

A Systematic Study of Compositional Syntactic Transformer Language Models

Yida Zhao, Hao Xve, Xiang Hu, Kewei Tu School of Information Science and Technology, ShanghaiTech University Ant Group

Background

- Transformer lacks the inductive bias of **syntactic structures**, which is believed to improve generalization.
- Syntactic language models (SLMs) are developed to address this by both modeling a linearized syntactic parse tree and the sentence.

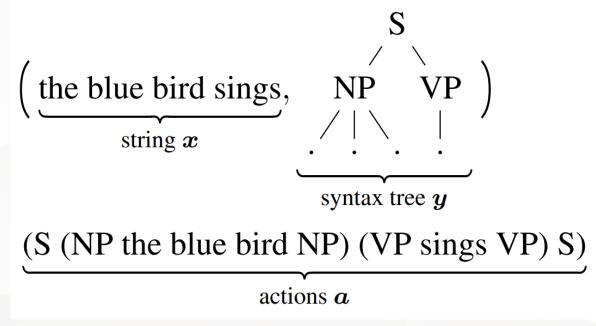


Figure from Transformer Grammars (Sartran et al., 2022).

Our Work

 Compositional SLMs are based on constituency trees, forming constituent representations via explicit composition of sub-constituents.

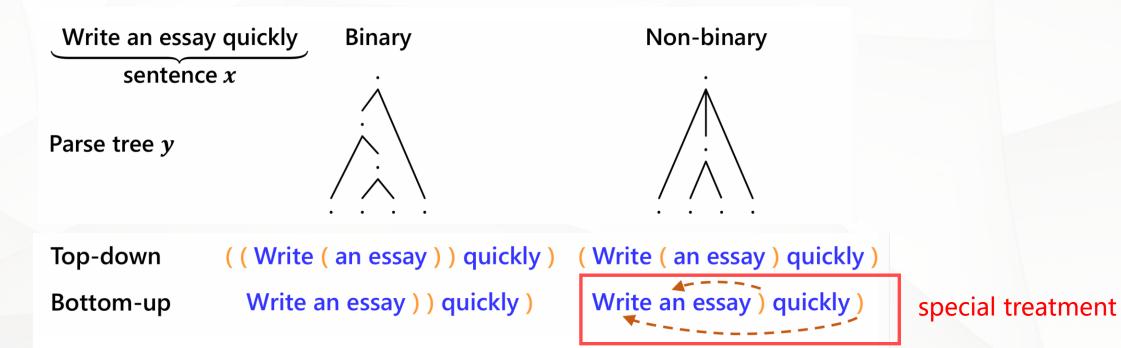
- Our work:
 - A unified framework of compositional SLMs
 - A comprehensive empirical evaluation of SLMs and multiple recommendations on design choices

A Framework for Compositional SLMs

Our frame work encompasses four design choices:

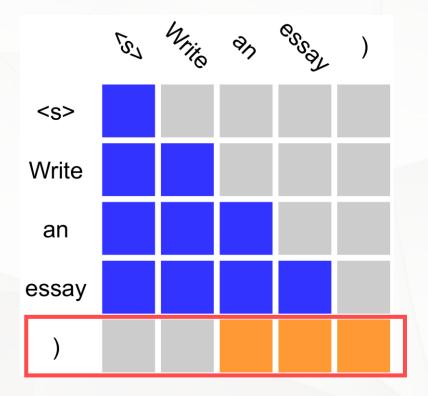
- Parse Tree Binarization
- Linearization Method
- Composition Function
- Sub-Constituent Masking

- 1. Parse Tree Binarization: To use non-binary (Nb) trees or binary (Bi) trees.
- 2. Linearization Method: To linearize trees in a top-down (Dn) or a bottom-up (Up) manner.



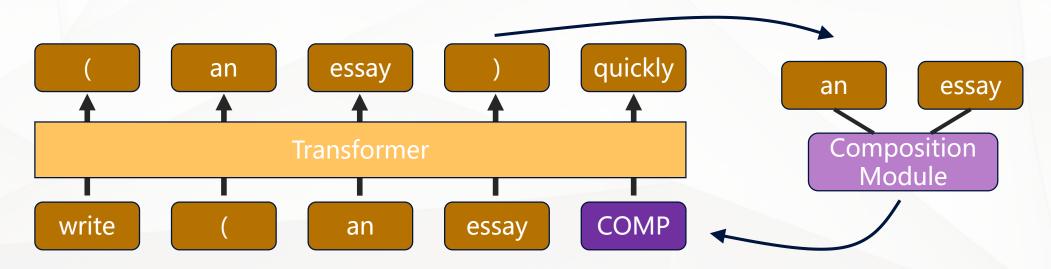
3. Composition Function:

• Internal (In): Conduct composition within the Transformer. We duplicate the ")", with the first for composition and the second for next token prediction (Sartran et al., 2022).

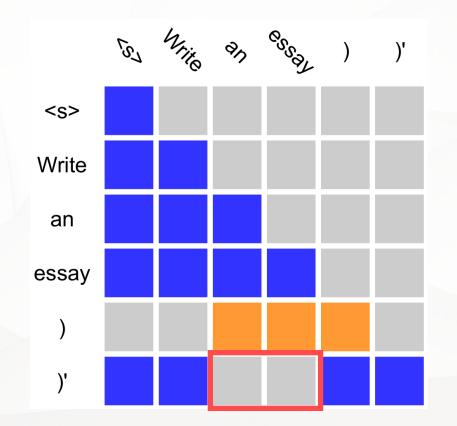


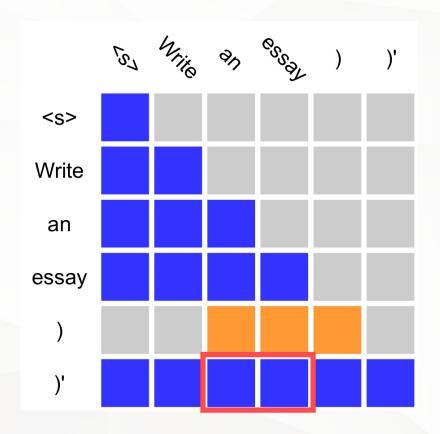
3. Composition Function:

- Internal (In): Conduct composition within the Transformer. We duplicate the ")", with the first for composition and the second for next token prediction (Sartran et al., 2022).
- External (Ex): Conduct composition with an external module. The composed representation is fed back into the main Transformer.



4. Sub-Constituent Masking: To mask out the already composed subconstituents **(M)** or not **(Nm)**.





A Framework for Compositional SLMs

- Two options for each of the four key aspects \rightarrow sixteen distinct SLMs
 - Each variant is named on its configuration across four aspects, e.g., Bi-Dn-In-M.

- Three previous studies accommodated within our framework:
 - Transformer Grammars (Sartran et al., 2022): Nb-Dn-In-M.
 - Composition Attention Grammars (Yoshida and Oseki, 2022): Nb-Dn-Ex-M.
 - Generative Pretrained Structured Transformers (Hu et al., 2024): Bi-Up-Ex-Nm.

Experiments

- We compare the sixteen compositional SLMs from our framework with two Transformer baselines:
 - (i) **GPT2-token**, a traditional language model of token sequences.
 - (ii) **GPT2-tree**, a syntactic language model of linearized trees without explicit composition.
- All the models are trained from scratch on the BLLIP-LG dataset.
- We use an off-the-shelf CRF constituency to reparse the dataset and obtain silver constituency trees for training.

Language Modeling & Syntactic Generalization 上海科技大学 ShanghaiTech University

 Language modeling (PPL) may not benefit from the inductive bias of syntax.

• Explicit modeling of syntax <u>improves the syntactic</u> <u>generalization</u> (SG) as expected.

See our paper for more detailed analyses.

Model	$\mathbf{PPL}^{\dagger}\left(\downarrow\right)$	SG (↑)		
GPT2-token	17.31	64.1		
GPT2-tree	19.97	73.1		
Bi-Up-Ex-Nm	20.51	80.1		
Bi-Up-Ex-M	24.15	82.4		
Bi-Up-In-Nm	19.99	77.5		
Bi-Up-In-M	21.32	79.7		
Bi-Dn-Ex-Nm	23.62	80.2		
Bi-Dn-Ex-M	27.21	80.9		
Bi-Dn-In-Nm	22.02	79.4		
Bi-Dn-In-M	26.50	80.9		
Nb-Up-Ex-Nm	23.85	40.8		
Nb-Up-Ex-M	24.07	51.8		
Nb-Up-In-Nm	19.36	79.6		
Nb-Up-In-M	22.01	73.4		
Nb-Dn-Ex-Nm	20.88	51.1		
Nb-Dn-Ex-M	25.15	51.9		
Nb-Dn-In-Nm	18.11	78.1		
Nb-Dn-In-M	22.30	75.6		

Downstream Tasks (Summarization & Dialogue) 上海科技大学 Shanghai Tech University

Model -	Xsum			DailyDialog				
	R-1	R-2	R-L	R-AVG	R-1	R-2	R-L	R-AVG
GPT2-token	27.14	7.67	21.65	18.82	14.02	3.82	13.31	10.38
GPT2-tree	29.59	9.47	23.58	20.88	14.99	3.83	14.31	11.04
Bi-Up-Ex-Nm	29.04	8.95	23.01	20.33	14.14	4.01	13.61	10.59
Bi-Up-Ex-M	23.48	5.75	18.84	16.02	12.44	3.00	11.69	9.04
Bi-Up-In-Nm	28.93	8.97	22.97	20.29	13.01	3.33	12.19	9.51
Bi-Up-In-M	24.84	6.64	19.88	17.12	12.05	2.78	11.40	8.74
Nb-Up-In-Nm	29.05	9.06	23.21	20.44	13.81	3.68	13.09	10.19
Nb-Up-In-M	24.30	6.28	19.45	16.68	11.92	2.93	11.33	8.72
Nb-Dn-In-Nm	29.48	9.40	23.54	20.81	13.99	3.85	13.36	10.40
Nb-Dn-In-M	26.10	7.31	20.98	18.07	12.50	3.31	11.90	9.23

- Some SLMs can outperform the standard GPT-2 token baseline.
- Composition is not critical in generation tasks.
- See our paper for more detailed analyses of specific configurations.

Other Experiments and Findings

- See our paper for more experiments and findings:
 - Efficiency evaluation
 - Recommendations on design choices
 - •

Conclusion

 We propose a unified framework for compositional syntactic language models (SLMs).

• We evaluate all the variants on different tasks, providing a clearer understanding of the design trade-offs involved and offering some recommendations for future research and application.

THE END

Thank you!

Paper

Code

