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Abstract
Autoregressive Transformer (AT) dominates
sequence-to-sequence generation tasks but suf-
fers from high inference latency due to se-
quential token generation. Non-Autoregressive
Transformer (NAT) improves inference effi-
ciency by parallelizing token prediction, yet
degrades generation quality. To address these
limitations, we propose Tree-structured Non-
Autoregressive Decoding (TNAD), a novel
paradigm that bridges autoregressive and non-
autoregressive decoding. TNAD generates a
sentence through a top-down, layer-wise expan-
sion of its constituency parse tree, enabling par-
allel generation within each layer while preserv-
ing contextual dependencies across layers. Ex-
perimental results on machine translation and
paraphrase generation demonstrate that TNAD
outperforms AT in efficiency and NAT in gener-
ation quality, thus offering a new alternative to
AT and NAT in the trade-off between efficiency
and quality. Our code is publicly available at
https://github.com/jipy0222/TNAD.

1 Introduction

Autoregressive Transformer (AT) has shown strong
performance in both language modeling (Radford
et al., 2019; Achiam et al., 2023) and sequence-to-
sequence (seq2seq) tasks (Vaswani et al., 2017;
Lewis et al., 2019) thanks to its autoregressive
decoding paradigm. However, its reliance on se-
quential token generation introduces significant in-
ference latency bottlenecks. To tackle the ineffi-
ciency problem, Non-Autoregressive Transformer
(NAT) (Gu et al., 2017; Kasai et al., 2020) has
been proposed as a counterpart that generates all to-
kens simultaneously. Though achieving substantial
inference speedup, the non-autoregressive decod-
ing paradigm neglects the contextual dependen-
cies among generated tokens, resulting in the multi-
modality problem (i.e., mixing parts from different
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Figure 1: An illustration of the generation process. In
each step, TNAD expands one layer of the constituency
parse tree in a non-autoregressive way.

valid output sequences, thus lacking grammatical
coherence) (Gu et al., 2017) and suffering from no-
table degradation in generation quality. A balanced
generation paradigm that bridges autoregressive
and non-autoregressive decoding and reconciles
the trade-offs in generation quality and efficiency
remains underexplored.

In this paper, we propose Tree-structured Non-
Autoregressive Decoding (TNAD) as a new text
generation paradigm, which generates a sentence
by top-down layer-wise expansion of its con-
stituency parse tree, with all elements within a
layer generated in parallel, as illustrated in Fig. 1.
It theoretically relieves the inference latency bur-
den of AT by reducing inference steps from O(n)
(n for sentence length) to O(log n) (log n for av-
erage tree height). Moreover, this paradigm alle-
viates the multi-modality problem encountered by
NAT because preceding tree layers can be observed
for later generations, creating conditional depen-
dencies absent in NAT. The experimental results
on machine translation and paraphrase generation
show that our proposed paradigm surpasses NAT in
generation quality and AT in generation efficiency.
In contrast to conventional paradigms that prior-
itize either quality or efficiency, TNAD strikes a
new balance between the two and offers a novel
alternative to AT and NAT.

https://github.com/jipy0222/TNAD


Figure 2: Model architecture. In this example, NP, VBZ, DT, JJ, NN are non-terminals, run is a token, and [M1] and
[M2] stand for the non-terminal placeholder and the token placeholder.

2 Method

In this section, we first introduce the top-down
layer-wise generation process and then how to im-
plement the process with the Transformer model.

2.1 Generation Process
TNAD generates a sentence by iteratively expand-
ing layers of its constituency parse tree from the top
down, as shown in Fig. 1. Each layer is expanded
in one decoding step consisting of two consecutive
operations:
• Branching Prediction. Given the previous layer

of the tree, we simultaneously predict the num-
bers of child nodes (i.e., branching factors) for
all non-terminals within it. These child nodes
constitute the current layer. If a non-terminal is
predicted to have only one child node, we iden-
tify the non-terminal as a pre-terminal and its
child node as a token; otherwise, we identify the
child nodes as non-terminals.

• Node Generation. Given the exact number of
nodes and their identified types in the current
layer, we simultaneously predict the labels of all
the nodes (i.e., specific non-terminals or tokens)
according to their types.

Since the first layer contains only a single root node,
we skip the Branching Prediction of the first layer
and only perform Node Generation. After that, we
iteratively execute decoding steps by performing
Branching Prediction and Node Generation until
no non-terminal is left to be expanded, obtaining a
complete constituency parse tree whose leaf nodes
constitute the generated sentence.

2.2 Model
We employ the architecture of Bart (Lewis et al.,
2019), a representative encoder-decoder Trans-
former architecture (Vaswani et al., 2017), for

sequence-to-sequence tasks, with a shared decoder
for both Branching Prediction and Node Genera-
tion, as shown in Fig. 2. Note that we do not reuse
the pretrained Bart parameters. Instead, we train
the whole model from scratch.

Recall that NAT first predicts the number of tar-
get tokens k, and then inputs k MASK tokens to
a transformer to predict output tokens in parallel.
Here, we do Branching Prediction and Node Gen-
eration in a similar non-autoregressive way. When
performing Branching Prediction of a layer, the
decoder takes all the non-terminal labels from the
previous layer as input and predicts their branch-
ing factors in parallel. We cast branching factor
prediction as multi-class classification by setting
a maximum branching factor. When performing
Node Generation of a layer, the decoder takes node
placeholders as input, whose number and types are
determined by the preceding Branching Prediction.
Specifically, if a predicted branching factor is 1, we
input a token placeholder [M2]; otherwise, a cor-
responding number of non-terminal placeholders
[M1] are input. The decoder then predicts non-
terminal labels for [M1] placeholders and tokens
for [M2] placeholders in parallel.

We also modify attention scoring and masking
in the decoder transformer to incorporate tree struc-
ture information as follows:

• Layer-wise causal attention mask. On top of the
standard causal mask, we allow full attention
within the same Branching Prediction or Node
Generation block. In other words, a position can
attend to everything to its left and those positions
to its right that fall into the same block. From the
perspective of the tree structure, a node can see
everything in the layer it belongs to as well as all
the preceding layers.



Models
Machine Translation

IWSLT14 De-En IWSLT14 En-De WMT16 Ro-En
BLEU Speedup Iter BLEU Speedup Iter BLEU Speedup Iter

AT 35.64 1.0× 23.25 27.37 1.0× 23.98 33.33 1.0× 28.05
Vanilla-NAT 21.71 7.48× 1 13.07 8.50× 1 24.53 9.35× 1

TNAD 33.53 1.24× 18.31 23.37 2.19× 11.62 32.61 1.35× 20.18
For Reference (Orthogonal to TNAD)

DAT 32.99 5.71× 1 23.14 5.68× 1 32.25 6.13× 1

Table 1: Results on machine translation. ‘Iter’ means the number of decoding iterations. The speedup is evaluated
on the test set with a batch size of 1.

• Node-distance-based linear attention bias. We
define the distance between two nodes in a tree
structure as the length of the (only) path connect-
ing them. We employ the same distance com-
putation for non-terminal inputs and placeholder
inputs. Following ALiBi (Press et al., 2021), we
bias attention scores between two nodes with a
penalty proportional to their distance.

We use learnable absolute position embeddings as
in Bart for both non-terminal and placeholder in-
puts based on their absolute positions in the input
sequence. During training, the model is optimized
using the standard cross-entropy loss, with gold
output labels derived from ground-truth parse trees.

3 Experiment

Following Li et al. (2023), we perform experiments
on two seq2seq tasks: machine translation and para-
phrase generation. We compare our model, TNAD,
primarily with AT and vanilla-NAT. Note that there
exist several approaches to improving the perfor-
mance of NAT, including training-based (Bao et al.,
2022; Zhang et al., 2022) and model-based (Huang
et al., 2022; Gui et al., 2023) methods, but these
approaches are orthogonal to and can be combined
with TNAD. A further discussion is provided in
Section 4. Therefore, here we only include the per-
formance of DA-Transformer (DAT) (Huang et al.,
2022), a representative improved NAT model, for
reference.

3.1 Experiment Setup
Datasets. For machine translation, we conduct
experiments on IWSLT14 German-English (De-
En), IWSLT14 English-German (En-De), and
WMT16 Romanian-English (Ro-En). For the
IWSLT datasets, we follow the scripts provided by
fairseq (Ott et al., 2019) to do preprocessing. For
the WMT dataset, we use the same preprocessed
data and train/dev/test splits as in Lee et al. (2018).

We keep the raw version of these machine transla-
tion datasets instead of utilizing knowledge distilla-
tion techniques. For paraphrase generation, we use
ParaNMT-Small (Chen et al., 2019). These datasets
are all encoded into subword units by BPE (Sen-
nrich et al., 2015). We use Berkeley Parser (Kitaev
and Klein, 2018; Kitaev et al., 2019) to obtain silver
constituency parse trees with an optional postpro-
cessing step for all datasets. More dataset details
are listed in Appendix A.

Implementation Details. We employ Bart as
the model architecture. Following Gu et al. (2017)
and Vaswani et al. (2017), we adopt different model
configurations for different datasets. We follow Gui
et al. (2023) and Li et al. (2023) for the training
setup. When doing inference, we choose greedy de-
coding as the decoding strategy for both our model
and baselines. We implement our code and conduct
experiments on the transformers framework by
HuggingFace1. More implementation details can
be referred to in Appendix B.

Evaluation. In terms of generation quality, we
adopt the BLEU score (Papineni et al., 2002) as
the main evaluation metric for machine translation
tasks. The ROUGE score (Lin, 2004) is addition-
ally provided as a reference for paraphrase gen-
eration. For all the datasets, we pick the best 3
checkpoints based on the validation BLEU score
and average their test set performance. For genera-
tion efficiency, we measure the number of decoding
iterations (Iter) and inference speedup over AT. Iter
is the sequence length for AT and is 1 for Vanilla-
NAT and DAT. For TNAD, Iter is twice the height
of the generated parse tree because generating each
layer of the tree requires two iterations, one for
Branching Prediction and the other for Node Gen-
eration. The speedup is evaluated on the test set
with a batch size of 1 on a single A100 GPU.

1https://github.com/huggingface/transformers

https://github.com/huggingface/transformers


Models Paraphrase Generation
BLEU ROUGE-1/2/L/avg Speedup Iter

AT 16.3 52.1 / 27.3 / 47.7 / 42.4 1.0× 12.1
Vanilla-NAT 10.6 47.8 / 20.7 / 43.0 / 37.2 4.2× 1

TNAD 12.3 48.0 / 22.4 / 44.5 / 38.3 1.2× 7.9
For Reference (Orthogonal to TNAD)

DAT 12.1 47.5 / 23.2 / 43.2 / 38.0 2.6× 1

Table 2: Results on paraphrase generation.

Models IWSLT14
De-En En-De

Trivial Tree 20.35 12.25
No Label 30.72 20.79
No ALiBi 32.16 22.26

TNAD 33.53 23.37

Table 3: Ablation study results, showing BLEU scores
on the IWSLT14 De-En and En-De datasets.

3.2 Results

Machine Translation. We report results on ma-
chine translation tasks in Table 1. TNAD outper-
forms Vanilla-NAT and even the reference baseline
DAT in generation quality in all three datasets. In
terms of generation efficiency, TNAD surpasses
the AT baseline consistently. We also observe that
both the speedup and generation quality of TNAD
are correlated with decoding iterations. For the
IWSLT14 En-De dataset, the parse trees are flatter,
and hence TNAD achieves the maximum speedup
over AT. On the other hand, for the IWSLT14 De-
En and WMT16 Ro-En datasets, the decoding iter-
ations are larger because of deeper parse trees, and
TNAD can be seen to only slightly underperform
AT in terms of the BLEU score.

Paraphrase. Table 2 shows the results on para-
phrase generation. TNAD surpasses Vanilla-
NAT and DAT in the BLEU score and additional
ROUGE scores. For generation efficiency, be-
cause AT requires fewer decoding iterations than
in machine translation due to shorter target sen-
tences, the inference speedup for Vanilla-NAT,
DAT, and TNAD is smaller in comparison with the
machine translation results. Nonetheless, TNAD
still achieves positive speedup over AT.

3.3 Ablations

We perform ablation experiments on TNAD as
shown in Table 3. Trivial Tree refers to TNAD
trained with balanced binary trees (with a dummy
non-terminal label on all non-leaf nodes) instead

of silver trees. No Label denotes replacing all the
non-terminal labels with a dummy label in TNAD.
No ALiBi is TNAD without node-distance-based
linear attention bias mentioned in section 2.2.

It can be seen that Trivial Tree degrades the
most in translation quality, even underperform-
ing Vanilla-NAT. We believe it is because with
a balanced binary tree structure, most tokens are
predicted simultaneously during Node Generation
in the last layer, which is similar to Vanilla-NAT.
No Label suffers a clear decline in generation qual-
ity as well. The results from the above two base-
lines suggest that the performance gains of TNAD
over Vanilla-NAT stem from its incorporation of
reasonable syntactic structures and non-terminal
labels, rather than from increased computational
costs compared with Vanilla-NAT. Finally, the re-
sults of No ALiBi show that our proposed linear
attention bias is also critical for enhancing model
performance.

4 Related Work

Non-autoregressive Transformers. Gu et al.
(2017) proposes non-autoregressive decoding to ac-
celerate text generation at the expense of degraded
quality. A series of work (Bao et al., 2022; Kasai
et al., 2020; Huang et al., 2022; Gui et al., 2023)
has been developed to address the performance dis-
crepancy. Among these, DA-Transformer (Huang
et al., 2022) (DAT) shows superior effectiveness
and establishes itself as a state-of-the-art non-
autoregressive method. DAT first generates a Di-
rected Acyclic Graph (DAG) representing possible
tokens and probabilistic transitions between them
in a non-autoregressive way, and then finds the
most probable token sequence through the DAG.
Techniques, including DAT, can be considered di-
rect and superior replacements for vanilla NAT.
Recently, diffusion-based methods (Austin et al.,
2021; Arriola et al., 2025) provide a new direction
for parallelized decoding. In comparison, our work
decomposes the generation process into a series of
top-down steps aligned with the syntax tree, where
each step employs non-autoregressive decoding.
So it is straightforward to combine DAT and our
TNAD: simply replace each step of TNAD with
DAT.

Syntax-Based Generation. One thread of re-
search (Sartran et al., 2022; Murty et al., 2023; Hu
et al., 2024; Zhao et al., 2024) focuses on jointly
modeling syntactic trees and sentences. They se-



quentially generate not only tokens, but also actions
building up a syntactic parse tree. Another thread
of research (Welleck et al., 2019; Li et al., 2023)
performs hierarchical generation under the guid-
ance of syntax. These studies primarily focus on
generation quality instead of efficiency improve-
ments in the generation process. Different from
their work, our work exploits the inherent paral-
lelism of hierarchical tree structures to achieve effi-
ciency gains in generation.

5 Conclusion

We propose TNAD, a new text generation paradigm
that generates a sentence by iteratively expanding
layers of its constituency parse tree from the top
down, with all nodes within a layer predicted in
parallel by performing Branching Prediction and
Node Generation. Experimental results on seq2seq
tasks show that TNAD outperforms NAT in genera-
tion quality and AT in generation efficiency, which
demonstrates TNAD as a balanced option between
AT and NAT.

6 Limitations

There are several limitations of this work: (1)
TNAD relies on constituency parse trees for train-
ing, which are predicted by an external parser in
this study. For languages with limited access to
high-quality constituency parsers, the advantages
of TNAD could diminish. (2) We adopt a shared
decoder transformer for Branching Prediction and
Node Generation. Intuitively, Branching Prediction
is an easier task than Node Generation. We may ap-
ply techniques such as layer skipping to Branching
Prediction for further efficiency gains. (3) Since
TNAD bridges NAT and AT, we conduct experi-
ments on seq2seq tasks, which serve as a common
ground where both paradigms are widely applied.
TNAD is also suitable for other architectures and
tasks, such as the decoder-only transformer archi-
tecture for language modeling. We leave it as future
work.
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Dataset Train/Dev/Test BPE Length Height Max BF NT Labels
IWSLT14 De-En 160K/7K/6K 10K 23.65 9.75 53 71
IWSLT14 En-De 160K/7K/6K 10K 24.18 6.36 72 74
WMT16 Ro-En 608K/2K/2K 40K 26.48 11.17 68 72
ParaNMT-Small 493K/0.5K/0.8K 6K 12.22 4.53 80 73

Table 4: Details of datasets used in our experiments. BPE: the merge operations set for learning a BPE model to do
tokenization; Length: the average length of target sequence in the train set; Height: the average height of the silver
parse trees of the target sequences; Max BF: maximum branching factor of the silver parse trees; NT Labels: the
number of types of non-terminal labels of the silver parse trees;

B Implementation Details

Following Gu et al. (2017) and Vaswani et al.
(2017), we adopt a small model setting (dmodel =
256, dhidden = 1024, nlayer = 5, nhead = 4) for
the IWSLT14 datasets and a base setting (dmodel =
512, dhidden = 2048, nlayer = 6, nhead = 8) for
the other two datasets. For Vanilla-NAT, the length
prediction loss factor is set to 0.1. For DAT, we set
λ = 4 for the graph size.

We train models on 8 A100 GPUs. All models
are optimized with Adam (Kingma and Ba, 2014)
with β = (0.9, 0.999) and are trained for 200K
steps, with each batch containing 1024 samples.
The learning rate increases to 7 · 10−4 in the first
10K steps and then anneals exponentially. We set
the weight decay as 0.01 and the dropout as 0.3.
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