ..., 〈[pn, ψ], ωn〉, 〈[pn, ψ1], ωn〉..., in the accepting run where
〈[p0, ψ], ω0〉 = 〈[p, ψ], ω〉. Each configuration 〈[pi, ψ], ωi〉 has children 〈[pi, ψ2], ωi〉

37

and 〈[pi+1, ψ], ωi〉. Thus BP′ψ has an accepting run from 〈[pn, ψ1], ωn〉 and BP′ψ has
an accepting run from 〈[pi, ψ2], ωi〉, for 1 ≤ i ≤ n.
By the induction hypothesis: (P, 〈pn, ωn〉) |=λ ψ1 and (P, 〈pi, ωi〉) |=λ ψ2, for each
1 ≤ i ≤ n. Thus we have 〈p, ω〉 =⇒P 〈pi, ωi〉 =⇒P 〈pn, ωn〉 and (P, 〈p, ω〉) |=λ ψ.

Case ψ = A[ψ1Ũψ2]: This case is similar to case ψ = E[ψ1Ũψ2]. �

38

