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Abstract. Characterization of temporal properties is the original pur-
pose of inventing of temporal logics. In this paper, we show that the
property like “some event holds periodically” is not omega-regular. Such
property is called “periodicity”, which plays an important role in task
scheduling and system design. To give a characterization of periodicity,
we present the logic QPLTL, which is an extension of LTL via adding
quantified step variables. Based on the decomposition theorem, we show
that the satisfiability problem of QPLTL is PSPACE-complete.

1 Introduction

In some sense, concurrency and interleaving are the main course of complex-
ity in distributed and parallel programs. For such a program, we are in general
concerned about its interactive behaviors, rather than the final output. Hence,
various temporal logics are designed to characterize such issues of parallel pro-
grams. Characterization of temporal properties is always one of the central topics
in the research on temporal logics.

Linear-time temporal logic (LTL), is one of the most frequently used logics,
which is obtained from propositional logic via merely adding two temporal con-
nectives — X (next) and U (until). Simple as such logic is, LTL could express a
majority of properties which are usually concerned about — for example, respon-
sibility — such as the formula G(req → F ack), which depicts the assertion that
“each request will be eventually acknowledged”.

In [Wol83], Wolper pointed out some properties, like “p holds at least in every
even moment” (we refer to it as G2p in this paper), cannot be expressed by any
LTL formula. As a consequence, numerous extensions are presented to enhance
the expressive power. To mention a few: In [VW94], ω-automata are employed
as extended temporal connectives. In [BB87], Banieqbal and Barringer yield
the linear-time version of modal μ-calculus. In [LS07], Leucker and Sánchez
propose to use regular-expressions as prefixes of formulae. All of these logics
are shown to be as expressive as the full ω-regular languages, or the whole
set of (nondeterministic) Büchi automata [Büc62]. As a result, properties like
G2p can be described by these logics. In the view of formal languages, LTL
formulae precisely correspond to star-free ω-regular languages [Tho79], in which
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the Kleene-star (∗) and the omega-power (ω) operators can only be applied to Σ
(the alphabet). Meanwhile, in the automata-theoretic perspective, LTL formulae
are inter-convertable with Büchi automata of special forms, e.g., counter-free
automata or aperiodic automata (cf. [DG08] for a comprehensive survey).

We say that an event f happens periodically, if there exists some number
n > 0 (called the period, which is not pre-given) such that f holds at least in
every moment which is a multiple of n. Such kind of property is called period-
icity, which plays an important role in task scheduling and system design. For
example, when designing a synchronous circuit, we need to guarantee the clock
interrupt generates infinitely and equidistantly. An aerospace control system has
a diagnosis module which periodically checks whether the system works properly.
If it was not, then the system immediately enters the recovery state.

Enlightened by the fact that “G2p cannot be expressed by any LTL formula”,
we conjecture that “the periodicity property ∃k.Gkp is not expressible by any
ω-regular language”. We give an affirmative proof of this conjecture in this paper,
and hence deduce that ω-regular properties are not closed under infinite unions
and/or intersections. To express periodicity within linear-time framework, we
tentatively suggest to add quantified step variables into logics. For example, if
we use μTL [BB87] as the base logic, the aforementioned property could be
described by the formula ∃k.νZ.(p ∧ XkZ). However, such mechanism gives rise
to an expressive power beyond expectations — we show that, if we allow nesting
of step variables, all formulae of Peano arithmetic can be encoded — provided
that the base logic involves the X-operator and two distinct propositions. Hence,
it leads to undecidability for the satisfiability problem of the logic.

Thus, to obtain a decidable extension, we have to impose strong syntactic
restriction to the logic. In this paper, using LTL as the base logic, we introduce
the logic Quantified Periodic LTL (QPLTL, for short). In such logic, formulae
are categorized into four groups, the first three are contained within ω-regular
languages, and the last group is specially tailored for defining periodicity: Each
of such formulae uses at most one step variable, and the occurrence of this
variable must be of special form. We show that, for QPLTL, the satisfiability
problem is also PSPACE-complete. Our proof approach is mainly based on the
decomposition theorem [AS85], namely, each property could be decomposed into
an intersection of a liveness property and a safety property, with which, we give a
normal form of star-free liveness properties. Instead of deciding the satisfiability
of the formulae, we give a decision procedure to decide their validity.

The rest part of this paper is organized as follows: Sect. 2 introduces some
basic notations and definitions. In Sect. 3, we show that periodicity properties
are not ω-regular. Thus, we suggest to add quantified step variables into linear-
time logics to gain such an enhancement. However, we show that an unrestricted
use of such extension will result in undecidability of satisfiability, provided
that the base logic involves the X-operator and at least two propositions. We
then present the logic QPLTL in Sect. 4 via imposing strict syntactic constraints
to the use of step variables, by revealing a normal form of star-free liveness
properties, we show that the satisfiability problem of the proposed logic is
PSPACE-complete. We summarize this paper and discuss future work in Sect. 5.
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2 Preliminaries

2.1 Finite and Infinite Words

Fix an alphabet Σ, whose elements are called letters. We call w an ω-word (or
infinite-word) if w ∈ Σω, and we call w a finite-word if w ∈ Σ∗.

We use |w| to denote the length of w, and definitely |w| = ∞ if w is an
ω-word. For each i < |w|, let w(i) be the ith letter of w. Remind the first letter
should be w(0).

Given w1 ∈ Σ∗ and w2 ∈ Σ∗ ∪ Σω, we denote by w1 · w2 the concatenation
of w1 and w2. Namely, we have: (w1 · w2)(i) = w1(i) whenever i < |w1|; and
(w1 · w2)(i) = w2(i − |w1|) whenever i ≥ |w1|. In this case, we say that w1 and
w2 are respectively a prefix and a postfix (or suffix ) of w1 · w2.

In the rest of this paper, we fix a (potentially infinite) set P of propositions,
the elements range over p, p1, p2, etc., and when mentioning about “words”,
without explicit declaration, we let Σ = 2P .

2.2 Linear-Time Temporal Logic

Syntax. Formulae of linear-time temporal logic (LTL, [Pnu77]), ranging over
f, g, f1, f2, . . ., can be described by the following abstract grammar:

f ::= ⊥ | p | f → f | Xf | f U f.

We usually use the following derived operators as syntactic sugars:

¬f
def= f → ⊥ � def= ¬⊥ f1 ∨ f2

def= ¬f1 → f2

f1 ∧ f2
def= ¬(¬f1 ∨ ¬f2) Ff

def= �U f f1 ↔ f2
def= (f1 → f2) ∧ (f2 → f1)

f1Rf2
def= ¬(¬f1 U¬f2) Gf

def= ¬F¬f f1 W f2
def= (f1 U f2) ∨ Gf2

Semantics. The satisfaction relation (|=) can be defined w.r.t. an ω-word w ∈
(2P)ω and a position i ∈ N. Inductively:

– w, i �|= ⊥ for each w and i.
– w, i |= p iff p ∈ w(i).
– w, i |= f1 → f2 iff either w, i �|= f1 or w, i |= f2.
– w, i |= Xf iff w, i + 1 |= f .
– w, i |= f1 U f2 iff w, j |= f2 for some j ≥ i and w, k |= f1 for each k ∈ [i, j).

We may abbreviate w, 0 |= f as w |= f . The language of f , denoted by L (f),
consists of all ω-words initially satisfying f , i.e., L (f) = {w ∈ (2P)ω | w |= f}.

X, U and W are respectively the “next”, “until” and “weak until” operators.
According to the definition, Gf holds if f holds at each position, and Ff is true
if f eventually holds at some position. In addition, f1 W f2 holds if at every
position, either f1 holds, or at some previous position f2 holds.
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2.3 Automata on Finite/Infinite-Words

An automaton is a tuple A = (Q,Σ, δ,Q0, F ) where: Q is a finite set of states;
Σ is a finite alphabet ; δ : Q × Σ → 2Q, is the transition function; Q0 ⊆ Q is a
set of initial states; and F ⊆ Q is a set of accepting states.

The automaton A is deterministic, if #Q0 = 1, and #δ(q, a) = 1 for each
q ∈ Q and a ∈ Σ.

In this paper, we are both concerned about automata on finite and infinite
words. For an automaton A on infinite (resp. finite) words, a run of A over a word
w ∈ Σω (resp. w ∈ Σ∗) is a sequence q0, q1, . . . ∈ Qω (resp. q0, q1, . . . , q|w| ∈ Q∗),
where q0 ∈ Q0 and qi+1 ∈ δ(qi, w(i)).

If A is an automaton on finite words, the run q0, q1, . . . , qm is accepting if
qm ∈ F . Otherwise, if A is on infinite word, the run q0, q1, . . . is accepting if
there are infinitely many i’s having qi ∈ F — such kind of acceptance is called
Büchi [Büc62] acceptance condition. For this reason, in this paper, automata
on infinite words are also called Büchi automata.

For convenience, we in what follows use a three-letter-acronym to designate
the type of an automaton: The first letter can be either “N” (non-deterministic)
or “D” (deterministic). The second letter can either be “B” or “F”, referring
to Büchi and finite acceptance condition, respectively. The last letter is always
“A”, the acronym of automaton. For example, NBA stands for nondeterministic
Büchi automaton, and DFA means deterministic automaton on finite words.

A word w is accepted by A, if A has an accepting run on it. We denote by
L (A) the set of words accepted by A, call it the language of A. In the case of
L = L (A), we say that L is recognized by A.

It is well known that NFAs and DFAs are of equivalent expressive power,
because each NFA can be transformed into a DFA via the power-set construction.
However, it is not the case for Büchi automata. NBAs are strictly more expressive
than DBAs. As an example, let Σ = {a, b}, then the language consisting of “ω-
words involving finitely many a’s” can only be recognized by NBAs. For Büchi
automata, determinization requires more complex acceptance conditions, such
as Rabin or parity (cf. [Rab69,McN66]).

Languages recognized by NBAs are called ω-regular ones. Meanwhile, trans-
formation from LTL formulae to Büchi automata has been well studied ever
since the logic was presented (cf. [TH02,ST03] etc.).

Theorem 1. Given an LTL formula f , there is an NBA Af such that L (Af ) =
L (f).

Theorem 2. Given an automaton A = (Q,Σ, δ,Q0, F ), then there exists an
automaton A′ = (Q′, Σ, δ′, Q′

0, F
′) such that L (A′) = L (A) and #Q′

0 = 1.

Proof. Let q be some new state not belonging to Q, then: let Q′ = Q ∪ {q}; let
the function δ′ be the extension of δ by defining δ′(q, a) =

⋃
q0∈Q0

δ(q0, a) for
each a ∈ Σ; let Q′

0 = {q}; and, if A is an NFA/DFA and Q0 ∩ F �= ∅ then we
let F ′ = F ∪ {q}, otherwise, let F ′ = F . ��
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2.4 Safety and Liveness

Generally speaking, each set L ⊆ (2P)ω defines a property, and a formula f
corresponds to L if L (f) = L. Remind that in this definition, f is not necessary
to be an LTL formula. Actually, it could be a formula of more (or less) powerful
logic within linear-time framework.

There are two kinds of fundamental properties relating to temporal logics,
called safety and liveness. Informally, safety and liveness are described as “the
bad thing never happens” and “the good thing eventually happens”, respectively.
Below we give a formal characterization, which is introduced in [AS85].

Safety: A formula f corresponds to a safety property if: For every ω-word w,
w �|= f implies there is some finite prefix (called “bad-prefix”) w′ of w, such
that w′ · w′′ �|= f for each ω-word w′′.

Liveness: A formula f corresponds to a liveness property if: For every finite-
word w, there is some ω-word w′ having w · w′ |= f .

Theorem 3 ([AS85,CS01]). For safety and liveness properties, we have:

1. Safety properties are closed under finite unions and arbitrary intersections.
2. Liveness properties are closed under arbitrary unions, but not under

intersections.
3. � is the only property which is both a safety and a liveness property.
4. For any property f , there exists a liveness property g and a safety property h

such that f = g ∧ h.

The last proposition is the so-called decomposition theorem. As an example,
the LTL formula f U g can be decomposed as (fWg) ∧ Fg, where f W g corre-
sponds to a safety property, whereas Fg corresponds to a liveness property.

Lemma 1. If f =
∧

i fi corresponds to a liveness property, then so does each fi.

Proof. Otherwise, according to the decomposition theorem, fi can be written as
the conjunction of some gi and hi, which respectively correspond to a liveness
property and a safety property. If hi �↔ �, there is some ω-word w violating hi.
Just let w′ ∈ (2P)∗ be the bad-prefix of w w.r.t. hi, we thus have w′ · w′′ �|= f
for every w′′ ∈ (2P)ω, contradiction! ��

3 Periodicity and Step Variables

3.1 Periodicity: Beyond Omega-Regular

In [Wol83], Wolper pointed out that: The property G2p, namely “p holds at every
even moment”, is not expressible in LTL. Indeed, L (G2p) =

⋂
k∈N

L (X2kp),
where Xn is the shorthand of n successive X-operators. This implies that lan-
guages captured by LTL formulae are not closed under infinite intersections.

This naturally enlightens us to make one step ahead — we would like to know:
“Are ω-regular languages closed under infinite intersections/unions?” Now, let us
consider the language

⋃
k>0 L (Gkp), which consists of all ω-words along which

p holds periodically. Remind that w |= Gkp if w, i × k |= p for each i ∈ N.
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Theorem 4. The language
⋃

k>0 L (Gkp) is not ω-regular.

Proof. Assume by contradiction that this language is ω-regular, then there is
an NBA A precisely recognizing it. Therefore, each ω-word being of the form
({p} · ∅k)ω is accepted by A.

Suppose that A has n states, and let us fix some k > n. Suppose that the
corresponding accepting run of A on w0 = ({p} · ∅k)ω is σ0 = s0, s1, s2, . . ., and
we denote si by σ0(i). Since we have totally n states, for each t ∈ N, there exists
a pair (it, jt), s.t. 0 < it < jt ≤ k and σ0(t × (k + 1) + it) = σ0(t × (k + 1) + jt).

Since σ0(i0) = σ0(j0) in the case of t = 0, for any �0 > 0, from Pumping
lemma, A has the run

σ1 = σ0(0), σ0(1), . . . , σ0(i0), [σ0(i0 + 1), . . . , σ0(j0)]�0 , σ0(j0 + 1), σ0(j0 + 2) . . .

on the word

w1 = ({p} · ∅i0−1 · ∅(j0−i0)×�0 · (∅)k−j0+1) · ({p} · ∅k)ω.

σ1 is definitely an accepting run because states occurring infinitely often in σ0

are the same as that in σ1. Let L0 = k + (j0 − i0) × (�0 − 1), then we have
w1 = ({p} · ∅L0) · ({p} · ∅k)ω. The above process is depicted by Fig. 1.

Also note that σ0(�) = σ1(�+L0−k) for each � > k, and hence σ0(k+1+i1) =
σ0(k + 1 + j1) implies σ1(L0 + 1 + i1) = σ1(L0 + 1 + j1). Then, for any �1 > 0,
using Pumping lemma again, A also has an accepting run on the word

w2 = ({p} · ∅L0) · ({p} · ∅i1−1 · ∅(j1−i1)×�1 · (∅)k−j1+1) · ({p} · ∅k)ω.

Now, let L1 = k+(j1−i1)×(�1−1), then w2 = ({p}·∅L0) ·({p}·∅L1) ·({p}·∅k)ω.
Likewise and stepwise, we may obtain a sequence of ω-words accepted by A:

– w0 = ({p} · ∅k)ω.
– w1 = ({p} · ∅L0) · ({p} · ∅k)ω.
– w2 = ({p} · ∅L0) · ({p} · ∅L1) · ({p} · ∅k)ω.
– · · ·
Since that wi+1 is constructed based on wi, we can always choose a proper �i+1

to guarantee that Li+1 > Li for each i. Then, consider the limit

w∞ = ({p} · ∅L0) · ({p} · ∅L1) · ({p} · ∅L2) · . . .

of all such wis: On one hand, we have w∞ ∈ L (A) because the corresponding
run σ∞ is accepting — observe that each occurrence of an accepting state in σ0

will be “postponed” to at most finitely many steps in σ∞. On the other hand,
the “distance” between two adjacent “occurrences” of p monotonically increases,
and it would be eventually larger than any fixed number — this implies that p
cannot have a period w.r.t. w∞. We thus get a contradiction because A accepts
some word not belonging to

⋃
k>0 L (Gkp). ��
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Fig. 1. The construction of w1 from w0.

Note that for each fixed number k > 0, the language L (Gkp) is ω-regular,
and it is not the case for

⋃
k>0 L (Gkp), and we thus have the following corollary.

Corollary 1. ω-regular languages are not closed under infinite unions and/or
intersections.

Remark 1. We say that ω-regular languages are not closed under infinite inter-
sections because such languages are closed under complement. ��

3.2 Logics with Step Variables

To express periodicity, we tentatively propose to add (quantified) step variables
into logics. As an example, if we choose μTL as the base logic, then the afore-
mentioned property can be described as1 ∃k.νZ.(p ∧ XkXZ) and here k is a
step variable. As another example, one can see that ∀k.XkXkp is precisely the
description of G2p.

From now on, we fix a set K of step variables, whose elements range over k, k1,
k2, etc., and each step variable is interpreted as a natural number. In addition, we
require that the base logic must involve the X-operator to designate “distance
between events”. Therefore, at first thought, each such extension involves the
following logic (called core logic)

f ::= ⊥ | p | f → f | Xf | Xkf | ∃k.f

as fragment2. For convenience, we define ∀k.f as the shorthand of ¬∃k.¬f (recall
that ¬g stands for g → ⊥).

Since we have step variables, when giving semantics of a formula, besides an
ω-word and a position, an evaluation v : K → N is also required. For the core
logic, we define the semantics as follows.

1 Note that we here have an extra X in the formula, because k can be assigned to 0.
2 Remind that step variables cannot be instantiated as concrete numbers in such logic,

hence we have both Xf and Xkf in the grammar.
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– w, i �|=v ⊥ for every w ∈ (2P)ω, i ∈ N.
– w, i |=v p iff p ∈ w(i).
– w, i |=v f1 → f2 iff either w, i �|=v f1 or w, i |=v f2.
– w, i |=v Xf iff w, i + 1 |=v f .
– w, i |=v Xkf iff w, i + v(k) |=v f .
– w, i |=v ∃k.f iff there is some n ∈ N such that w, i |=v[k←n] f .

Here, v[k ← n] is also an evaluation which is almost identical to v, except that
it assigns n to k. To simplify notations, when f is a closed formula3, we often
omit v from the subscript; meanwhile, we can also omit i whenever i = 0.

Though such kind of extensions seems to be natural and succinct, however,
we will show that the satisfiability problem, even if for the core logic, is not
decidable. But before that, we first introduce the following notations:

– We abbreviate X . . .X︸ ︷︷ ︸
n times

f and Xk . . .Xk
︸ ︷︷ ︸

n times

f as Xnf and Xn×kf , respectively, where

n ∈ N and k ∈ K.
– We sometimes directly write Xt1Xt2f as Xt1+t2f .

Note that in this setting, both the addition (+) and the multiplication (×)
are communicative and associative. Meanwhile, “×” is distributive w.r.t. “+”,
namely, t1 × t2 + t1 × t3 can be rewritten as t1 × (t2 + t3).

Theorem 5. The satisfiability problem of the core logic is undecidable.

Proof. Our goal is to show that “each formula of Peano arithmeticcan be encoded
with the core logic”. To this end, we need to build the following predicates:

1. Fix a proposition p ∈ P, let fp be ∀k1.∀k2.∃k3.(Xk1+k3p �↔ Xk1+k2+k3+1p).
Actually, fp just depicts the non-shifting property of p. i.e., w |= fp only if
for each i, j ∈ N with i < j, there is some t having: either (w, i + t |= p and
w, j + t �|= p) or (w, i + t �|= p and w, j + t |= p) — indeed, one can just view
k1 as i and view k1 + k2 + 1 as j. Note that fp is satisfied by any ω-word
along which p occurs infinitely often and the distance between two adjacent
occurrences of p monotonically increases.

2. Let P=(k1, k2)
def= fp ∧ ∀k.(Xk1+kp ↔ Xk2+kp). Hence, w, i |=v P=(k1, k2)

iff v(k1) = v(k2). Because, if v(k1) �= v(k2), according to the definition of
fp, there must exist some n ∈ N, such that p differs from w(v(k1) + n) and
w(v(k2) + n).

3. Let P<(k1, k2)
def= ∃k.P=(k1 +k +1, k2). Then, w, i |=v P<(k1, k2) iff v(k1) <

v(k2).
4. Subsequently, we use P+(k1, k2, k3) to denote P=(k1 + k2, k3). According to

the definition, w, i |=v P+(k1, k2, k3) iff v(k3) = v(k1 + k2) = v(k1) + v(k2).

3 That is, f involves no free variable.
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5. Now, let us fix another proposition q ∈ P and define

fq
def= q ∧ Xq ∧ ∀k1.∃k2.X

k1+k2q ∧
∀k1.∀k2.∀k3.(Xk1q ∧ Xk2q ∧ Xk3q∧
P<(k1, k2) ∧ P<(k2, k3)∧
∀k4.((P<(k1, k4) ∧ P<(k4, k2)) ∨ (P<(k2, k4) ∧ P<(k4, k3)) → ¬Xk4q)
→ ∃k5.∃k6.(P+(k5, k1, k2) ∧ P+(k6, k2, k3) ∧ P+(2, k5, k6)))

We may assert that w, i |= fq iff i is a complete square number (i.e., i = j2 for
some j). Let us explain: The first line indicates that q holds infinitely often,
and it holds at the positions of 0 and 1. For every three adjacent positions
k1, k2, k3 at which q holds (hence, q does not hold between k1 and k2, nor
between k2 and k3), we have (k3 − k2) = 2 + (k2 − k1). Inductively, we can
show that q becomes true precisely at positions 0, 1, 4, . . . , (n − 1)2, n2,
(n + 1)2, . . . 4.

6. We let P2(k1, k2) be

fq ∧Xk2q ∧Xk2+2×k1+1q ∧ ¬∃k3.(P<(k2, k3) ∧ P<(k3, 2 × k1 + k2 + 1) ∧Xk3q)

then w |=v P2(k1, k2) iff v(k2) = (v(k1))2.
7. Lastly, we define

P×(k1, k2, k3)
def= ∃k4.∃k5.∃k6.(P2(k1, k4) ∧ P2(k2, k5)

∧ P2(k1 + k2, k6) ∧ P=(2 × k3 + k4 + k5, k6))

Then, once w |=v P×(k1, k2, k3) holds, we can infer that there is some evalua-
tion v′ which agrees with v on k1, k2 and k3 (i.e., v′(ki) = v(ki) for i = 1, 2, 3)
having ⎧

⎪⎪⎨

⎪⎪⎩

v′(k4) = (v′(k1))2

v′(k5) = (v′(k2))2

v′(k6) = (v′(k1) + v′(k2))2

v′(k6) = v′(k4) + v′(k5) + 2 × v′(k3)

and we thus subsequently have v(k3) = v(k1) × v(k2).

Therefore, “addition”, “multiplication”, and the “less than” relation over natural
numbers can be encoded in terms of the core logic. Since quantifiers are also
involved here, the satisfiability problem of Peano arithmetic, which is known
to be undecidable (cf. [Göd31,Chu36]), is now reduced to that of the core logic. ��

4 The Logic QPLTL

Theorem 5 indicates that the unrestricted use of step variables leads to undecid-
ability for the satisfiability problem. To obtain a decidable extension, we need
to impose strong syntactic constraints to the logic. In this paper, we investigate
the logic Quantified Periodic LTL (QPLTL for short), based on LTL.
4 The encoding of fq is enlightened by [Sch10].
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4.1 Syntax and Semantics

A QPLTL formula can be one of the following forms:

(I) An LTL formula.
(II) A formula like f1 U

n f2 or f1 W
n f2, where f1 and f2 are LTL formulae, n

is a positive natural number.
(III) Boolean or temporal combinations of (I) and (II).
(IV) A formula being of the form

Æ

k.(f1 Uk f2) or

Æ

k.(f1 Wk f2), where

Æ∈
{ E

,

A}, k ∈ K, f1 and f2 are two LTL formulae.

Given an ω-word w ∈ (2P)ω, and a position i ∈ N, we define the satisfaction
relation as follows.

– Satisfaction of an LTL formula is defined in the way same as before.
– w, i |= f1 U

n f2 iff there is some t ∈ N such that w, i + t × n |= f2 and
w, i + j × n |= f1 for every j < t.

– w, i |= f1 W
n f2 iff either w, i |= f1 U

n f2 or w, i+ t×n |= f1 for each t ∈ N.
– Boolean and temporal combinations are defined accordingly with the corre-

sponding operators.
– w, i |= ∃k.(f1 Uk f2) (resp. w, i |= ∃k.(f1 Wk f2)) iff there is some n > 0 such

that w, i |= f1 U
n f2 (resp. w, i |= f1 W

n f2).
– w, i |= ∀k.(f1 Uk f2) (resp. w, i |= ∀k.(f1 Wk f2)) iff for each n > 0 we have

w, i |= f1 U
n f2 (resp. w, i |= f1 W

n f2).

As usual, we directly write w, 0 |= f as w |= f , and we also define the following
derived notations5.

Fnf
def= �Un f Gnf

def= f Wn ⊥

Æ

k.Fkf
def=

Æ

k.�Uk f

Æ

k.Gkf
def=

Æ

k.f Wn ⊥
Indeed, from the proof of Theorem 5, one can see that nested use of quantifiers

leads to undecidability of satisfaction decision. Thus, in QPLTL, we use at most
one step variable in a formula.

Remark 2. f1 U
1 f2 and f1 W

1 f2 can be just written as f1 U f2 and f1 W f2,
which coincide with the definitions given in LTL.

Also remind that a step variable must be interpreted as a positive number —
beware that this is different from that in Sect. 3.2. This is just for the following
consideration: If we allow assigning 0 to a step variable, the formula ∃k.Gkp is no
longer the description of “p holds periodically”, because this formula is weaker
than G0p (which is equivalent to p). Note that in such setting, the “core logic”
remains undecidable — the proof can be obtained via doing a simple adaptation
from that of Theorem 5.

5 We do not consider the “releases” (R) operator here, which is the duality of U.
Indeed, f1Rf2 is equivalent to f2 W(f1 ∧ f2).
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To make things compatible, for the formulae like f1 U
n f2 or f1 W

n f2, we
don’t allow n = 0. Actually, according to the definition, we can see that f1 U

0f2
and f1 W

0 f2 are just merely f2 and f1 ∨ f2, and such operators are redundant.
Note that Xn is still the abbreviation of n successive Xs. We don’t explic-

itly add the formulae like ∃k.Xkf and ∀k.Xkf into the logic, because they are
essentially XFf and XGf , respectively. ��

4.2 The Decision Problem

In this section, we will show that the satisfiability problem of QPLTL is
decidable. Indeed, this proof also reveals the close connection among liveness,
safety and periodicity.

We can equivalently transform each LTL formula f to make it involve only
literals (i.e., �, ⊥, formulae like p or ¬p), ∨, ∧, X, U and W. We in what follows
call it the positive normal form (PNF, for short) of f . An LTL formula is U-free
if its PNF involves no U-operator.

Lemma 2 ([CS01]). Each U-free LTL formula corresponds to a safety property.

Below we give a characterization of LTL formulae corresponding to liveness
properties. In some sense, it could be considered as a normal form of such kind
of star-free properties.

Theorem 6. If the LTL formula f corresponds to a liveness property, then it
can be equivalently written as

∧
i(f

′
i ∨Ff ′′

i ), where each f ′
i corresponds to a safety

property.

Proof. Suppose that f is already in its PNF, then we conduct a series of trans-
formations on f .

First of all, we use the pattern f1 U f2 ↔ (f1 W f2) ∧ Ff2 to replace each
occurrence of U operator with that of W and F.

Then, use the following rules

X(f1 ∧ f2) ↔ Xf1 ∧ Xf2 X(f1 ∨ f2) ↔ Xf1 ∨ Xf2
X(f1 W f2) ↔ (Xf1)W(Xf2) XFf ′ ↔ FXf ′

to push X inward, until X occurrs only before a literal or another X.
Subsequently, repeatedly use the following schemas6

(f1 ∧ f2)W f3 ↔ (f1 W f3) ∧ (f2 W f3)
f1 W(f2 ∨ f3) ↔ (f1 W f2) ∨ (f1 W f3)

(f1 ∨ Ff2)W f3 ↔ F(f2 ∧ X(f1 W f3)) ∨ (f1 W f3) ∨ F(f3 ∧ Ff2) ∨ FGFf2
f1 W(f2 ∧ Ff3) ↔ (f1 W f2) ∧ (F(f2 ∧ Ff3) ∨ Gf1)

(Ff1)W f2 ↔ f2 ∨ F(f1 ∧ Xf2) ∨ F(f2 ∧ Ff1) ∨ FGFf1
f1 W(Ff2) ↔ Gf1 ∨ Ff2

6 For example, when dealing with (p1 ∨p2 ∧Fp3)W p4, we need first transform the first
operand into disjunctive normal form — i.e., rewrite it as ((p1∨Fp3)∧(p2∨Fp3))W p4,
and then conduct the transformation with the first rule and the third rule. Similarly,
for the second operand, we need first transform it into conjunctive normal form.
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until the following holds: For each subformula f ′ = f1 W f2, if f1 or f2 involves
F, then f ′ must be contained in the scope of some other F. Remind that we
equivalently write GFfi as FGFfi in the second rule and the fifth rule to fulfill
such requirement7. Note that when the third or the fifth schema is applied, one
need further push Xs inward using the previous group of rules.

Lastly, we write the resulting formula into the conjunctive normal form
∧

i fi

where each fi =
∨

j fi,j . We now show that it must be of the desired form.

– First of all, since f corresponds to a liveness property, so does each fi (cf.
Lemma 1).

– Second, for each fi =
∨

j fi,j , if there is no such fi,j whose outermost operator
is F, then fi is U-free8. From Lemma 2, fi also corresponds to a safety property.
Hence, such fi is essentially equivalent to � (cf. Theorem 3), and we can
simply remove this conjunct.

– Then, for the other fis: By applying the scheme Fg1 ∨ . . .∨Fgn ↔ F(g1 ∨ . . .∨
gn), we can just preserve one disjunct having F as the outermost operator,
denote it by Ff ′′

i . Since other disjuncts are U-free, the disjunction of them,
denoted by f ′

i , corresponds to a safety property (cf. Theorem3).

Then, the above discussion concludes the proof. ��
Lemma 3 ([AS87]). Given an LTL formula f , the question “whether f corre-
sponds to a liveness property” is decidable. In addition, given a safety LTL for-
mula, then there is an automaton on finite words recognizing all its bad-prefixes.

Theorem 7. Given two LTL formulae f1 and f2, where f2 corresponds to a
safety property, then the question “whether exists some ω-word w such that w |=
Gf1 and w |= ∃k.Gk¬f2” is decidable.

Proof. Let A1 = (Q1, 2P , δ1, {q1}, F1) be the NBA recognizing L (Gf1), and
A2 = (Q2, 2P , δ2, {q2}, F2) be the NFA9 recognizing the bad-prefixes of f2.

For each q ∈ Q1, we can define a product Aq
1 ⊗ A2

def= (Q1 ×
Q2, 2P , δ′, {(q, q2)}), where

δ′((q′
1, q

′
2), a) =

{
{(q′′

1 , q′′
2 ) | q′′

1 ∈ δ1(q′
1, a), q′′

2 ∈ δ2(q′
2, a)} q′

2 �∈ F

{(q′′
1 , q′′

2 ) | q′′
1 ∈ δ1(q′

1, a), q′′
2 ∈ Q2} q′

2 ∈ F
.

The product is almost an automaton, but we are not concerned about its run
over words, hence the accepting state set is not given here. Instead, we will
define the notion of accepting loops: An accepting loop is a finite sequence
(q1,0, q2,0), (q1,1, q2,1), . . . , (q1,m, q2,m) ∈ (Q1 × Q2)∗ such that:
7 Note that the operator G is derived from W.
8 Because, the previous transformations could guarantee that: If the outermost oper-

ator of fi,j is not F, then no F occurs in fi,j .
9 Remind that each automaton can be equivalently transformed into another one hav-

ing a unique initial state, and the transformation is linear (cf. Theorem 2). Indeed,
to obtain a finite alphabet, here we may temporarily take P as the set constituted
with propositions occurring in f1 or f2.
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1. q1,0 = q1,m and q2,0 = q2,m.
2. For each 0 ≤ i < m, there is some ai having (q1,i+1, q2,i+1) ∈ δ′((q1,i, q2,i), ai).
3. There exists some 0 ≤ i < m such that q1,i ∈ F1.
4. There also exists some 0 ≤ j < m such that q2,j ∈ F2.

We will then show the following claim:

There is some ω-word w ∈ (2P)ω making w |= Gf1 and w |= ∃k.Gk¬f2
iff there is some q ∈ Q1 such that Aq

1 ⊗ A2 involves an accepting loop
starting from (q, q2).

=⇒: Suppose that w |= Gf1 and w |= ∃k.Gk¬f2 with the period n, namely
w |= Gn¬f2 — which implies w, i × n �|= f2 for every i ∈ N.

Let σ = σ(0), σ(1), σ(2), . . . ∈ Qω
1 be an accepting run of A1 on w. Then, there

exists some qf ∈ F1 such that there are infinitely many i’s having σ(i) = qf .
Because the run is infinite, there must exist some q ∈ Q1 fulfilling: there are
infinitely many i’s having σ(i × n) = q. W.l.o.g., suppose that σ(i0 × n) = q.

Because w, i0 × n �|= f2, there exists some bad-prefix w′ of f2, which starts
from w(i0 × n). Let i1 be the number fulfilling that: σ(i1 × n) = q, and (i1 −
i0) × n > |w′|, and there exists some � ∈ [i0 × n, i1 × n) having σ(�) = qf ∈ F1.

Since w′ is a bad-prefix of f2, there is a finite accepting run σ′ = σ′(0), σ′(1),
. . . , σ′(|w′|) of A2 on w′, where σ′(0) = q2 and σ′(|w′|) ∈ F2.

Let t = (i1 − i0) × n, since t > |w|′, according to the construction, we can
prolong σ′ by defining σ′(j) = σ′(|w′|) for each j ∈ (|w′|, t) and σ′(t) = q2.

For each j ∈ [0, t], we let σ′′(j) = σ(i0 × n + j). Thus, we get the accepting
loop (σ′′(0), σ′(0)), . . . , (σ′′(t), σ′(t)) in the product. Indeed, according to the
construction, we can see that both (σ′′(0), σ′(0)) and (σ′′(t), σ′(t)) are (q, q2),
and the loop is accepting.
⇐=: Conversely, suppose (q1,0, q2,0), . . . , (q1,n, q2,n) to be an accepting loop of
Aq

1 ⊗ A2 where q1,0 = q1,n = q and q2,0 = q2,n = q2. We can, of course, assume
that q is reachable from q1 in A1 — if not so, such state can be safely removed.

Suppose that (q1,i+1, q2,i+1) ∈ δ′((q1,i, q2,i), ai), we let w = (a0·a1·. . .·an−1)ω.
Also let m ∈ [0, n) be the minimal index having q2,m ∈ F2, then a0 ·a1 · . . . ·am−1

is a bad-prefix of f2, hence w violates f2 with the period n, and thus w |=
∃k.Gk¬f2.

What left is to ensure that w |= Gf1 also holds. Suppose that q1 reaches q
via reading the finite word w0, then w0 · w ∈ L (A1), and thus w0 · w |= Gf1.
Consequently, we have w |= Gf1. ��
Theorem 8. Given an LTL formula f , the question “whether ∃k.Gk¬f is sat-
isfiable” is decidable.

Proof. First of all, we may decompose f as g∧h where g corresponds to a liveness
property and h corresponds to a safety property.

If h �↔ �, then there is a finite-word w0 acting as the bad-prefix of h, and
hence a bad-prefix of f . Therefore, the ω-word wω

0 = w0 · w0 · w0 · . . . violates f
periodically, and thus ∃k.Gk¬f must be satisfiable.
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In what follows, we just consider the case that h ↔ �, and hence f corre-
sponds to a liveness property. From Theorem 6, let us further assume the normal
form of f is

∧m
i=1 fi, where fi = f ′

i ∨Ff ′′
i , and f ′

i corresponds to a safety property.
Thus, f is periodically violated, if and only if: there is some ω-word w, a set

of indices J ⊆ {1, 2, . . . ,m}, and a positive number n, such that for each i ∈ N

we have w, i × n �|= fj for some j ∈ J .
Then, the obligation is to detect the existence of such word w, index set J

and period n. First, we may choose the set J , and the number of such choices
are finite. We can further assume that w |= G¬f ′′

j for each j ∈ J , because:

– If there is some j ∈ J having w |= GFf ′′
j , then the disjunct fj is never

violated by w. In this case, we may choose some J ′ ⊆ J \ {j} to be the index
set.

– If there are finitely many i’s having w, i |= f ′′
j , then we may choose some

postfix of w to be the word.

Now, given J , the problem becomes: Find some ω-word w, which fulfills w |=∧
j∈J G¬f ′′

j and w |= ∃k.Gk¬∧
j∈J f ′

j . Since that
∧

j∈J G¬f ′′
j is equivalent to

G
∧

j∈J ¬f ′′
j , and

∧
j∈J f ′

j corresponds to a safety property, from Theorem7, we
know that this problem is decidable. ��
Theorem 9. The satisfiability problem of QPLTL is decidable.

Proof. Since formulae of Type (I)–(III) can be expressed by some logics equal
to ω-regular languages, such as μTL or ETL, we here just consider formulae of
Type (IV).

First, we lift the negation operator (¬) to that group of formulae by defining

¬ Æ

k.(f1 Uk f2)
def=

Æ

k.(¬f2 W
k(¬f1 ∧ ¬f2))

¬ Æ

k.(f1 Wk f2)
def=

Æ

k.(¬f2 U
k(¬f1 ∧ ¬f2))

where

Æ

is

A

(resp.

E

) if

Æ

is

E

(resp.

A

). Indeed, for each such formula f , we
can examine that w |= f iff w �|= ¬f for every ω-word w. Hence, such lifting
is admissible. This also implies that formulae of Type (IV) are closed under
negation.

Then, for such a formula, instead of deciding its satisfiability, we would rather
decide its validity, because f is satisfiable iff ¬f is not valid. Below gives the
decision approach.

(1) ∃k.(f1 Wk f2) is valid iff f1 ∨ f2 is valid.
(2) ∀k.(f1 Wk f2) is valid iff f1 ∨ f2 is valid.
(3) ∃k.(f1 Uk f2) is valid iff f2 ∨ (f1 ∧ Ff2) is valid.
(4) ∀k.(f1 Uk f2) is valid iff f1 ∨ f2 is valid and ∃k.Gk¬f2 is not satisfiable.

For (1) and (2): If

Æ

k.(f1 Wk f2) is valid, then w �|= f2 implies w |= f1 for
each ω-word w, hence f1 ∨ f2 must be valid. Conversely, if f1 ∨ f2 is valid, then
w |= f1 W

n f2 holds for any positive natural number n.
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For (3): The “only if” direction is also trivial, we just show the “if” direction.
Indeed, if f2 ∨ (f1 ∧ Ff2) is valid, then for each ω-word w, according to the
definition, w |= f2 implies w |= ∃k.(f1 Uk f2) holds; otherwise, if w |= f1 ∧Ff2,
w.l.o.g., assume that w, 0 |= f1 and w, n |= f2, this also guarantees w |=
∃k.(f1 Uk f2) because w |= f1 U

n f2.
As for the “only if” direction of (4), in the same way as before, we can infer

that f1∨f2 should be valid if ∀k.(f1 Uk f2) is. Meanwhile, since for every ω-word
w and every n > 0 there exists some i ∈ N having w, i×n |= f2, hence ∃k.Gk¬f2
should not be satisfiable. Conversely, ∃k.Gk¬f2 is not satisfiable implies that
∀k.Fkf2 is valid. Then, for each ω-word w and each n > 0, there exists a minimal
number i making w, i×n |= f2, and since f1∨f2 is valid, we have w, j ×n |= f1
for every j < i, hence w |= f1 U

n f2. ��
From the decision procedure, one can examine that each step could be accom-

plished with polynomial (in the size of the formula) space. Since PSPACE is
closed under relativization, namely, PSPACEPSPACE = PSPACE, we can
thus conclude that satisfiability of QPLTL is in PSPACE. On the other
hand, the satisfiability problem of LTL is also PSPACE-hard. Thus, we
have the following conclusion.

Corollary 2. The satisfiability problem of QPLTL is PSPACE-complete.

5 Discussion and Future Work

In this paper, we suggest to use quantified step variables to describe periodicity.
As an attempt, using LTL as the base logic, we can obtain one of its decidable
periodic extension — QPLTL.

Indeed, formulae of Type (I)–(III) constitutes a proper super logic of LTL,
whereas a subset of whole ω-regular properties. It is interesting to study the
relation between this set and ω-regular languages.

For formulae of Type (IV), actually, we may make a bit relaxation on that
part. For example, consider the formula f = ∃k.FGkp, which gives the assertion
“p eventually holds periodically”, and call such property soft periodicity. We can
see that f is satisfiable if and only if ∃k.Gkp is satisfiable.

To make the logic more flexible in syntax and more expressive, as a future
work, we need carefully study some extensions of QPLTL. For example, Boolean
combinations of formulae of Type (IV), or combinations of Type (III) and (IV).
Further, we are also wonder about the decidability of the extension built up
from more expressive logics, such as linear-time μTL. The key issue is also to
establish the corresponding normal form of general liveness properties.
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