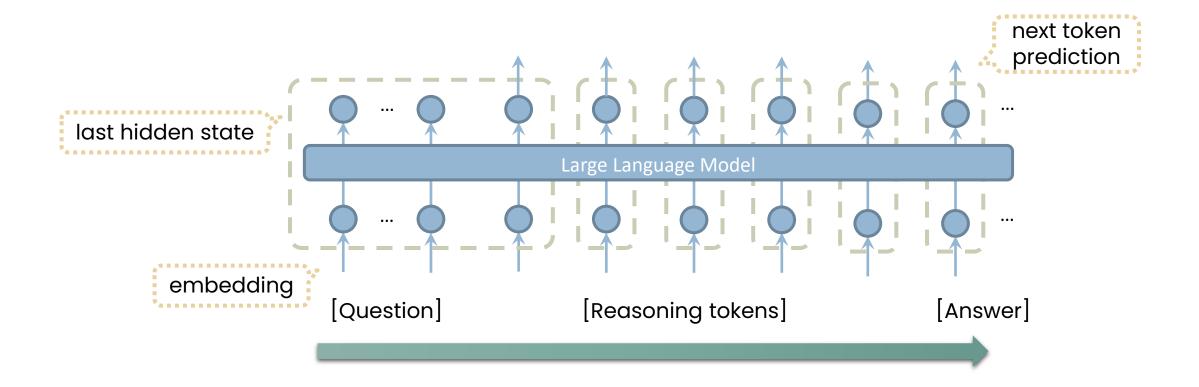
Parallel Continuous Chain-of-Thought with Jacobi Iteration

Haoyi Wu, Zhihao Teng, Kewei Tu*

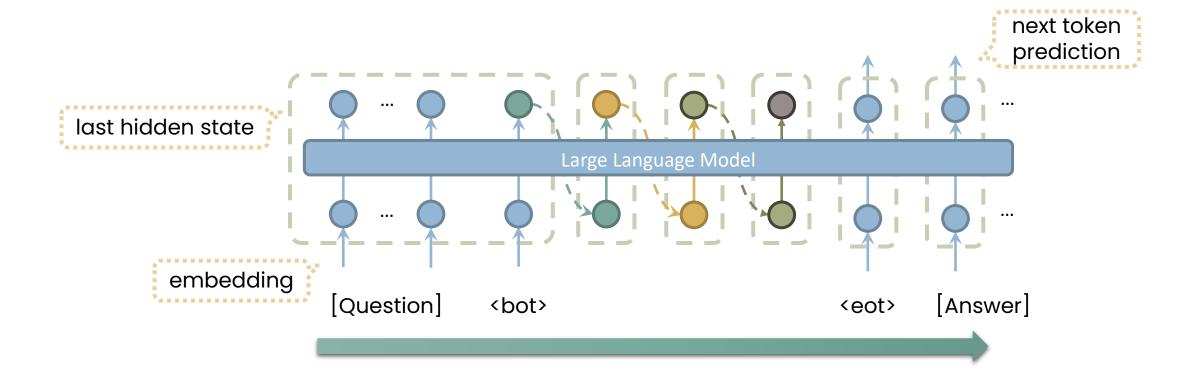
School of Information Science and Technology, ShanghaiTech University

Shanghai Engineering Research Center of Intelligent Vision and Imaging

Chain-of-Thought

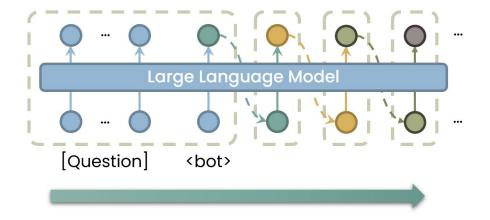


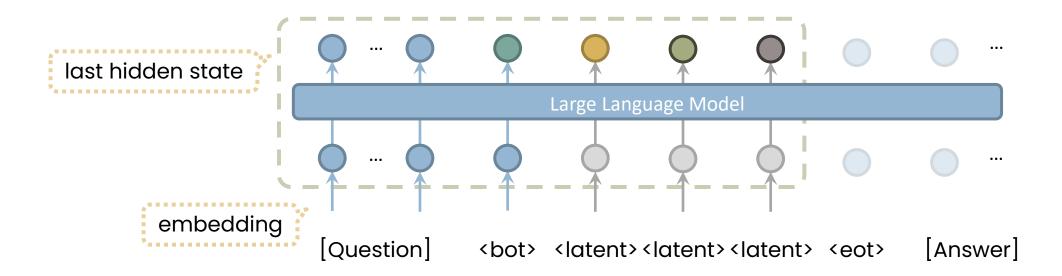
Continuous Chain-of-Thought

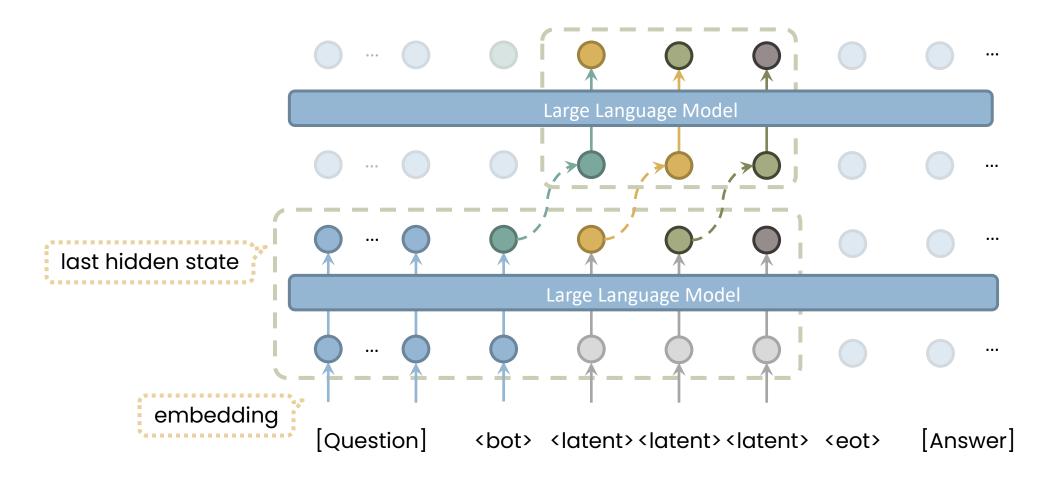


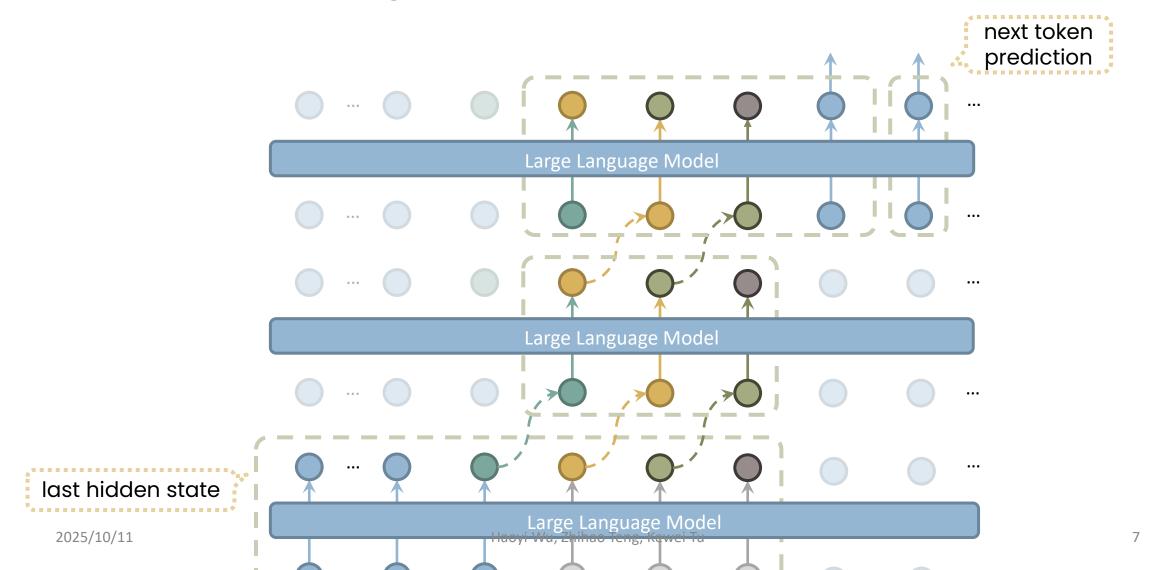
Continuous Chain-of-Thought

- by performing implicit reasoning with continuous vectors...
 - ...it saves reasoning tokens
 - ...but the sequential dependency spoils parallel training

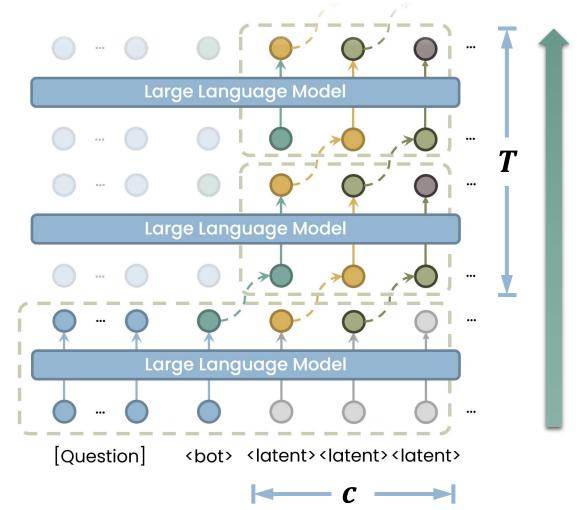








- PCCoT performs non linear Jacobi iteration on latent thought tokens
- Two hyperparameters:
 - *c*: # of latent thought tokens;
 - T: # of extra iterations.

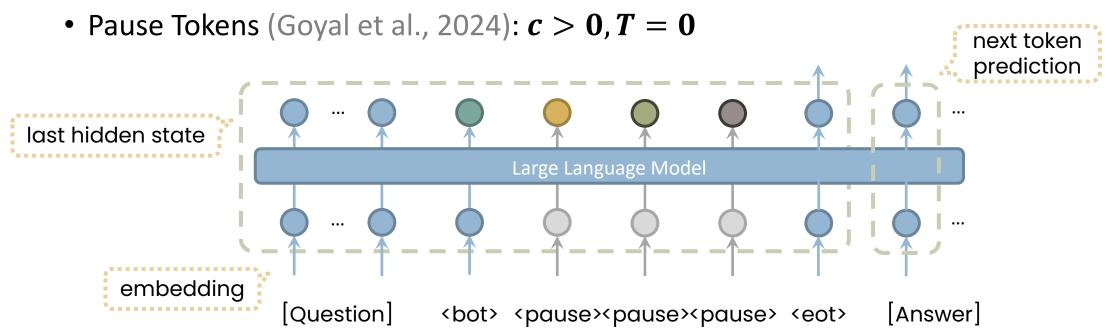


Relations to Existing Approaches

- with different settings of c and T, PCCoT can be reduced to these existing approaches:
 - Implicit CoT (iCoT) (Deng et al., 2024): c = 0

Relations to Existing Approaches

- with different settings of \boldsymbol{c} and \boldsymbol{T} , PCCoT can be reduced to these existing approaches:
 - Implicit CoT (iCoT) (Deng et al., 2024): c = 0



Relations to Existing Approaches

Parallel Continuous Chain-of-Thought with Jacobi Iteration

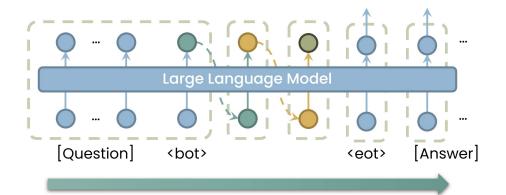
• with different settings of c and T, PCCoT can be reduced to these

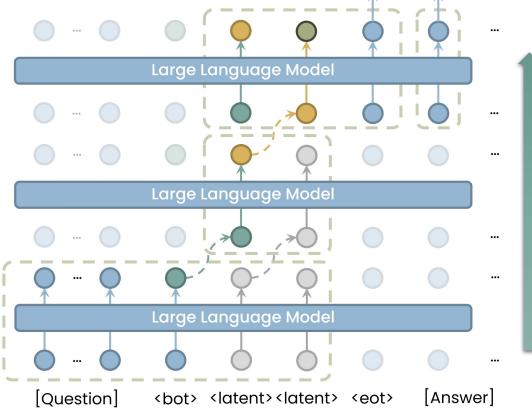
existing approaches:

• Implicit CoT (iCoT): c = 0

• Pause Tokens: c > 0, T = 0

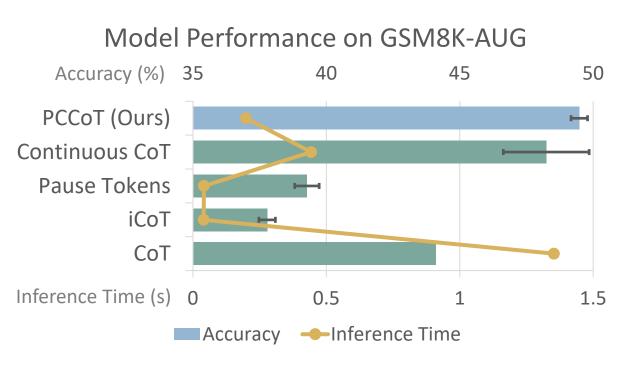
• Continuous CoT (Hao et al., 2024): $T \ge c > 0$





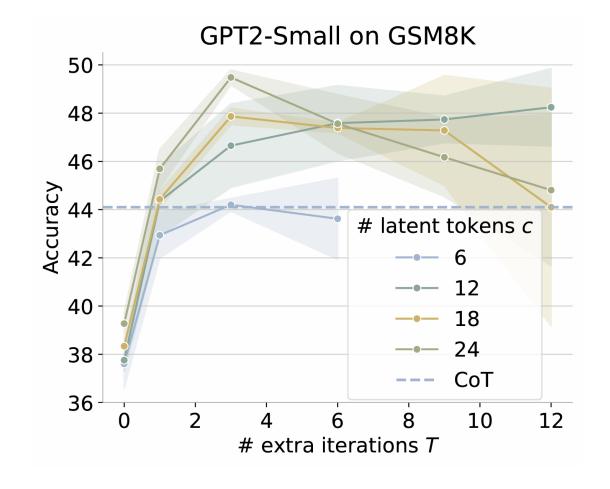
Parallel Continuous Chain-of-Thought with Jacobi Iteration

 Proper choice of c and T speeds up the reasoning process by a large scale without sacrificing the performance.

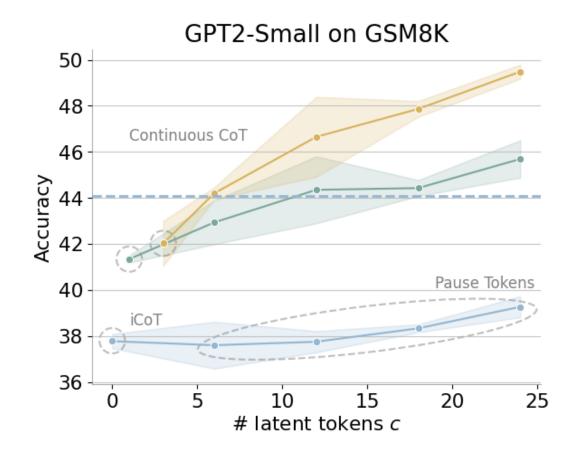


^{*} Experiment on GPT-2 Small, finetuned with LoRA on GSM8K-AUG. The results are averaged over 3 random runs with standard deviations as error bars. The inference time is measured with a batch size of 100. The training runs on 2 H800 GPUs and the inference runs on 1 A6000 GPU. Model training follows that of CODI (Shen et al. 2025).

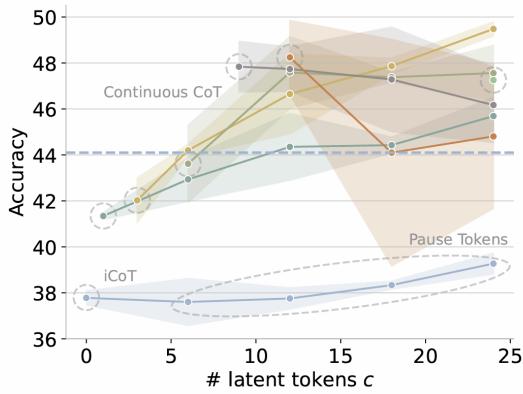
- Proper choice of c and T speeds up the reasoning process by a large scale without sacrificing the performance.
 - Large *T* ⇒ performance improvement
 - Large $T \Rightarrow$ large standard deviation



- Proper choice of c and T speeds up the reasoning process by a large scale without sacrificing the performance.
 - Large *T* ⇒ performance improvement
 - Large $T \Rightarrow$ large standard deviation
 - Large $c \Rightarrow$ stable superior performance

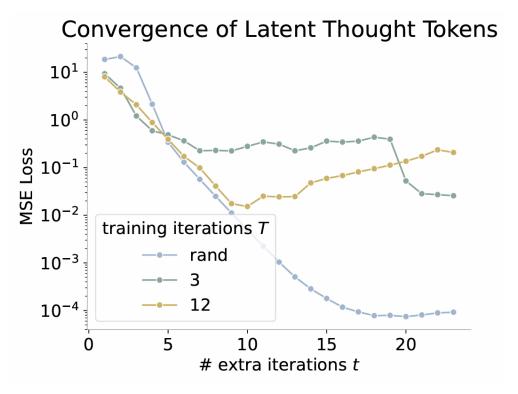


- Proper choice of c and T speeds up the reasoning process by a large scale without sacrificing the performance.
 - Large *T* ⇒ performance improvement
 - Large $T \Rightarrow$ large standard deviation
 - Large $c \Rightarrow$ stable superior performance if T is small



Analysis

- Surprisingly, the latent thought tokens do not converge
 - Despite the convergence guarantee when $T \geq c$



^{*} MSE of the latent thought tokens before and after the t th extra iteration. "rand" means the model is randomly initialized. Other models are trained with c=24 and different T. The model is tested on random samples from the test set of GSM8K.

Thanks

Parallel Continuous Chain-of-Thought with Jacobi Iteration

wuhy1@shanghaitech.edu.cn

github.com/whyNLP/PCCoT

faculty.sist.shanghaitech.edu.cn/faculty/tukw/

