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Abstract. Over the past decade, malware costs more than $10 billion every year
and the cost is still increasing. Classical signature-based and emulation-based meth-
ods are becoming insufficient, since malware writers can easily obfuscate existing
malware such that new variants cannot be detected by these methods. Thus, it is im-
portant to have more robust techniques for malware detection. In our previous work
[23], we proposed to use model-checking to identify malware. We used pushdown
systems (PDSs) to model the program (this allows to keep track of the program’s s-
tack behavior), and we defined the SCTPL logic to specify the malicious behaviors,
where SCTPL can be seen as an extension of the branching-time temporal logic
CTL with variables, quantifiers, and predicates over the stack. Malware detection
was then reduced to SCTPL model-checking of PDSs. However, in our previous
work [23], the way we used SCTPL to specify malicious behaviors was not very
precise. Indeed, we used the names of the registers and memory locations instead
of their values. We show in this work how to sidestep this limitation and use pre-
cise SCTPL formulas that consider the values of the registers and memory locations
to specify malware. Moreover, to make the detection procedure more efficient, we
propose an abstraction that reduces drastically the size of the program model, and
show that this abstraction preserves all SCTPL\X formulas, where SCTPL\X is
a fragment of SCTPL that is sufficient to precisely characterize malware specifi-
cations. We implemented our techniques in a tool and applied it to automatically
detect several malwares. The experimental results are encouraging.

1 Introduction

The number of malwares that produced incidents in 2010 is more than 1.5 billion [14]. A
malware may bring serious damage, e.g., the worm MyDoom slowed down global inter-
net access by ten percent in 2004 [5]. Thus, it is crucial to have efficient up-to-date virus
detectors. Existing antivirus systems use various detection techniques to identify viruses
such as (1) code emulation where the virus is executed in a virtual environment to get
detected; or (2) signature detection, where a signature is a pattern of program code that
characterizes the virus. A file is declared as a virus if it contains a sequence of binary
code instructions that matches one of the known signatures. Each virus variant has its cor-
responding signature. These techniques have some limitations. Indeed, emulation based
techniques can only check the program’s behavior in a limited time interval. They cannot
check what happens after the timeout. Thus, they might miss the viral behavior if it occurs
after this time interval. As for signature based systems, it is very easy to virus developers
to get around them. It suffices to apply obfuscation techniques to change the structure of
the code while keeping the same functionality, so that the new version does not match the
known signatures. Obfuscation techniques can consist of inserting dead code, substituting



instructions by equivalent ones, etc. Virus writers update their viruses frequently to make
them undetectable by these antivirus systems.

Recently, to sidestep these limitations, model-checking techniques have been used
for virus detection [9, 22, 11, 12, 17, 16, 18]. Such techniques allow to check the behavior
(not the syntax) of the program without executing it. These works use finite state graphs
as program model. Thus, they cannot accurately represent the program’s stack. However,
as shown in [21], being able to track the program’s stack is very important for malware
detection. For example, to check whether a program is malicious, anti-viruses start by
identifying the system calls it makes. To evade these virus detectors, malware writers try
to obfuscate the system calls by using pushes and jumps. Thus, it is important to be able
to track the stack to detect such calls.

To this aim, we proposed in our previous work [23] a new approach for malware
detection that consists in (1) Modeling the program using a Pushdown System (PDS).
This allows to take into account the behavior of the stack. (2) Introducing a new logic,
called SCTPL, to represent the malicious behavior. SCTPL can be seen as an extension of
the branching-time temporal logic CTL with variables, quantifiers, and predicates over the
stack. (3) And reducing the malware detection problem to the model-checking problem of
PDSs against SCTPL formulas. Our techniques were implemented in a tool and applied
to detect several viruses.

However, [23] still has some limitations: (1) The PDS corresponding to the program to
be analyzed was generated by hand by the user. (2) Due to the high complexity of SCTPL
model-checking, we were not able to check several examples (they run out of memory).
(3) When specifying malicious behavior using SCTPL, we used formulas where the vari-
ables range over the names of the program’s registers, not over their values. Thus, the
specifications were not precise. To understand this last problem, let us consider the pro-
gram of Figure 1(a). It corresponds to a critical fragment of the Email-worm Klez that
shows the typical behavior of an email worm: it calls the API function GetModuleFile-
NameA with 0 as first parameter and an address a as second parameter1. This function
will store the file name of the worm’s own executable into the memory pointed by a, so
that later, the worm can infect other files by copying this executable stored in the memory
pointed by a into them.

push a
xor ebx, ebx
push ebx
call GetModuleFileNameA
...
push a
call CopyFileA

(a) (b)

push a
xor ebx, ebx
push ebx
push ebx
pop ebx
call GetModuleFileNameA
...
push a
call CopyFileA

push a
mov ebx 2
sub ebx 1
dec ebx
push ebx
call GetModuleFileNameA
...
push a
call CopyFileA

(c)

l1 : push a
l2 : mov ebx 2
l3 : sub ebx 1
l4 : dec ebx
l5 : push ebx
l6 : call GetModuleFileNameA
l7 : ...
l8 : mov eax, a
l9 : push eax
l10 : call CopyFileA

(d)

Fig. 1. (a) Worm fragment; (b), (c) and (d) Obfuscated fragments.

Using SCTPL, in [23] we specify this malicious behavior by the following formula:
1 Parameters of a function in assembly are passed by pushing them into the stack before calling the

function. The callee retrieves these parameters from the stack.
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ψ = ∃a∃r1EF
(
xor(r1, r1) ∧ EXE[¬∃v mov(r1, v)Upush(r1) ∧ EXE[¬(push(r1) ∨ ∃r′(pop(r′)

∧ r1Γ
∗))Ucall(GetModuleFileNameA) ∧ r1aΓ∗ ∧ EF(call(CopyFileA) ∧ aΓ∗)]]

)
where r1aΓ∗ (resp. aΓ∗) is a regular predicate expressing that the topmost symbols of the
stack are r1 and a (resp. a). This SCTPL formula ψ states that there exists a register r1
that is first assigned 0 (xor(r1, r1)) and such that it is not assigned any other value later
until r1 is pushed onto the stack. Later, r1 is never popped from the stack nor pushed onto
it again until the function GetModuleFileNameA is invoked. When this call is made, the
topmost symbols of the stack have to be r1 and a. This ensures that the first parameter of
GetModuleFileNameA is the value of r1, i.e. 0, and that the file name of its own executable
returned by the function is stored in the memory pointed by a. This specification can detect
the fragment in Figure 1(a). However, a virus writer can easily use some obfuscation
techniques in order to escape from this specification. For example, if we add a push ebx
followed by a pop ebx as done in Figure 1 (b); or instead of using xor ebx ebx to put 0
into ebx, let us put the value 2 in ebx and then remove 1 twice as done in Figure 1 (c).
These two fragments keep the same malicious behavior than the fragment of Figure 1(a),
however, they cannot be detected by the formula ψ. A virus writer can also escape from
this specification by first assigning the address a to the register eax and then pushing the
value of eax onto the stack as shown in Figure 1 (d) (instead of pushing a directly to the
stack). When calling CopyFileA, the topmost symbol of the stack is equal to the value
stored in a, but is different from the name a. Thus, this fragment cannot be detected by
the above specification ψ.

To overcome this problem, we propose in this work to specify malicious behaviors us-
ing SCTPL formulas where the variables range over the values of the program’s registers
and memory, not over their names. In this way, the malicious behavior of Figures 1 (a),
(b), (c) and (d) can be specified as follows:

Ω = ∃m EF
(
call(GetModuleFileNameA) ∧ {0} m Γ∗ ∧ EF(call(CopyFileA) ∧ mΓ∗)

)
This expresses that a call to the API function GetModuleFileNameA is made with

0 and the value of the address m of the memory on top of the stack, followed by a call
to the API function CopyFileA with the value of m on top of the stack. Unlike [23], m
represents the values of the program’s registers and addresses, not their names.

In order to consider such specifications, we need to track the values of the different
registers of the program. To do this, we consider an oracle O that gives an overapproxima-
tion of the current state at each control point of the program, i.e., an overapproximation of
the values of the different registers and memory locations. To implement this oracle, we
use Jakstab [19] and IDA Pro [6]. Based on the oracle O, we implement a translator that
automatically constructs a PDS from the binary program.

To overcome the high complexity problem of SCTPL model-checking, we introduce
the collapsing abstraction, which is an abstraction that drastically reduces the size of the
program model by removing the instructions that do not change the stack (instructions us-
ing push or pop are not removed), nor the control flow of the programs (instructions using
jump-like operators, e.g., jmp, jz, etc. are not removed); as well as the instructions whose
operators do not appear in the considered SCTPL formula. We show that this abstraction
preserves all SCTPL\X formulas, where SCTPL\X is a subclass of SCTPL that uses the
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next time operator X only to specify the return addresses of the callers. We show that this
fragment SCTPL\X is sufficient to specify all the malicious behaviors we considered.
Our abstraction allowed to apply our techniques to large programs. In our experiments,
several examples terminate when we use our abstraction, whereas without it, they run out
of memory.

The main contributions of this paper are:

1. We propose to specify malicious behaviors using SCTPL formulas where the vari-
ables range over the values of the program’s registers, not over their names as done
in [23]. Thus, we get more precise malware specifications.

2. We present a new approach to model a binary program as a PDS. Our translation is
more precise than the other existing translations from programs to PDSs.

3. We identify the sub-logic SCTPL\X, which is a subclass of SCTPL where the next
time operator X is used only to specify the return addresses of the callers. We show
that SCTPL\X is sufficient to specify all the malware behaviors we considered, and
we proposed the collapsing abstraction and show that it preserves SCTPL\X proper-
ties. This abstraction reduces drastically the model size, and thus makes the model-
checking problem more efficient.

4. We implement our techniques in a tool for malware detection. All the steps are com-
pletely automated. Our tool takes as input a binary program and a set of SCTPL\X
formulas representing a set of malicious behaviors. It outputs “Yes, the program may
be a malware” if the program satisfies one of the formulas, and “NO” if not. We get
encouraging results.

Related work. These last years, there has been a substantial amount of research to find
efficient techniques that can detect viruses. A lot of techniques use signature based or
emulation based approaches. As already mentioned in the introduction, such techniques
have some limitations. Indeed, signature matching fails if the virus does not use a known
signature. As for emulation techniques, they can execute the program only in a given time
interval. Thus, they can miss the malicious behaviors if they occur after the timeout.

Model-checking and static analysis techniques have been applied to detect malicious
behaviors e.g. in [9, 22, 11, 12, 17, 16, 18]. However, all these works are based on model-
ing the program as a finite-state system, and thus, they miss the behavior of the stack. As
we have seen, being able to track the stack is important for many malicious behaviors.
[10, 7] use tree automata to represent a set of malicious behaviors. However, these works
cannot specify predicates over the stack content.

[21] keeps track of the stack by computing an abstract stack graph which finitely rep-
resents the infinite set of all the possible stacks for every control point of the program.
Their technique can detect obfuscated calls and obfuscated returns. However, they can-
not specify the other malicious behaviors that we are able to detect using our SCTPL
specifications.

[20] performs context-sensitive analysis of call and ret obfuscated binaries. They use
abstract interpretation to compute an abstraction of the stack. We believe that our tech-
niques are more precise since we do not abstract the stack. Moreover, the techniques of
[20] were only tried on toy examples, they have not been applied for malware detection.

[8] uses pushdown systems for binary program analysis. However, the translation from
programs to PDSs in [8] assumes that the program follows a standard compilation model
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where calls and returns match. As we have shown, several malicious behaviors do not
follow this model. Our translation from a control flow graph to a PDS does not make this
assumption.

SCTPL can be seen as an extension of CTPL with predicates over the stack content.
CTPL was introduced in [17, 16, 18]. In these works, the authors show how CTPL can
be used to succinctly specify malicious behaviors. Our SCTPL logic is more expressive
than CTPL. Indeed, CTPL cannot specify predicates over the stack. Thus, SCTPL allows
to specify more malicious behaviors than CTPL. Indeed, most of the malicious behaviors
we considered cannot be expressed in CTPL.

Outline. In Section 2, we give our formal model. Section 3 recalls the definition of the
SCTPL logic and shows how this logic can precisely represent malicious behavior. We
give the definition of the fragment SCTPL\X and of the collapsing abstraction in Section
4. Our experiments are described in Section 5. Due to lack of space, proofs are omitted.
They can be found in Appendix.

2 Binary Code Modeling

In this section, we show how to build a PDS from a binary program. We suppose we are
given an oracle O that extracts from the binary program a control flow graph equipped
with informations about the values of the registers and the memory locations at each
control point of the program. In our implementation, we use Jakstab [19] and IDA Pro
[6] to get this oracle. We translate the control flow graph into a pushdown system where
the control locations store the control points of the binary program and the stack tracks
the stack of the program. This translation takes into account the values of the different
registers and memory locations of the program.

2.1 Control Flow Graphs

Let R be the finite set of registers used in the binary program. Let States be the set of
functions from R ∪ Z to 2Z where Z is the set of integers. Intuitively, let s ∈ States. For
every r ∈ R, s(r) gives the possible values of the register r in the state s, while for every
d ∈ Z, s(d) gives the possible values of the memory at address d in the state s. Let EXP
be the set of expressions over the registers and the memory locations used in the program.
States is extended over expressions in EXP in the usual way.

A control flow graph (CFG) is a tuple G = (N, I, E), where N is a finite set of nodes
corresponding to the control points of the program, I is a finite set of assembly instructions
used in the program, and E : N × I × N is a finite set of edges each of them associated

with an assembly instruction of the program. We write n1
i
−→ n2 for every (n1, i, n2) in

E. Given a binary program, the oracle O computes a corresponding control flow graph G
and a function % : N −→ States that associates to each node n an overapproximation of
the set of possible states of the program at the control point n.

2.2 Pushdown Systems

A Pushdown System (PDS) is a tuple P = (P, Γ, ∆), where P is a finite set of control
locations, Γ is the stack alphabet, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of transition rules.
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A configuration 〈p, ω〉 of P is an element of P×Γ∗. We write 〈p, γ〉 ↪→ 〈q, ω〉 instead
of ((p, γ), (q, ω)) ∈ ∆. The successor relation {P⊆ (P × Γ∗) × (P × Γ∗) is defined as
follows: if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉 {P 〈q, ωω′〉 for every ω′ ∈ Γ∗. A path of the
PDS is a sequence of configurations c1, c2, ... such that ci+1 is an immediate successor of
the configuration ci, i.e., ci {P ci+1, for every i ≥ 1.

2.3 From Control Flow Graphs to Pushdown Systems

In this section, we present a novel approach to derive a pushdown system from a con-
trol flow graph. Consider a binary program. Let (N, I, E) be the CFG and % be the state
function provided by the oracle O. We construct the PDS P = (P, Γ, ∆) as follows:

– the control locations P are the nodes N;
– Γ is the smallest set of symbols satisfying the following:
• if n call proc

−−−−−−−→ n′ ∈ E, then {n′} ∈ Γ where n′ is the return address of the call;
• if n push exp

−−−−−−−−→ n′ ∈ E, where exp is an expression in EXP, then %(n)(exp) ∈ Γ
where %(n)(exp) denotes the set of possible values of the expression exp at the
control point n (given by the state %(n));

– the set of rules ∆ contain transition rules that mimic the instructions of the program:
for every edge e ∈ E, γ ∈ Γ:

• if e = n1
push exp
−−−−−−−−→ n2, we add the transition rule 〈n1, γ〉 ↪→ 〈n2, γ

′γ〉 where γ′ =
%(n1)(exp). This rule moves the program’s control point from n1 to n2, and pushes
the set of all the possible values of the expression exp at control point n1 onto the
stack;

• if e = n1
call proc
−−−−−−−→ n2, we add the transition rule 〈n1, γ〉 ↪→ 〈proce, {n2}γ〉, for

every proce ∈ %(n1)(proc). This rule moves the program’s control point to the
entry point of the procedure proc, and pushes the return address n2 onto the stack.
Here, we let proce be in %(n1)(proc) because in assembly code, the operand of a
call instruction can be any expression including the address of an instruction;

• if e = n1
pop exp
−−−−−−−→ n2, we add the transition rule 〈n1, γ〉 ↪→ 〈n2, ε〉 which moves

the program’s control point to n2 and pops the topmost symbol from the stack;

• if e = n1
ret
−−−→ n2, we add a transition rule 〈n1, γ〉 ↪→ 〈addr, ε〉 for every addr ∈ γ.

This moves the program’s control point to every address addr in γ, and pops the
topmost symbol from the stack;

• if e = n1
c jmp e
−−−−−−→ n2 where cjmp denotes a conditional jump instruction ( je, jg,

etc.). Let flag be the flag register (ZF,CF, etc.) of cjmp. Depending on whether
the flag register satisfies the condition of cjmp or not (i.e., whether f alse ∈
%(n1)( f lag) or not), we add the transition rules r1 = 〈n1, γ〉 ↪→ 〈n2, γ〉 and/or
r2 = 〈n1, γ〉 ↪→ 〈addr, γ〉 for every addr ∈ %(n1)(e). r1 moves the program’s
control point to n2 whereas r2 moves the programs’s control point to the address
addr that corresponds to the value of e at point n1.

• if e = n1
i
−→ n2 is any other transition, we add a transition rule r1 = 〈n1, γ〉 ↪→

〈n2, γ〉 which moves the program’s control point from n1 to n2 without changing
the stack.
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Note that in our modeling, the PDS control locations correspond to the program’s con-
trol points, and the PDS stack mimics the program’s execution stack. The above transition
rules allow the PDS to mimic the behavior of the program’s stack. This is different from
standard program translations to PDSs where the control points of the program are stored
in the stack [13, 8]. These standard translations assume that the program follows a stan-
dard compilation model, where the return addresses are never modified. We do not make
such assumptions since behaviors where the return addresses are modified can occur in
malicious code. We only make the assumption that pushes and pops can be done only
using push, pop, call, and return operations, not by manipulating the stack pointer. Our
translation is also more precise than the one given in [23]. Indeed, here the stack content
is (an over-approximation of) the program’s stack, whereas in [23], the stack contains the
names of the pushed registers, not their values. For example, in [23], a push instruction of
the form n1

push eax
−−−−−−−→ n2 is modeled by a push rule where the name of the register eax is

pushed onto the stack, whereas in this work, we push the possible values of eax onto the
stack.

3 Malicious Behavior Specification

In this section, we recall the definition of the Stack Computation Tree Predicate Logic
(SCTPL) [23], and show how we can use it to specify malicious behaviors in a more
precise and succinct way than done in [23].

3.1 Environments, predicates and regular variable expressions

Hereafter, we fix the following notations. Let X = {x1, x2, ...} be a finite set of variables
ranging over a finite domain D. Let B : X ∪ D −→ D be an environment function
that assigns a value c ∈ D to each variable x ∈ X and such that B(c) = c for every
c ∈ D. B[x ← c] denotes the environment function such that B[x ← c](x) = c and
B[x← c](y) = B(y) for every y , x. Let B be the set of all the environment functions.

Let AP = {a, b, c, ...} be a finite set of atomic propositions, APX be a finite set of atomic
predicates in the form of b(α1, ..., αm) such that b ∈ AP, αi ∈ X ∪ D for every 1 ≤ i ≤ m,
and APD be a finite set of atomic predicates of the form b(α1, ..., αm) such that b ∈ AP,
αi ∈ D for every 1 ≤ i ≤ m.

Given a PDS P = (P, Γ, ∆), let R be a finite set of regular variable expressions over
X ∪ Γ given by: e ::= ∅ | ε | a ∈ X ∪ Γ | e + e | e · e | e∗.

The language L(e) of a regular variable expression e is a subset of P × Γ∗ ×B defined
inductively as follows: L(∅) = ∅; L(ε) = {(〈p, ε〉,B) | p ∈ P,B ∈ B}; L(x), where x ∈ X
is the set {(〈p, γ〉,B) | p ∈ P, γ ∈ Γ,B ∈ B : B(x) = γ}; L(γ), where γ ∈ Γ is the set
{(〈p, γ〉,B) | p ∈ P,B ∈ B}; L(e1 + e2) = L(e1) ∪ L(e2); L(e1 · e2) = {(〈p, ω1ω2〉,B) |
(〈p, ω1〉,B) ∈ L(e1); (〈p, ω2〉,B) ∈ L(e2)}; and L(e∗) = {(〈p, ω〉,B) | B ∈ B and ω =
ω1 · · ·ωn, s.t. ∀i, 1 ≤ i ≤ n, (〈p, ωi〉,B) ∈ L(e)}. E.g., (〈p, γ1γ1γ2〉,B) is an element of
L(x∗γ2) when B(x) = γ1.

3.2 Stack Computation Tree Predicate Logic

A SCTPL formula is a CTL formula where predicates and regular variable expressions are
used as atomic propositions, and where quantifiers over variables are used. Using regular
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variable expressions allows to express predicates on the stack content of the PDS. For
technical reasons, we suppose w.l.o.g. that formulas are given in positive normal form,
i.e., negations are applied only to atomic propositions. More precisely, the set of SCTPL
formulas is given by (where x ∈ X, a(x1, ..., xn) ∈ APX and e ∈ R):

ϕ ::= a(x1, ..., xn) | ¬a(x1, ..., xn) | e | ¬e | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ
| ∃x ϕ | AXϕ | EXϕ | A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ]

Let ϕ be a SCTPL formula. The closure cl(ϕ) denotes the set of all the subformulas of
ϕ including ϕ.

Given a PDS P = (P, Γ, ∆) s.t. Γ ⊆ D, Let λ : APD → 2P be a labeling function that
assigns a set of control locations to a predicate. Let c = 〈p,w〉 be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B ∈ B s.t. c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xn) iff p ∈ λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ ¬a(x1, ..., xn) iff p < λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ e iff (c,B) ∈ L(e).

– c |=B
λ ¬e iff (c,B) < L(e).

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ψ1 ∨ ψ2 iff c |=B

λ ψ1 or c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ∃x ψ iff ∃v ∈ D s.t. c |=B[x←v]
λ ψ.

– c |=B
λ AX ψ iff c′ |=B

λ ψ for every successor c′ of c.
– c |=B

λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B
λ ψ.

– c |=B
λ A[ψ1Uψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∃i ≥ 0 s.t. ci |=

B
λ ψ2

and ∀0 ≤ j < i : c j |=
B
λ ψ1.

– c |=B
λ E[ψ1Uψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∃i ≥ 0, ci |=

B
λ

ψ2 and ∀0 ≤ j < i, c j |=
B
λ ψ1.

– c |=B
λ A[ψ1Rψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∀i ≥ 0 s.t. ci 6|=

B
λ ψ2,

∃0 ≤ j < i s.t. c j |=
B
λ ψ1.

– c |=B
λ E[ψ1Rψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∀i ≥ 0 s.t.

ci 6|=
B
λ ψ2, ∃0 ≤ j < i s.t. c j |=

B
λ ψ1.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies the formula ψ under the environ-

ment B. Note that a path π satisfies ψ1Rψ2 iff either ψ2 holds everywhere in π, or the first
occurrence in the path where ψ2 does not hold must be preceded by a position where ψ1
holds.

Theorem 1. [23] Given a PDS P = (P, Γ, ∆) and a SCTPL formula ψ, whether a config-
uration of P satisfies ψ can be decided.

3.3 Using SCTPL formulas in a precise manner

In [23], the stack alphabet Γ (which is a subset of the domainD) we considered consists of
the set of registers R and the set of the return addresses of the different calls. As explained
in the introduction, using the names of the registers instead of their values is not robust
and is not very precise. To sidestep this problem, we propose in this work to use the values
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∆ : for every γ ∈ Γ
〈l6, γ〉 ↪→ 〈g0, {l7}γ〉
〈l8, γ〉 ↪→ 〈l9, γ〉
〈l9, γ〉 ↪→ 〈l10, {a}γ〉
〈l10, γ〉 ↪→ 〈c0, {l11}γ〉

〈l1, γ〉 ↪→ 〈l2, {a}γ〉
〈l2, γ〉 ↪→ 〈l3, γ〉
〈l3, γ〉 ↪→ 〈l4, γ〉
〈l4, γ〉 ↪→ 〈l5, γ〉
〈l5, γ〉 ↪→ 〈l6, {0}γ〉

% :
%(l3)(ebx) = {2}
%(l4)(ebx) = {1}
%(l5)(ebx) = {0}
%(l9)(eax) = {a}

λ(push(a)) = {l1}
λ(mov(ebx, 2)) = {l2}
λ(sub(ebx, 1)) = {l3}
λ(dec(ebx)) = {l4}
λ(call(GetModuleF ileNameA)) = {l6}

(a) The labelling function λ (b) The states % (c) Transition rules ∆

λ(push(ebx)) = {l5}
λ(mov(eax, a)) = {l8}
λ(push(eax)) = {l9}
λ(call(CopyF ileA)) = {l10}

Fig. 2. (a) The labeling function λ, (b) the states % and (c) Transition rules ∆, where g0 and c0 are
entry points of the function GetModuleFileNameA and CopyFileA, respectively, and l11 is the next
location of l10

of the registers instead of their names. Hence, in this work, the stack alphabet Γ consists
of sets of (over-approximations of) values of registers (elements of 2Z), together with the
return addresses of the calls.

An illustrating example. Let us consider the fragment of Figure 1(d) and the SCTPL
formula Ω described in the introduction. Suppose the oracle O provides the function ρ of
Figure2 2(b). Then, we have:

– Γ = { {a}, {0}, {l7}, {l11} } is the stack alphabet, where l11 is the location after l10;
– R = {{0} m Γ∗,mΓ∗} is the set of regular variable expressions in the formula Ω;
– AP = {call,mov, sub, dec, push} is the set of atomic propositions corresponding to

the instructions of the program;
– APD = {push(a),mov(ebx, 2), sub(ebx, 1), dec(ebx), push(ebx),mov(eax, a), push(eax),

call(GetModuleFileNameA), call(CopyFileA)} is the set of predicates that appear in
the program;

– D = {{a}, {0}, {l7}, {l11}, 1, 2, a, eax, ebx,GetModuleFileNameA,CopyFileA};
– The labeling function λ is shown Figure 2(a).
– The set of transition rules ∆ of the PDS modeling this fragment is shown in Figure

2(c), where g0 is the entry point of the procedure GetModuleFileNameA and c0 is the
entry point of the procedure CopyFileA.

3.4 Specifying Malicious Behaviors in SCTPL

We show in this section how SCTPL allows to precisely and succinctly specify several
malware behaviors.

Data-stealing Malware. The main purpose of a data-stealing malware is to steal the
user’s personal confidential data such as username, password, credit card
number, etc and send it to another computer (usually the malware writ-
er). The typical behavior of data-stealing malware can be summarized as
follows: the malware will first call the API function ReadFile in order to
load some file of the victim into memory. To do this, it needs to call this
function with a file pointer f (i.e., the return value of the calling function
OpenFile) as the first parameter and a buffer m as the second parameter (m
corresponds to the address of a memory location), i.e., with f m on the top
of the stack since in assembly, function parameters are passed through the

push m
push f
call ReadFile
...
push m
push c
call send

Fig. 3: Data-
stealing
malware.

2 we give only the values of ρ that are needed to compute the transition relation ∆ of Figure 2(c)
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stack. Then, the malware will send its file (whose data is pointed by m) to another comput-
er using the function send. It needs to call send with a connection c (i.e., the return value
of the calling function socket) as first parameter and the buffer m as the second parameter,
i.e., with c m on the top of the stack. Figure 3 shows a disassembled fragment of a malware
corresponding to this typical behavior. Before calling the function ReadFile, it pushes the
two parameters m and f onto the stack. Later it calls the function send after pushing the
two parameters m and c onto the stack. (since in assembly, function parameters are passed
through the stack.) This behavior can be expressed by the following SCTPL formula Ωds.

Ωds = ∃m EF
(
call(ReadFile) ∧ Γ m Γ∗ ∧ AF

(
call(send) ∧ Γ m Γ∗

))
where the regular variable expression Γ m Γ∗ states that the second value of the stack is
m (corresponding to the second parameter of the function ReadFile and send). Ωds states
that there exists an address m which is the second parameter when calling ReadFile, and
such that later, eventually, send will be called with m as its second parameter.

Kernel32.dll base address viruses. Many of Windows viruses use an API to achieve
their malicious tasks. The Kernel32.dll file includes several API functions that can be
used by the viruses. In order to use these functions, the viruses
have to find the entry addresses of these API functions. To do
this, they need to determine the Kernel32.dll entry point. They
determine first the Kernel32.dll PE header in memory and use
this information to locate Kernel32.dll export section and find the
entry addresses of the API functions. For this, the virus looks first
for the DOS header (the first word of the DOS header is 5A4Dh in
hex (MZ in ascii)); and then looks for the PE header (the first two
words of the PE header is 4550h in hex (PE00 in ascii)). Figure

l1 : cmp [eax], 5A4Dh
jnz l2
...
cmp [ebx], 4550h
jz l3
l2 : ...
jmp l1
l3

Fig. 4: Virus.

4 presents a disassembled code fragment performing this malicious behavior. This can be
specified in SCTPL as follows:

ψwv = EG
(
EF
(
∃r1 cmp(r1, 5A4Dh) ∧ EF ∃r2 cmp(r2, 4550h)

))
.

This SCTPL formula expresses that the program has a loop such that there are two vari-
ables r1 and r2 such that first, r1 is compared to 5A4Dh, and then r2 is compared to 4550h.
Note that this formula can detect all the class of viruses that have such behavior.

Obfuscated calls. Virus writers try to obfuscate their code by e.g. hiding the calls to
the operating system. For example, a call instruction can be replaced by pushes and jump-
s. Figure 5 shows two equivalent fragments achieving a “cal-
l” instruction. Figure 5(a) shows a normal call/ret where the
function f consists just of a return instruction. When control
point f is reached, the return instruction moves the control
point to l1 which is the return address of the call instruction
(at l0). As shown in Figure 5(b), the call can be equivalently
substituted by two other instructions, where push l′2 pushes
the return address l′2 onto the stack, and jmp f moves the con-

l0 : call f
l1 : ...

f: ret

l′0 : push l′2
l′1 : jmp f
l′2 : ...

f: ret

(a) (b)

Fig. 5: (a) Normal call. (b)
Obfusated call

trol point to the entry point of f . These instructions do exactly the same thing than the call
instruction. When reaching the control point f , the ret instruction will pop the stack and
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thus, move the control point to l′2. Such obfuscated calls can be described by the following
SCTPL formula:

ψoc = ∃ addr E[¬(∃ proc call(proc) ∧ AX addrΓ∗) U (ret ∧ addrΓ∗)]

The subformula (∃ proc call(proc)∧AX addrΓ∗) means that there exists a procedure call
having addr as return address, since when a procedure call is made, the program will push
its corresponding return address addr to the stack, and thus, at the next step, we will have
addr on the top of the stack (i.e., addrΓ∗). The subformula (ret ∧ addrΓ∗) expresses that
we have a return instruction with addr on the top of the stack, i.e., a return instruction that
will return to addr. Thus the formula ψoc expresses that there exists a return address addr
such that there exists a path where there is no call to a procedure proc having addr as
return address until a return instruction with addr as return address occurs. This formula
can then detect a return that does not correspond to a call.

Obfuscated returns. Virus writers usually obfuscate the returns of their calls in order to
make it difficult to manually or automatically analyze their code. Benign programs
move the control point to the return address using the ret
instruction. Viruses may replace the ret instruction by other
equivalent instructions such as pop eax, jmp eax, etc. E.g., the
program in Figure 6 is a disassembled fragment from the virus
Klinge that pops the return address 00401028 from the stack.
This phenomenon can be detected by the following specifica-
tion:

00401023: call 004011CE
00401028: ...

...
004011CE: ...

...
0040121A: pop eax

Fig. 6: Fragment of the
Virus Klinge

ψor = AG
(
∀proc∀addr

(
(call(proc) ∧ AX addrΓ∗) =⇒ AF(ret ∧ addrΓ∗)

))
.

ψor expresses that for every procedure proc, if proc is called with addr as the return
address of the caller, then there exists a ret instruction which will return to addr. In-
deed, since when an assembly program runs, if an instruction call proc is executed, then
the return address addr of the caller is pushed onto the stack. Thus, in the subformula
call(proc) ∧ AX addrΓ∗, addr refers to the return address of the call, because this sub-
formula expresses that in all the immediate successors of the call, addr is on the top of
the stack. Moreover, ret ∧ addrΓ∗ means that when the return is executed, then the return
address addr should be on the top of the stack.3

Appending viruses. An appending virus is a virus that inserts a copy of its malicious
code at the end of the target file. To do this, the virus has to first calculate its real absolute
address in the memory, because the real OFFSET of the virus’ variables
depends on the size of the infected file. To achieve this, the viruses have to
call the routine in Figure 7 (this code is a fragment of the virus Alcaul.b).
The instruction call l2 will push the return address l2 onto the stack. Then,
the pop instruction will put the value of this address into the register eax.

l1 : call l2
l2 : pop eax

...

Fig. 7:

In this way, the virus can get its real absolute address in the memory. This malicious
behavior can be detected using the specification ψor, since there does not exist any return
instruction corresponding to the call instruction.

3 Note that for the case of a procedure that has a possibly infinite loop, this specification can detect
a suspected malware. This formula can be changed slightly to avoid this. We do not present this
here for the sake of presentation.
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4 SCTPL\X and the Collapsing Abstraction

As discussed in [23], the algorithm underlying Theorem 1 is very expensive. It is expo-
nential on the size of the PDS. Thus, it is important to model binary programs by PDSs
with small sizes. For this, we propose in this section to use the collapsing abstraction
to drastically reduce the size of the PDS model of the program. Moreover, we consider
SCTPL\X, a fragment of SCTPL that uses the next time operator X only to specify the
return addresses of the callers. All the malicious behaviors that we considered can be
specified using SCTPL\X formulas. We show that the collapsing abstraction preserves
SCTPL\X formulas.

4.1 SCTPL\X

SCTPL\X is defined by the following, where a(x1, ..., xn) ∈ APX, func is a function, e ∈ R
and r ∈ Γ ∪ X:

ϕ ::= a(x1, ..., xn) | ¬a(x1, ..., xn) | e | ¬e | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ | ∃x ϕ
| call( f unc) ∧ AX rΓ∗ | A[ϕUϕ] | E[ϕUϕ] | A[ϕRϕ] | E[ϕRϕ]

Intuitively, SCTPL\X is the sub-logic of SCTPL where the next time operator X
is used only to specify the return addresses of the callers. Indeed, the SCTPL formula
call( f unc) ∧ AX rΓ∗ means that r is the return address of the function f unc, since the
return address is always pushed onto the stack when a function is called. The subformula
AX rΓ∗ ensures that the return address r is the topmost symbol of the stack at the next
control point after calling the function f unc.

SCTPL\X is sufficient to specify malware. Indeed, arbitrary SCTPL formulas of the
form AXψ or EXψ that cannot be expressed by SCTPL\X should not be used for malware
specifications since such formulas are not robust. Indeed, suppose that at some control
point n, a piece of malware satisfies a formula AXψ. Then inserting some dead code at
control point n will make the formula AXψ unsatisfiable. Thus, if a specification that
involves such formulas can detect a given malware, it cannot detect variants of this mal-
ware where dead code is added at some locations. It is then not recommended to use such
subformulas for malware specification. Thus, to make these specifications of malicious
behaviors more robust, we should specify these behaviors by AFψ or EFψ.

4.2 The collapsing abstraction

Given a program, the collapsing abstraction reduces the size of the program model by
removing all the irrelevant instructions of the program, i.e., all the instructions that do not
change the stack (instructions using push or pop are not removed), nor the control flow of
the program (instructions using jump-like operators, e.g., jmp, jz, etc. are not removed); as
well as the instructions whose operators do not appear in the considered SCTPL formula.

More precisely, consider a SCTPL formula ψ and a binary program. Let G = (N, I, E)
and % be respectively the CFG and the state function provided by the oracle O.
Let op(b(a1, ..., an)) denote the operator b for every instruction b(a1, ..., an) ∈ I. Let
Iψ = {b | ∃b(x1, ..., xn) ∈ cl(ψ)} be the set of operators that appear in the formula ψ, Istack =

{push, pop, call, ret} be the set of operators that modify the program’s stack, and I jump =

{ jmp, jz, je, jnz, jne, js, jns, jo, jno, jp, jnp, jpe, jpo, jc, jb, jnae, jnc, jnb, jae, jbe,

12



jna, jnbe, ja, jl, jnge, jnl, jge, jle, jng, jnle, jg, jcxz} be the set of all the jump instruc-

tions. Let Ntarget =
{
n ∈ N | ∃n1

b(e)
−→ n2 ∈ E s.t. e ∈ EXP, n ∈ %(n1)(e)∧ b ∈ I jump ∪ {call}

}
be the set of nodes that can be reached by a call or a jump instruction of the program.
The collapsing abstraction removes from the program all the instructions whose operators
are not in Iψ ∪ Istack ∪ I jump and whose control points are not in Ntarget. More precisely,
we compute a new control flow graph Gψ = (N′, I′, E′) such that N′ is a subset of N,

I′ = {⊥} ∪ {i ∈ I | op(i) ∈ Iψ ∪ Istack ∪ I jump}, E′ is defined as follows: n
i
−→ n′ ∈ E′ iff

– n
i
−→ n′ ∈ E and i ∈ I′;

– or i = ⊥ is a fake instruction that we add, n ∈ Ntarget, and ∃n
i′
−→ n′ ∈ E s.t. i′ < I′;

– or i = ⊥, there exists in G a path of the form p
l1
−→ n

i1
−→ n1

i2
−→ n2 · · · nk−1

ik
−→

n′
l2
−→ p′ s.t. p

l1
−→ n ∈ E′ and n′

l2
−→ p′ ∈ E′ are two edges in E′ meaning that either

l1 and/or l2 cannot be removed or is ⊥, whereas for every 1 ≤ j ≤ k, the instruction
i j is removed, i.e., the operator op(i j) of the instruction i j is not in Iψ ∪ Istack ∪ I jump

and for every 1 ≤ j ≤ k − 1 node n j is not in Ntarget.

We add the instructions ⊥ to relate two nodes that are related by a path in G and such
that removing the irrelevant instructions could make these nodes disconnected in G′. Note
that we do not remove nodes in Ntarget because they could be reached by different paths.

The control flow graph Gψ can be computed in linear time:

Lemma 1. Given a SCTPL formula ψ, and a control flow graph G, Gψ can be effectively
computed in linear time.

We can show that this abstraction preserves formulas that do not involve properties
about the next state. Formulas using the X operator in an arbitrary manner are not pre-
served since this abstraction removes instructions from the program. However, formulas
of the form call( f unc) ∧ AX rΓ∗ are preserved since they express that a call to the func-
tion f unc is made, and r is the return address of this call. Therefore, such a formula is
related to the single instruction call( f unc). So, removing the irrelevant instructions as de-
scribed above will not change the satisfiability of this formula. Thus, we can show that
this abstraction preserves SCTPL\X formulas:

Theorem 2. Let ψ be a SCTPL\X formula. Let P be the PDS modeling a CFG G w.r.t. a
state function %, and let P′ be the PDS modeling the CFG Gψ w.r.t. the state function %.
Then P satisfies ψ iff P′ satisfies ψ.

5 Experiments

We implemented our techniques in a tool for malware detection. Our tool gets a binary
program as input, and outputs Yes or No, depending on whether the code contains a ma-
licious behavior or not. To implement an oracle O, we use Jakstab [19] and IDA Pro [6].
Jakstab performs static analysis of the binary program and provides a control flow graph
and a state function %. However, it does not allow to extract API functions’ information
and some indirect calls to the API functions. We use IDA Pro to get these informations.
We use BDDs to represent sets of environments. To perform SCTPL model-checking of
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PDSs, we implement the algorithms of [23]. All the experiments were run on a Linux
platform (Fedora 13) with a 2.4GHz CPU, 2GB of memory. The time limit is fixed to 30
minutes.

We evaluated our tool on 200 malwares taken from VX Heavens [15] and 8 benign
programs taken from system32 of Microsoft Windows XP: cmd.exe, find.exe, java.exe,
notepad.exe, ping.exe, print.exe, regedt.exe and shutdown.exe. Our tool was able to de-
tect all the 200 malwares. Moreover, it reported that the benign programs that we consid-
ered are not malicious, except for java.exe. Our tool detected a malicious behavior in this
program. This behavior was introduced by the over-approximation provided by Jakstab
[19]. The time and memory consumptions are shown in Figures 8 and 9. These figures
show the gain in time and memory consumption when the collapsing abstraction is used.
The analysis of several examples (such as Bagle.m, print.exe and notepad.exe e.g.) termi-
nates when using the collapsing abstraction, whereas it runs out of memory without this
abstraction.

Generator No. of Our techniques Avira kaspersky Avast antivirus Qihoo 360
Variants detection rate detection rate detection rate detection rate detection rate

NGVCK 100 100% 0% 23% 18% 68%
VCL32 100 100% 0% 2% 100% 99%

Table 1. Detection of variants generated by NGVCK and VCL32.

Furthermore, to compare our techniques with the well-known existing anti-virus tools,
and show the robustness of our tool, we automatically generated 200 new malwares us-
ing the generators NGVCK and VCL32 available at VX Heavens [15]. We generated 100
malwares using NGVCK, and 100 using VCL32. [24] showed that these systems are the
best malware generators, compared to the other generators of VX Heavens [15]. These
programs use very sophisticated features such as anti-disassembly, anti-debugging, anti-
emulation, and anti-behavior blocking and come equipped with code morphing ability
which allows them to produce different-looking viruses. Our results are reported in Ta-
ble 1. Our techniques were able to detect all these 200 malwares, whereas the four well
known and widely used anti-viruses Avira [3], Avast [2], Kaspersky [1] and Qihoo 360
[4] were not able to detect several of these viruses.
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Algorithm 1: The Algorithm computing Gψ.
Input : A SCTPL formula ψ, and a CFG G = (N, I, E) with its state function %;
Output: The CFG Gψ;

1 Let Ntarget ⊆ N be the set of nodes that are targets of some instruction of I;
2 Let Iψ = {b | ∃b(x1, ..., xn) ∈ cl(ψ)};
3 Let I jump = { jmp, jz, je, jnz, jne, js, jns, jo, jno, jp, jnp, jpe, jpo, jc, jb, jnae, jnc, jnb,

jae, jbe, jna, jnbe, ja, jl, jnge, jnl, jge, jle, jng, jnle, jg, jcxz};
4 Let Istack = {call, ret, push, pop};
5 Let Gψ = (N′, I′, E′) such that N′ = E′ = ∅, I′ = {⊥};

6 for n b(α1 ,...,αm)
−−−−−−−−−→ n′ ∈ E do

7 if b ∈ Iψ ∪ I jump ∪ Istack or n ∈ Ntarget then
8 Add n, n′ into N′;

9 Add n I
−−→ n′ into E′, where I = b ∈ Iψ ∪ I jump ∪ Istack ? b(α1, ..., αm) : ⊥;

10 Let E′′ = E \ E′;

11 for e1 = n1
i1
−→ n2 ∈ E′′ do

12 if ∃e2 = n2
i2
−→ n3 ∈ E′′ then

13 E′′ = E′′ ∪ {n1
⊥
−→ n3} \ {e1, e2};

14 else
15 Add n1

⊥
−→ n2 into E′;

16 Add n1 and n2 into N′;

A Appendix

A.1 Proof of Lemma 1

Lemma 1. Given a SCTPL formula ψ, and a control flow graph G = (N, I, E) with its
state function %, Gψ can be effectively computed in linear time.

Proof: We proceed by giving an algorithm which exactly computes the control flow graph
Gψ.

Algorithm 1 computes exactly the control flow graph Gψ. Initially, we can compute
all the possible target nodes Ntarget as follows: n ∈ Ntarget iff n1

b(e)
−−−−→ n2 ∈ E such that

n ∈ %(n1)(e) and b ∈ I jump or b = call. This can be done in time O(I).
Then, We proceed by two phrases: Lines 6-9 and Lines 11-16. The first phrase (Lines

6-9) computes all the nodes and edges such that either the starting node n of an edge in
E is a target (i.e., n ∈ Ntarget), or the operator b of the instruction changes the stack, or
changes the control flow, or is used in ψ (i.e., b ∈ Iψ ∪ I jump ∪ Istack). This phrase can be
done in time O(E).

E′′ is the rest edges of E after the first phrase (line 10). The instruction of every edge
in E′′ will not change the control flow, the stack or the operator of the instruction is not
used in ψ.

The second phrase will remove two edges n1
i1
−→ n2 and n2

i2
−→ n3 from E′′ and add

one edge n1
⊥
−→ n3 into E′′. By doing this, each path n1

i1
−→ n2

i2
−→ n3, ...,

ik
−→ nk+1 such
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that there does not exist n
i
−→ n1 ∈ E′′ or nk+1

i
−→ n ∈ E′′. will be substituted by an edge

n1
⊥
−→ nk+1 which will be added into E′ (line 15). The second phrase can be done in time

O(E′′).
W.l.o.g., for each edge added in phrase two, we can assume that there exist two edges

n
i
−→ n1 ∈ E′ and/or nk+1

i
−→ n ∈ E′. Indeed, if these edges do not exist, then the

node n1 (resp. nk+1) has no predecessor (resp. successor). We can add a fake instruction

n
i
−→ n1 ∈ E′ and/or nk+1

i
−→ n ∈ E′ into E′. Since these nodes are not reachable which

does not have any side-effect for Theorem 2.
Thus, Gψ can be efficiently computed in linear time. �

A.2 Proof of Theorem 2

Theorem 2. Let ψ be a SCTPL\X formula. Let P be the PDS modelling a CFG G w.r.t.
the state function %, and let P′ be the PDS modeling the CFG Gψ w.r.t. the state function
%. Then P satisfies ψ iff P′ satisfies ψ.

Proof: We proceed by proving a more general case where SCTPL\X is given by: (where
a(x1, ..., xn) ∈ APX and e ∈ R):

ϕ ::= a(x1, ..., xn) | e | ¬ϕ | ϕ ∧ ϕ | ∃x ϕ | EXe | EX¬e | EGϕ | E[ϕUϕ]

In this definition, the next time operator X can only specify regular variable expres-
sions and their negation. This definition is more general than the definition given in Sec-
tion 4.1. We show that:

Let ψ be a SCTPL\X formula given by the above definition. Let P be the PDS
modelling a CFG G w.r.t. the state function %, and let P′ be the PDS modeling
the CFG Gψ w.r.t. the state function %. Then P satisfies ψ iff P′ satisfies ψ.

Let P = (P, Γ, ∆) and P′ = (P′, Γ′, ∆′).
Since the abstraction does not remove any node where the instruction will change the

stack or is a target, or change the control flow. Thus, we obtain that the initial configuration
of P and P′ are identical and Γ = Γ′. Let c0 be the initial configuration of P and P′.

First, let us characterize some properties of PDS modeling the CFG w.r.t. %. Due to
the construction of the PDS from CFG, PDS do not have any rewrite transition rule, i.e.,
〈p, γ〉 ↪→ 〈p′, γ′〉 < ∆ if γ , γ′.

Since the abstraction only remove edges n b(a1,...,am)
−−−−−−−−→ n′ when b < Iψ ∪ Istack ∪ I jump

and n < Ntarget, we can obtain that

– 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ ∆ iff 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ ∆
′;

– 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ iff 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆′;
– 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆′ iff
• 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p ∈ %(n′)(e) for some n′ ∈ N, i.e., p is the target; or
• 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and the operator of the instruction at p is in Iψ ∪ I jump; or
• γ = γ′ and, there exist p1, p2, ..., pk ∈ P such that 〈p, γ〉 {P 〈p1, γ〉 {P
〈p2, γ〉, ...,{P 〈pk, γ〉 {P 〈p′, γ′〉, p1, ..., pk < Ntarget and the operator b of the
instruction at p, p′, p1, ..., pk is not in I jump ∪ Iψ ∪ Istack.
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Now, let us prove that the PDSP satisfies ψ iff the PDSP′ satisfies ψ. It is sufficient to
show that the initial configuration c0 of the PDS P satisfies ψ iff the initial configuration
c0 of the PDS P′ satisfies ψ. For simplify the representation, a configuration c of P (resp.
P′) satisfying ψ under the environment B is denoted by c |=B

λ ψ (resp. c `B
λ ψ, ` has the

same semantics as for |=). Since each instruction i ∈ I removed by the abstraction does not
contain any operator that used by the SCTPL\X formula ψ, i.e, there does not exist any
atomic predicate b(x1, ..., xn) in ψ such that b is a operator of i. Let λ and λ′ be the labelling
function of the PDS P and P′ respectively. Since the CFG G and Gψ have the same state
function %, we obtain that for every n ∈ P′ and b(a1, ..., an) ∈ I′: n ∈ λ(b(a1, ..., an)) iff
n ∈ λ′(b(a1, ..., an)).

Since the initial configuration c0 is a configuration of P as well as P′ and every configu-
ration c of P′ is also a configuration of P due to P′ ⊆ P and Γ′ = Γ.

It is sufficient to prove that for every configuration 〈n, ω〉 ∈ P′ × Γ∗, 〈n, ω〉 |=B
λ ψ iff

〈n, ω〉 `B
λ′ ψ.

We proceed by applying the induction on the structure of the SCTPL\X formula ψ.

– Case ψ = b(x1, ..., xn): since 〈n, ω〉 |=B
λ b(x1, ..., xn) iff n ∈ λ(b(B(x1), ...,B(xn))),

〈n, ω〉 `B
λ′ b(x1, ..., xn) iff n ∈ λ′(b(B(x1), ...,B(xn))). Since for every n ∈ P′ and

b(a1, ..., an) ∈ I′: n ∈ λ(b(a1, ..., an)) iff n ∈ λ′(b(a1, ..., an)). We obtain that 〈n, ω〉 |=B
λ

b(x1, ..., xn) iff c `B
λ′ b(x1, ..., xn).

– Case ψ = e ∈ R: 〈n, ω〉 |=B
λ e iff (〈n, ω〉,B) ∈ L(e) iff c `B

λ′ e.

– Case ψ = ∃xψ′: 〈n, ω〉 |=B
λ ∃xψ′ iff there exists a value v ∈ D such that 〈n, ω〉 |=B[x←v]

λ

ψ′. 〈n, ω〉 `B
λ′ ∃xψ′ iff there exists a value v ∈ D such that 〈n, ω〉 `B[x←v]

λ′ ψ′.

By applying the induction hypothesis, 〈n, ω〉 |=B[x←v]
λ ψ′ iff 〈n, ω〉 `B[x←v]

λ′ ψ′. Thus,
〈n, ω〉 |=B

λ ∃xψ′ iff 〈n, ω〉 `B
λ′ ∃xψ′.

– Case ψ = ¬ψ′: 〈n, ω〉 |=B
λ ¬ψ

′ iff 〈n, ω〉 6|=B
λ ψ

′.
By applying the induction hypothesis, 〈n, ω〉 6|=B

λ ψ
′ iff 〈n, ω〉 0Bλ′ ψ

′. Thus, 〈n, ω〉 |=B
λ

¬ψ′ iff 〈n, ω〉 `B
λ′ ¬ψ

′.

– Case ψ = ψ1 ∧ ψ2: 〈n, ω〉 |=B
λ ψ1 ∧ ψ2 iff 〈n, ω〉 |=B

λ ψ1 and 〈n, ω〉 |=B
λ ψ2. By

applying the induction hypothesis, 〈n, ω〉 |=B
λ ψ1 iff 〈n, ω〉 `B

λ′ ψ1 and 〈n, ω〉 |=B
λ ψ2 iff

〈n, ω〉 `B
λ′ ψ2.

Since 〈n, ω〉 `B
λ′ ψ1 ∧ ψ2 iff 〈n, ω〉 `B

λ′ ψ1 and 〈n, ω〉 `B
λ′ ψ2. We obtain that 〈n, ω〉 |=B

λ

ψ1 ∧ ψ2 iff 〈n, ω〉 `B
λ′ ψ1 ∧ ψ2.

– Case ψ = EXe: Since 〈n, ω〉 |=B
λ EXe there exists a configuration 〈n′, ω′〉 such that

〈n, ω〉{P 〈n′, ω′〉 and 〈n′, ω′〉 |=B
λ e.

Since 〈n, ω〉 {P 〈n′, ω′〉, according to definition of the abstraction, we obtain that
either 〈n, ω〉 {P′ 〈n′, ω′〉, or 〈n, ω〉 {P′ 〈nk, ω

′〉 such that 〈n, ω〉 {P 〈n′, ω′〉 {P
〈n1, ω

′〉{P 〈n2, ω
′〉, ...,{P 〈nk−1, ω

′〉{P 〈nk, ω
′〉.

Since 〈n′, ω′〉 |=B
λ e iff 〈nk, ω

′〉 `B
λ′ e, we obtain that 〈n, ω〉 |=B

λ EXe iff 〈n, ω〉 `B
λ′ EXe.

– Case ψ = EX¬e is similar as the case ψ = EXe.
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– Case ψ = EGψ′: Since 〈n, ω〉 `B
λ′ EGψ′ iff P′ has an infinite path 〈n0, ω0〉 {P′

〈n1, ω1〉{P′ 〈n2, ω2〉{P′ ... such that 〈n0, ω0〉 = 〈n, ω〉 and 〈n j, ω j〉 `
B
λ′ ψ

′ for every
j ≥ 0.

According to the definition of abstraction, for every j ≥ 0: 〈n j, ω j〉 {P′ 〈n j+1, ω j+1〉

iff either 〈n j, ω j〉 {P 〈n j+1, ω j+1〉, or 〈n j, ω j〉 {P 〈n
j
k1
, ω j〉 {P 〈n

j
k2
, ω j〉, ... {P

〈n j
k j
, ω j〉{P 〈n j+1, ω j+1〉 and the operator b of the instruction at n j, n

j
k1
, ..., n j

k j
, n j+1 is

not in I jump ∪ Iψ ∪ Istack. Thus 〈n j
km
, ω j〉 |=

B
λ ψ

′ iff 〈n j, ω j〉 |=
B
λ ψ

′ for every 1 ≤ m ≤ k j.

We obtain that 〈n, ω〉 `B
λ′ EGψ′ iff 〈n, ω〉 |=B

λ EGψ′.

– Case ψ = E[ψ1Uψ2]: Since

〈n, ω〉 |=B
λ E[ψ1Uψ2] iff there exists k ≥ 0 such that 〈n0, ω0〉{P 〈n1, ω1〉{P

〈n2, ω2〉 ...〈nk−1, ωk−1〉 {P 〈nk, ωk〉 is a path of P, 〈nk, ωk〉 |=
B
λ ψ2 and

〈ni, ωi〉 |=
B
λ ψ1 for every 0 ≤ i < k where 〈n0, ω0〉 = 〈n, ω〉

〈n, ω〉 `B
λ′ E[ψ1Uψ2] iff there exists k′ ≥ 0 such that 〈n′0, ω

′
0〉 {P′

〈n′1, ω
′
1〉 {P′ 〈n

′
2, ω

′
2〉 ...〈n

′
k′−1, ω

′
k′−1〉 {P′ 〈n

′
k′ , ω

′
k′〉 is a path of P′,

〈n′k′ , ω
′
k′〉 `

B
λ′ ψ2 and 〈n′i , ω

′
i〉 `

B
λ′ ψ1 for every 0 ≤ i < k′ where 〈n′0, ω

′
0〉 =

〈n, ω〉.

It is sufficient to prove that there exists k ≥ 0 such that 〈n0, ω0〉 {P 〈n1, ω1〉 {P
〈n2, ω2〉 ...〈nk−1, ωk−1〉 {P 〈nk, ωk〉 is a path of P, 〈nk, ωk〉 |=

B
λ ψ2 and 〈ni, ωi〉 |=

B
λ

ψ1 for every 0 ≤ i < k where 〈n0, ω0〉 = 〈n, ω〉 iff there exists k′ ≥ 0 such that
〈n′0, ω

′
0〉 {P′ 〈n

′
1, ω

′
1〉 {P′ 〈n

′
2, ω

′
2〉 ...〈n

′
k′−1, ω

′
k′−1〉 {P′ 〈n

′
k′ , ω

′
k′〉 is a path of P′,

〈n′k′ , ω
′
k′〉 `

B
λ′ ψ2 and 〈n′i , ω

′
i〉 `

B
λ′ ψ1 for every 0 ≤ i < k′ where 〈n′0, ω

′
0〉 = 〈n, ω〉. We

proceed by proving two directions as follows.

• Suppose there exists k ≥ 0 such that 〈n0, ω0〉 {P 〈n1, ω1〉 {P
〈n2, ω2〉 ...〈nk−1, ωk−1〉{P 〈nk, ωk〉 is a path of P, 〈nk, ωk〉 |=

B
λ ψ2 and 〈ni, ωi〉 |=

B
λ

ψ1 for every 0 ≤ i < k where 〈n0, ω0〉 = 〈n, ω〉, we show that there exists k′ ≥ 0
such that 〈n′0, ω

′
0〉 {P′ 〈n

′
1, ω

′
1〉 {P′ 〈n

′
2, ω

′
2〉 ...〈n

′
k′−1, ω

′
k′−1〉 {P′ 〈n

′
k′ , ω

′
′k〉 is

a path of P′, 〈n′k′ , ω
′
k′〉 `

B
λ′ ψ2 and 〈n′i , ω

′
i〉 `

B
λ′ ψ1 for every 0 ≤ i < k′ where

〈n′0, ω
′
0〉 = 〈n, ω〉. W.l.o.g., we suppose k is the minimum one.

Since the abstraction adds one transition 〈p, γω〉 {P′ 〈p′, γ′ω〉 for a sequence
of transitions 〈p, γω〉 {P 〈p1, γω〉 {P 〈p2, γω〉, ...,{P 〈pk, γω〉 {P 〈p′, γ′ω〉,
where γ = γ′, thus, there exists a subsequence ni0 , ..., nik′ of n0, ..., nk such that
ik′ = k, i0 = 0 and

∀ j : 0 ≤ j ≤ k′, 〈ni j , ωi j〉 = 〈n
′
j, ω

′
j〉.

By applying the induction hypothesis, we obtain that 〈n′k′ , ω
′
k′〉 `

B
λ′ ψ2 and

∀ j : 0 ≤ j < k′, 〈n′i , ω
′
i〉 `

B
λ′ ψ1.

Thus, 〈n, ω〉 `B
λ′ ψ.
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• Suppose there exists k′ ≥ 0 such that 〈n′0, ω
′
0〉 {P′ 〈n′1, ω

′
1〉 {P′

〈n′2, ω
′
2〉 ...〈n

′
k′−1, ω

′
k′−1〉 {P′ 〈n

′
k′ , ω

′
k′〉 is a path of P′, 〈n′k′ , ω

′
k′〉 `

B
λ′ ψ2 and

〈n′i , ω
′
i〉 `

B
λ′ ψ1 for every 0 ≤ i < k′ where 〈n′0, ω

′
0〉 = 〈n, ω〉, we show that there ex-

ists k ≥ 0 such that 〈n0, ω0〉{P 〈n1, ω1〉{P 〈n2, ω2〉 ...〈nk−1, ωk−1〉{P 〈nk, ωk〉

is a path of P, 〈nk, ωk〉 |=
B
λ ψ2 and 〈ni, ωi〉 |=

B
λ ψ1 for every 0 ≤ i < k where

〈n0, ω0〉 = 〈n, ω〉.

For every 0 ≤ i ≤ k′: if 〈n′j, ω
′
j〉 {P′ 〈n

′
j+1, ω

′
j+1〉 is inspired by a transition rule

of the form 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆′ which is added due to 〈p, γ〉 {P 〈p1, γ〉 {P
〈p2, γ〉, ...,{P 〈pk, γ〉{P 〈p′, γ′〉, according to the definition of the abstraction,
we obtain that there exist n j

0, n
j
1, n

j
2, ..., n

j
m such that n j

0 = n′j, n j
m = n′j+1, ω′j+1 = ω

′
j

and 〈n j
0, ω

′
j〉{P 〈n

j
1, ω

′
j〉, ...,{P 〈n

j
m, ω

′
j〉.

Otherwise we have 〈n′j, ω
′
j〉{P 〈n

′
j+1, ω

′
j+1〉.

Since n j
0 ∈ λ

′(b(a1, ..., an)) iff n j
i ∈ λ

′(b(a1, ..., an)) for every 1 ≤ i ≤ m according
to the definition of the abstraction and 〈n′j, ω

′
j〉 `

B
λ′ ψ1, we obtain that 〈n j

i , ω
′
j〉 `

B
λ′

ψ1 for every 0 ≤ i ≤ m.

By applying the induction hypothesis: we obtain that 〈n j
i , ω

′
j〉 |=

B
λ ψ1 for every

0 ≤ i ≤ m, and 〈n′k′ , ω
′
k′〉 |=

B
λ ψ2 where 〈n′k′ , ω

′
k′〉 = 〈nk, ωk〉.

Thus, there exists k ≥ 0 such that 〈n0, ω0〉 {P 〈n1, ω1〉 {P
〈n2, ω2〉 ...〈nk−1, ωk−1〉{P 〈nk, ωk〉 is a path of P, 〈nk, ωk〉 |=

B
λ ψ2 and 〈ni, ωi〉 |=

B
λ

ψ1 for every 0 ≤ i < k where 〈n0, ω0〉 = 〈n, ω〉.

�

5



No Abstraction
Abstraction

Ti
m

e(
s)

0

50

100

150

200

250

300

Number of instructions
1 10 100 1000 104 105

Fig. 8. Time Comparison

No Abstraction
Abstraction
out of memory

M
em

or
y(

M
B)

0.01

0.1

1

10

100

1000

104

Number of instructions
1 10 100 1000 104 105

Fig. 9. Memory Comparison

6


