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Abstract

The linear-chain Conditional Random Field
(CRF) model is one of the most widely-used
neural sequence labeling approaches. Exact
probabilistic inference algorithms such as the
forward-backward and Viterbi algorithms are
typically applied in training and prediction
stages of the CRF model. However, these al-
gorithms require sequential computation that
makes parallelization impossible. In this pa-
per, we propose to employ a parallelizable ap-
proximate variational inference algorithm for
the CRF model. Based on this algorithm, we
design an approximate inference network that
can be connected with the encoder of the neu-
ral CRF model to form an end-to-end network,
which is amenable to parallelization for faster
training and prediction. The empirical results
show that our proposed approaches achieve
a 12.7-fold improvement in decoding speed
with long sentences and a competitive accu-
racy compared with the traditional CRF ap-
proach.

1 Introduction

Sequence labeling assigns each token with a la-
bel in a sequence. Tasks such as Named Entity
Recognition (NER) (Sundheim, 1995), Part-Of-
Speech (POS) tagging (DeRose, 1988) and chunk-
ing (Tjong Kim Sang and Buchholz, 2000) can all
be formulated as sequence labeling tasks. BiLSTM-
CRF (Huang et al., 2015; Lample et al., 2016; Ma
and Hovy, 2016) is one of the most successful neu-
ral sequence labeling architectures. It feeds pre-
trained (contextual) word representations into a
single layer bi-directional LSTM (BiLSTM) en-
coder to extract contextual features and then feeds
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these features into a CRF (Lafferty et al., 2001) de-
coder layer to produce final predictions. The CRF
layer is a linear-chain structure that models the rela-
tion between neighboring labels. In the traditional
CRF approach, exact probabilistic inference algo-
rithms such as the forward-backward and Viterbi
algorithms are applied for training and prediction
respectively. In many sequence labeling tasks, the
CRF layer leads to better results than the simpler
method of predicting each label independently.

In practice, we sometimes require very fast se-
quence labelers for training (e.g., on huge datasets
like WikiAnn (Pan et al., 2017)) and prediction
(e.g. for low latency online serving). The BiLSTM
encoder and the CRF layer both contain sequential
computation and require O(n) time over n input
words even when parallelized on GPU. A com-
mon practice to improve the speed of the encoder
is to replace the BiLSTM with a CNN structure
(Collobert et al., 2011; Strubell et al., 2017), dis-
till larger encoders into smaller ones (Tsai et al.,
2019; Mukherjee and Awadallah, 2020) or in other
settings (Tu and Gimpel, 2018; Yang et al., 2018;
Tu and Gimpel, 2019; Cui and Zhang, 2019). The
CRF layer, however, is more difficult to replace be-
cause of its superior accuracy compared with faster
alternatives in many tasks.

In order to achieve sublinear time complexity
on the CRF layer, we must parallelize the CRF
prediction over the tokens. In this paper, we ap-
ply Mean-Field Variational Inference (MFVI) to
approximately decode the linear-chain CRF. MFVI
iteratively passes messages among neighboring la-
bels to update their distributions locally. Unlike
the exact probabilistic inference algorithms, MFVI
can be parallelized over different positions in the
sequence, achieving time complexity that is con-
stant in n with full parallelization. Previous work
(Zheng et al., 2015) showed that such an algorithm
can be unfolded as an RNN for grid CRF struc-
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Figure 1: Factor graphs of different CRFs. Yi is the
random variable representing the i-th label.

ture. We expand on the work for the linear-chain
CRF structure and unfold the algorithm as an RNN
which can be connected with the encoder to form
an end-to-end neural network that is amenable to
parallelization for both training and prediction. We
call the unfolded RNN an approximate inference
network (AIN). In addition to linear-chain CRFs,
we also apply AIN to factorized second-order CRF
models, which consider relations between more
neighboring labels. Our empirical results show that
AIN significantly improves the speed and achieves
competitive accuracy against the traditional CRF
approach on 4 tasks with 15 datasets.

2 Approaches

Given an input sequence with n tokens x =
[x1, x2, . . . , xn] and a corresponding label se-
quence y = [y1, y2, . . . , yn] with a label set of size
L, the conditional probability of y given x speci-
fied by a CRF with position-wise factorization is:

P (y|x) =

exp{
n∑

i=1
ψ(x,y, i)}

∑
y′∈Y(x)

exp{
n∑

i=1
ψ(x,y′, i))}

where Y(x) is the set of all possible label se-
quences for x and ψ(x,y, i) is a potential function.

In the simplest case, the potential function is just
a softmax function that outputs the distribution of
each label independently. We call it the MaxEnt
approach. In a typical linear-chain CRF, the poten-
tial function is decomposed into a unary potential
ψu and a binary potential ψb (called the emission
and transition functions respectively):

ψ(x,y, i) = ψu(x, yi) + ψb(yi−1, yi) (1)

ψu(x, yi) = riWvyi

ψb(yi−1, yi) = Uyi−1,yi (2)

where ri is the contextual feature of xi output from
the CNN or BiLSTM encoder with dimension d,
vyi is a one-hot vector for label yi, W is a d × L

matrix and U is an L × L matrix containing the
transition scores between two labels. The factor
graph of a linear-chain CRF is shown at the top of
Figure 1.

The exact probabilistic inference algorithms
(Viterbi and forward-backward) for the CRF layer
are significantly slower than the MaxEnt approach.
They take O(nL2) and O(n logL) time on CPU
and GPU1 respectively, while the decoder in Max-
Ent takes O(nL) and O(logL).

2.1 AIN on Linear-Chain CRF

In order to speed up the training and prediction
time of the CRF layer, we propose the approximate
inference network (AIN), which is a neural network
derived from MFVI for approximate decoding in
linear-chain CRF.

MFVI approximates the distribution
P (y|x) with a factorized distribution

Q(y|x) =
n∏

i=1
Qi(yi|x) and update it itera-

tively to minimize the KL divergence KL(Q||P ).
The update formula of Qi(yi|x) at iteration m is:

s(i, j, k):=

L∑

yi=1

Qk−1
i (yi|x)ψb(ymin{i,j}, ymax{i,j})

Qm
i (yi|x)∝ exp{ψu(x, yi)+s(i−1, i,m)

+s(i+1, i,m)}

where s(i, j, k) represents the message from node
i to node j at time step k. Q0

i (yi|x) is set by
normalizing the unary potential ψu(x, yi). Upon
convergence, the label sequence with the highest
approximate probability Q(y|x) can be found by
optimizing Qi(yi|x) at each position i:

ŷi = argmax
yi∈{1,...,L}

Qi(yi|x)

Similar to Zheng et al. (2015), we unfold the
MFVI algorithm as a recurrent neural network that
is parameterized by the linear-chain CRF potential
functions. We fix the number of iterations toM and
call the resulting network AIN. AIN can be con-
nected with the encoding network that computes
the potential functions and together they form an
end-to-end neural network.

Note that, different from previous work (Krähen-
bühl and Koltun, 2011; Zheng et al., 2015; Baqué

1We assume that the number of threads is enough for full
parallelization on GPU and the parallel reduction (e.g., sum
and max) for a L elements vector takes O(logL) time (Harris
et al., 2007).
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Figure 2: Illustration of the computation graphs for the
Viterbi decoding and one iteration of our MFVI infer-
ence on the CRF model. Yi is the random variable rep-
resenting the i-th label with three possible values. The
illustrated vectors represent Viterbi scores and Qi dis-
tributions respectively.

et al., 2016; Chen et al., 2018; Wang et al., 2019)
using the MFVI algorithm for solving intractable
problems of densely connected probabilistic mod-
els to get better accuracy, we propose to employ the
MFVI algorithm to accelerate tractable inference
of sequence-structured probabilistic models. As far
as we know, this is the first attempt of using approx-
imate inference on tractable models for speedup
with GPU parallelization.

The time complexity of each iteration of the
MFVI algorithm is O(nL2), which is on par with
the time complexity of the exact probabilistic in-
ference algorithms. However, in each iteration,
the update of each distribution Qi(yi|x) depends
only on its two neighboring distributions from the
previous iteration, so each iteration can be paral-
lelized over positions. A comparison between the
Viterbi algorithm and the MFVI algorithm is shown
in Figure 2. The time complexity of our AIN de-
coder with full GPU parallelization is O(M logL),
while the time complexity of the exact probabilistic
inference algorithms with GPU parallelization is
O(n logL). We set the value of M to 3s , which
is much smaller than the typical value of sequence
length n.

2.2 AIN on Factorized Second-Order CRF

We can extend AIN to the second-order CRF with a
ternary potential function over every three consec-
utive labels. In the second-order CRF, the potential
function in Eq. 1 becomes:

ψ(x,y, i) = ψu(x, yi) + ψt(yi−2, yi−1, yi)

However, the second-order CRF has space and time
complexity that is cubic in L. Therefore, we fac-
torize its ternary potential function and reduce its

complexity to be quadratic in L:

ψt(yi−2, yi−1, yi) = ψb′(yi−2, yi) + ψb(yi−1, yi)

ψb′(yi−2, yi) = Ũyi−2,yi

where the matrix Ũ has the same shape as U in
Eq. 2. The factor graph of our factorized second-
order CRF is shown at the bottom of Figure 1. The
update formula is similar to that of our first-order
approach but with more neighbors:

Qm
i (yi|x)∝ exp{ψu(x, yi)+s

′(i−2, i,m)

+s(i−1, i,m)+s(i+1, i,m)+s′(i+2, i,m)}

where s′(i, j, k) has a similar definition as s(i, j, k)
by replacing ψb with ψb′ . The time complexity of
this approach is also O(nL2) for each iteration and
O(M logL) with full GPU parallelization for M
iterations. Following the first approach, we also
unfold MFVI of this approach as an AIN.

2.3 Learning

Given a sequence x with corresponding gold labels
y∗ = {y∗1, · · · , y

∗
n}, the learning objective of our

approaches is:

LNLL = −
n∑

i=1

logQM
i (y∗i |x)

Since AINs are end-to-end neural networks, the ob-
jective function can be optimized by any gradient-
based method in an end-to-end manner.

3 Experiments

3.1 Datasets

Named Entity Recognition (NER) We use the
corpora from the CoNLL 2002 and CoNLL 2003
shared tasks (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003), which contain
four languages in total. We use the standard train-
ing/development/test split for experiments.2

Chunking The chunking datasets are also from
the CoNLL 2003 shared task (Tjong Kim Sang
and De Meulder, 2003) that contains English and
German datasets. We use the same standard split
as in NER.

2https://www.clips.uantwerpen.be/conll2003/ner/



WORD-CHAR-BILSTM WORD-CNN

Training Prediction Training Prediction
# Words 32 128 32 128 32 128 32 128

All Dec. All Dec. All Dec. All Dec. All All All All

MaxEnt⋆ 6.8× - 13.1× - 3.0× - 5.9× - 12.9× 40.1× 6.3× 18.6×
AIN-1O 4.3× 7.7× 10.2× 31.4× 1.7× 2.4× 4.4× 12.7× 5.6× 21.5× 2.4× 6.8×
AIN-F2O 3.5× 5.3× 8.7× 20.1× 1.5× 1.9× 4.1× 10.6× 4.4× 16.7× 1.8× 5.5×

Table 1: Relative speedup over the CRF model with 10,000 sentences of 32/128 words. All represents the speed
of the full model. Dec. represents the speed of decoder. ⋆: For reference.

WORD-CHAR-BILSTM WORD-CNN WORD ONLY

NER POS Chunk SF Avg. NER POS Chunk SF Avg. NER POS Chunk SF Avg.

MaxEnt⋆ 83.74 94.84 92.58 95.47 91.65 75.19 94.00 87.05 91.07 86.83 52.27 90.53 78.17 62.93 70.98
CRF 84.17 94.91 92.88 95.52 91.87 79.44 94.26 89.21 92.24 88.79 72.28 92.79 89.39 76.82 82.82
AIN-1O 84.22 94.97 92.87 95.59 91.91 78.47 94.29 88.86 92.18 88.45 70.23 92.84 88.69 88.76 85.13
AIN-F2O 84.11 94.91 92.85 95.58 91.86 78.71 94.32 88.75 92.26 88.51 71.16 93.03 88.80 88.86 85.46

Table 2: Averaged F1 score and accuracy on four tasks. SF represents the slot filling task. ⋆: For reference.

Part-Of-Speech (POS) Tagging Universal De-
pendencies3 (UD) (Nivre et al., 2018) contains syn-
tactically annotated corpora of over 70 languages.
We use universal POS tag annotations with 8 lan-
guages for experiments. The list of treebanks
is shown in Table 3. We use the standard train-
ing/development/test split for experiments.

Slot Filling Slot filling is a task that interprets
user commands by extracting relevant slots, which
can be formulated as a sequence labeling task.
We use the Air Travel Information System (ATIS)
(Hemphill et al., 1990) dataset for the task. 4.

3.2 Settings

Embeddings For word embeddings in the NER,
chunking and slot filling experiments, we use the
same word embedding as in Lample et al. (2016) ex-
cept that we use fastText (Bojanowski et al., 2017)
embedding for Dutch which we find significantly
improves the accuracy (more than 5 F1 scores on
CoNLL NER). We use fastText embeddings for all
UD tagging experiments. For character embedding,
we use a single layer character CNN with a hidden
size of 50, because Yang et al. (2018) empirically
showed that it has competitive performance with
character LSTM. We concatenate the word embed-
ding and character CNN output for the final word
representation.

3https://lindat.mff.cuni.cz/repository/xmlui/handle/
11234/1-2837

4We use the same dataset split as https://github.com/sz128/
slot_filling_and_intent_detection_of_SLU/tree/master/data/
atis-2

Encoder In our experiments, we use three types
of encoders. The first is a BiLSTM fed with word
and character embeddings, which captures contex-
tual information globally. The second is a single
layer CNN with only word embedding as input,
which captures contextual information locally. The
third is a single linear layer with word embeddings
as input, which does not capture any contextual
information. We use these settings for a better un-
derstanding of how the decoders perform on each
task when the encoders capture different levels of
contextual information.

Decoder We use the MaxEnt approach, the tradi-
tional CRF approach and AINs with the first-order
and factorized second-order CRFs for decoding.
We denote these approaches by MaxEnt, CRF,
AIN-1O and AIN-F2O respectively. We set the
iteration number M to 3 in AINs because we find
that more iterations do not result in further improve-
ment in accuracy.

Hyper-parameters For the hyper-parameters,
we follow the settings of previous work (Akbik
et al., 2018). We use Stochastic Gradient Descent
for optimization with a fixed learning rate of 0.1
and a batch size of 32. We fix the hidden size of
the CNN and BiLSTM layer to 512 and 256 re-
spectively, and the kernel size of CNN to 3. We
anneal the learning rate by 0.5 if there is no im-
provement in the development sets for 10 epochs
when training.

Evaluation We use F1 score to evaluate the NER,
slot filling and chunking tasks and use accuracy to
evaluate the POS tagging task. We convert the BIO



format into BIOES format for NERs, slot filling
and chunking datasets and use the official release of
CoNLL evaluation script5 to evaluate the F1 score.

3.3 Results

Speed We report the relative speed improve-
ments over the CRF model based on our PyTorch
(Paszke et al., 2019) implementation run on a GPU
server with Nvidia Tesla V100. Following Tsai
et al. (2019), we report the training and prediction
speed with 10,000 sentences of 32 and 128 words,
respectively. The results (Table 1) show that AINs
are significantly faster than CRF in terms of both
the full model speed and the decoder speed. The
speed advantage of AINs is especially prominent
with long sentences, suggesting their usefulness in
tasks like document-level NER.

Accuracy We run each approach on each dataset
for 5 times and compute its average accuracy. Be-
cause of space limit, we report the accuracy aver-
aged over all the datasets for each task in Table 2.
Please refer to the supplementary material for the
complete results. AINs achieve competitive overall
accuracy with CRF, even though AINs take sig-
nificantly less time than CRF. With the BiLSTM
encoder which has the capability to capture global
contextual information, AINs achieves almost the
same average accuracy as CRF, demonstrating that
AINs performing approximate inference with local
contextual information are competitive with CRF

with globally exact decoding. With the CNN en-
coder that encodes local contextual information,
AINs are inferior to CRF because both the CNN
layer and our approaches utilize only local infor-
mation. Without any contextual encoders (Word
Only), the accuracy of these decoders vary signifi-
cantly over tasks. For NER and chunking, CRF is
the strongest, but our approaches only marginally
underperform CRF while significantly outperform
MaxEnt. For POS tagging and slot filling, our ap-
proaches outperform CRF, which implies that lo-
cal information might be more beneficial for these
tasks. Comparing AIN-1O and AIN-F2O, AIN-

F2O is stronger when the encoder is weak, but
their performance gap becomes smaller and even-
tually disappears when the encoder gets stronger.

5https://github.com/chakki-works/seqeval/blob/master/
tests/conlleval.pl

3.4 Discussion on Transformers

Recently, the Transformer (Vaswani et al., 2017) en-
coder has significantly improved the performance
of tasks such as neural machine translation. The
Transformer can be parallelized over the input
words while the BiLSTM layer needs sequential
computation. However, the transformer structure
is rarely applied in sequence labeling tasks. One
possible reason is that the performance of models
with Transformers encoders are inferior to the per-
formance of models with the BiLSTM encoders.
In our experiments, a six-layer transformer with
a MaxEnt decoder achieves an F1 score of only
80.00 on CoNLL English NER, which is signifi-
cantly lower than the 91.00 F1 score of our BiL-
STM+MaxEnt model (Table 5). For the speed,
the six-layer transformer model with a MaxEnt
decoder is 1.58/1.14 times slower than the single-
layer BiLSTM model with a MaxEnt decoder with
sentences of 32/128 words respectively. Therefore,
we do not include the Transformer encoder in our
experiments.

4 Conclusion

In this paper, we propose approximate inference
networks (AIN) that use Mean-Field Variational
Inference (MFVI) instead of exact probabilistic in-
ference algorithms such as the forward-backward
and Viterbi algorithms for training and prediction
on the conditional random field for sequence la-
beling. The MFVI algorithm can be unfolded as
a recurrent neural network and connected with
the encoder to form an end-to-end neural network.
AINs can be parallelized over different positions
in the sequence. Empirical results show that AINs
are significantly faster than traditional CRF and
do very well in tasks that require more local in-
formation. Our approaches achieve competitive
accuracy on 4 tasks with 15 datasets over three
encoder types. Our code is publicly available at
https://github.com/Alibaba-NLP/AIN.
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A Appendix

A.1 Detailed Results

The detailed results for the four tasks are shown
in Table 4 and 5. We use ISO 639-1 codes6 to
represent each language.

6https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes



POS TAGGING

Model de en es fr it nl sl sv avg

WORD-CHAR-BILSTM

MaxEnt 94.19±0.04 95.70±0.07 96.44±0.05 98.00±0.06 92.76±0.17 95.09±0.13 90.96±0.69 95.56±0.07 94.84
CRF 94.27±0.11 95.71±0.06 96.37±0.09 98.06±0.04 92.87±0.15 95.10±0.17 91.38±1.12 95.55±0.09 94.91
AIN-1 94.23±0.06 95.73±0.05 96.39±0.10 98.04±0.10 93.13±0.19 95.10±0.20 91.42±0.28 95.69±0.05 94.97
AIN-F2 94.11±0.22 95.76±0.05 96.34±0.05 97.99±0.11 92.87±0.20 95.24±0.16 91.38±0.44 95.59±0.07 94.91

WORD CNN

MaxEnt 92.36±0.19 93.99±0.12 95.91±0.06 97.62±0.05 92.49±0.08 94.51±0.08 91.39±0.18 93.76±0.15 94.00
CRF 93.06±0.17 94.22±0.10 96.09±0.08 97.68±0.07 92.63±0.05 94.63±0.16 91.65±0.23 94.15±0.17 94.26
AIN-1 93.11±0.14 94.21±0.05 96.02±0.06 97.73±0.05 92.64±0.06 94.58±0.07 91.77±0.20 94.26±0.11 94.29
AIN-F2 92.99±0.12 94.17±0.13 96.00±0.04 97.75±0.03 92.69±0.06 94.68±0.04 91.84±0.23 94.47±0.10 94.32

WORD ONLY

MaxEnt 89.44±0.08 87.57±0.12 93.02±0.05 94.82±0.07 89.23±0.08 91.63±0.17 88.56±0.24 90.01±0.06 90.53
CRF 91.55±0.13 91.04±0.22 94.64±0.05 96.65±0.10 91.56±0.05 93.28±0.12 90.02±0.24 93.55±0.09 92.79
AIN-1 91.53±0.08 91.47±0.09 94.77±0.05 96.67±0.05 91.62±0.03 93.46±0.03 89.65±0.37 93.54±0.10 92.84
AIN-F2 91.75±0.09 91.76±0.12 94.82±0.03 96.95±0.05 91.63±0.06 93.32±0.13 90.17±0.23 93.86±0.09 93.03

Table 4: Averaged accuracy scores on POS tagging.

NER CHUNK SF

Models de en es nl avg de en avg en

WORD-CHAR-BILSTM

MaxEnt 75.63±0.23 91.00±0.23 84.53±0.50 83.78±0.38 83.74 93.80±0.14 91.36±0.10 92.58 95.47±0.06
CRF 76.46±0.24 91.14±0.16 85.29±0.36 83.80±0.33 84.17 94.06±0.07 91.70±0.08 92.88 95.52±0.10
AIN-1O 76.34±0.34 91.07±0.10 85.37±0.07 84.12±0.53 84.22 94.03±0.02 91.71±0.05 92.87 95.59±0.11
AIN-F2O 76.17±0.28 91.22±0.20 85.30±0.32 83.76±0.57 84.11 94.02±0.04 91.69±0.08 92.85 95.58±0.14

WORD CNN

MaxEnt 69.40±0.15 84.86±0.41 70.02±0.62 76.46±0.28 75.19 88.29±0.10 85.80±0.65 87.05 91.07±0.01
CRF 71.12±0.25 87.58±0.21 80.34±0.58 78.70±0.30 79.44 89.68±0.21 88.73±0.18 89.21 92.24±0.27
AIN-1O 70.00±0.28 86.94±0.43 78.95±0.51 77.98±0.38 78.47 89.21±0.11 88.51±0.15 88.86 92.18±0.14
AIN-F2O 70.08±0.92 87.01±0.22 79.80±0.38 77.95±0.47 78.71 89.33±0.12 88.16±0.30 88.75 92.26±0.26

WORD ONLY

MaxEnt 36.24±1.77 63.68±1.08 52.42±1.73 56.73±0.77 52.27 81.21±0.33 75.14±0.41 78.17 62.93±0.33
CRF 55.10±2.87 81.76±0.39 76.53±0.80 75.71±0.39 72.28 90.56±0.24 88.21±0.34 89.39 76.82±0.57
AIN-1O 57.25±2.16 79.68±0.25 70.44±0.72 73.55±0.21 70.23 90.04±0.18 87.35±0.29 88.69 88.76±0.65
AIN-F2O 56.36±5.97 81.16±0.37 73.03±1.86 74.09±0.24 71.16 90.04±0.15 87.56±0.24 88.8 88.86±0.41

Table 5: Averaged F1 scores on NER, chunking and slot filling for each language. SF represents the slot filling
task. ⋆: for reference.


