Probabilistic Transformer

Deciphering transformers as a white-box probabilistic model

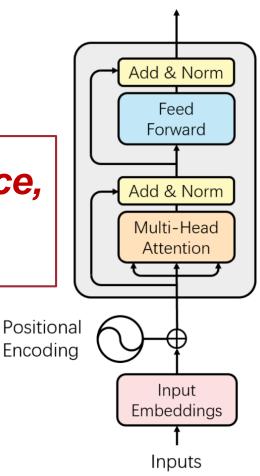
Kewei Tu (joint work with Haoyi Wu)

ShanghaiTech University

Transformers

Transformers are the foundation of LLMs and beyond!

Transformers may work in practice, but do they work in theory??



In a nutshell...

- We propose probabilistic transformers
 - A (non-neural) probabilistic model over natural language syntax
 - Yet, its computation graph is strikingly similar to a transformer encoder!
- Implications?
 - A white-box transformer, which may enable...
 - ...interpretation & analyses of existing transformer variants
 - ...design of new transformer variants in a principled way

Outline

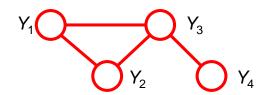
- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
- Similarities to transformers

Outline

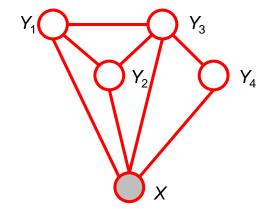
- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
- Similarities to transformers

Probabilistic Models

- MRF = undirected graph + potential functions
 - For each clique (or max clique), define a potential function
 - A joint probability is proportional to the product of potentials

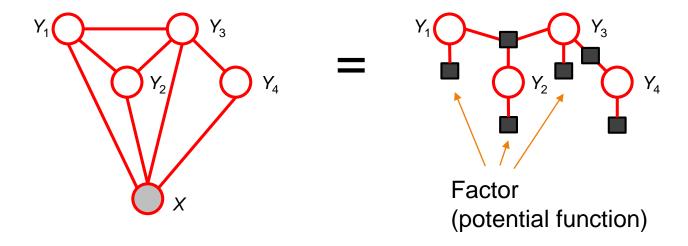


- Conditional Random Fields (CRF)
 - An extension of MRF where everything is conditioned on an input



Factor Graph

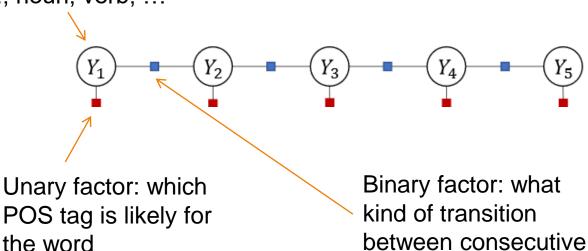
 A factor graph explicitly shows the potential functions (aka factors) in an MRF/CRF



Factor Graph

Example: HMM for POS tagging

POS tag of a word, e.g., noun, verb, ...



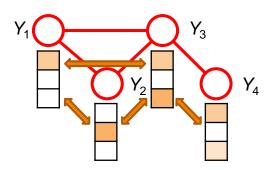
between consecut POS tags is likely

Inference over MRF/CRF

- Inference
 - Some variables are known (evidence)
 - Some variables are latent (we want to marginalize them)
 - Some variables are what we care about (query)
- Exact inference is hard or even intractable in general
- Iterative algorithms for approximate inference
 - Mean-field Variational Inference
 - Loopy Belief Propagation
 - **...**

Inference over MRF/CRF

- Iterative algorithms for approximate inference
- At each iteration:
 - Compute an intermediate vector (e.g., a discrete distribution) for each random variable...
 - ...based on the vectors from the previous iteration
 - ...following a fixed graph structure
 - ...using fixed model parameters
 - ...in a fully differentiable way



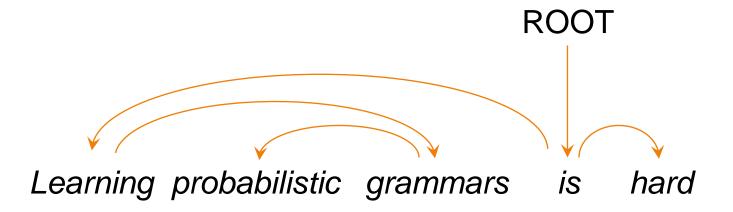
Inference can be unfolded as a Graph Neural Network!

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
- Similarities to transformers

Dependency parsing

 Identify binary relations (i.e., dependencies) between words that form a tree



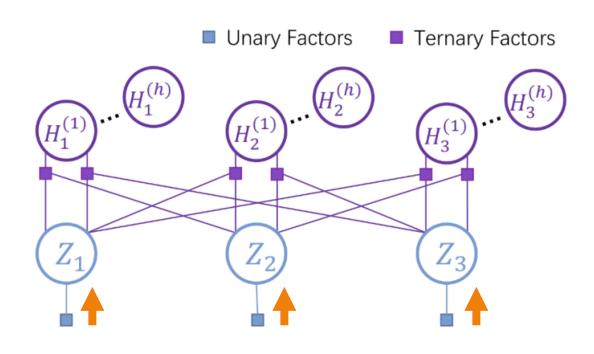
- Head-selection: a simplification of dependency parsing
 - Identify the parent word (i.e., dependency head) of each word
 - No tree constraint

Our CRF: head selection over latent word representation

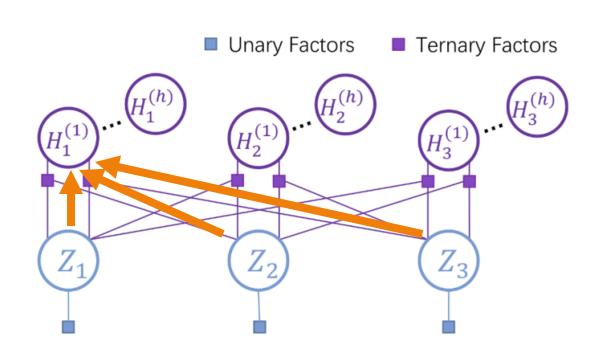
h channels, allowing Unary Factors Ternary Factors multiple dependency structures $H_i \in \{1, \dots, n\}$: index of the dependency head of word i Z_i : a discrete variable, representing property of word *i* in the input Ternary factor: sentence compatibility between Unary factor: Z_i and Z_j if word j is compatibility of Z_i the dependency head and word i of word i ($H_i = j$)

Iteratively recompute marginal distribution $Q(\cdot)$ of each variable

Initialize $Q(Z_i)$



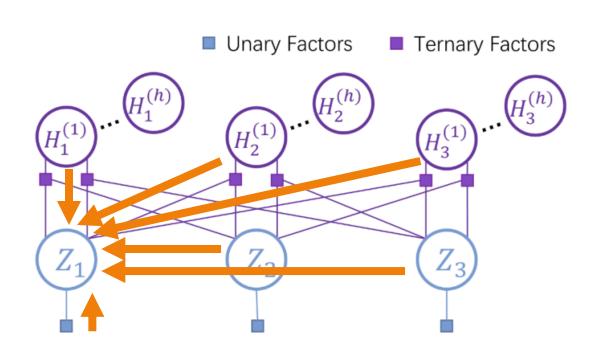
- Iteratively recompute marginal distribution $Q(\cdot)$ of each variable
- Initialize $Q(Z_i)$
- Repeat
 - Recompute $Q(H_i)$



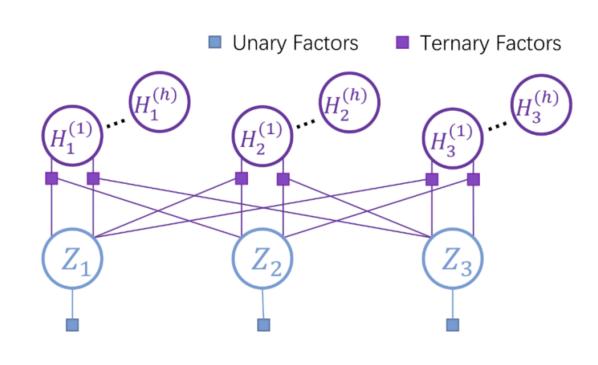
Iteratively recompute marginal distribution $Q(\cdot)$ of each variable

See paper for all the math

- Initialize $Q(Z_i)$
- Repeat
 - Recompute $Q(H_i)$
 - Recompute $Q(Z_i)$



- Iteratively recompute marginal distribution $Q(\cdot)$ of each variable
- Initialize $Q(Z_i)$
- Repeat
 - Recompute $Q(H_i)$
 - Recompute $Q(Z_i)$
- Q(Z_i) can be seen as a contextual representation of word i



Further refinements

- Entropic Frank-Wolfe algorithm
 - Generalization of MFVI
- Rank decomposition of ternary factor

$$T(Z_i, Z_j) = \sum_r U(Z_i, r) \times V(Z_j, r)$$

- Dependency root
- Incorporating word distance in ternary factors
- ...

Learning

- Inference can be unfolded as a Graph Neural Network
- Learning can be done by back-propagation
 - Model parameters: unary & ternary factors
 - Objective function: MLM, downstream tasks, ...

Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
- Similarities to transformers

- We compare the computation graph of MFVI on our CRF with transformers
 - Assumption: symmetric ternary factors
- Roughly speaking:

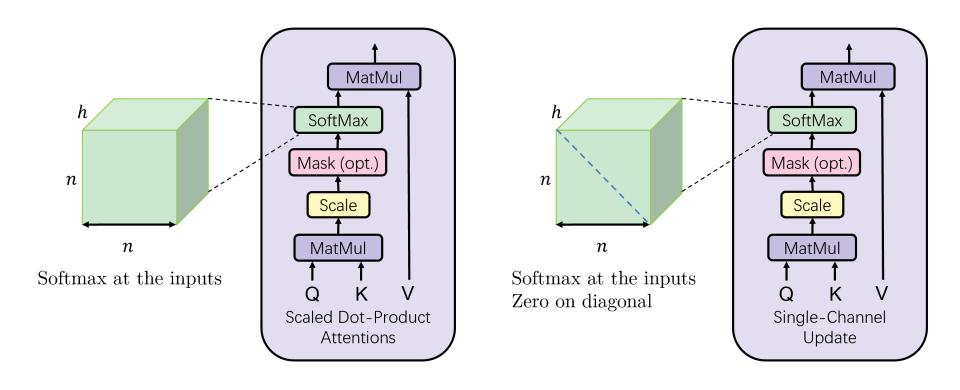
Our intermediate distributions $Q(H_i)$ over dependency heads

Self-attention scores in a transformer

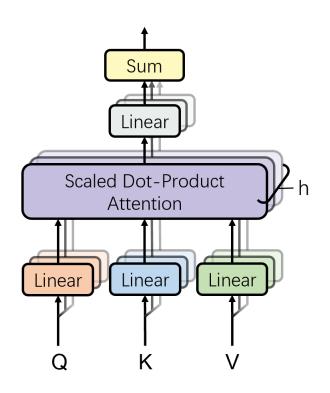
Our intermediate distributions $Q(Z_i)$ over latent word representations

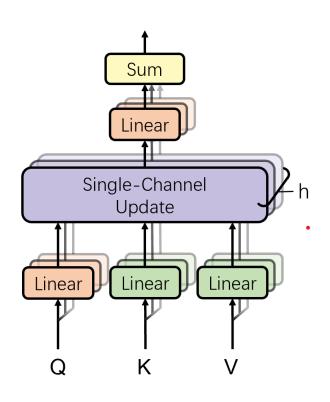
Intermediate word embeddings in a transformer

Single-Channel Update vs. Scaled Dot-Product Attention

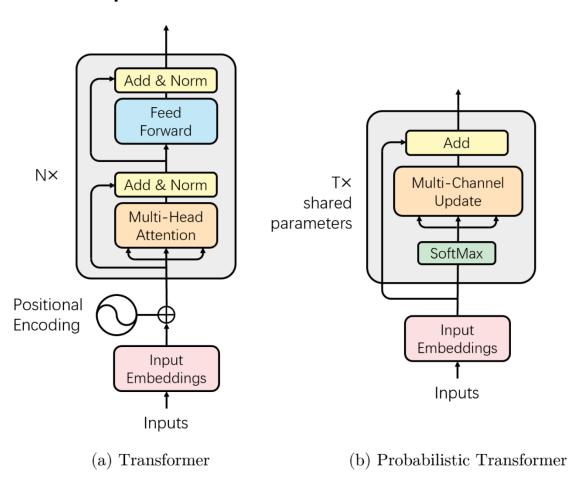


Multi-Channel Update vs. Multi-Head Attention



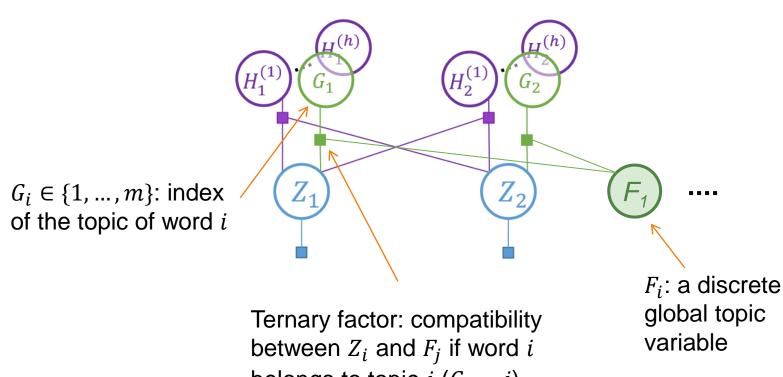


Full Model Comparison



Adding feed-forward layer

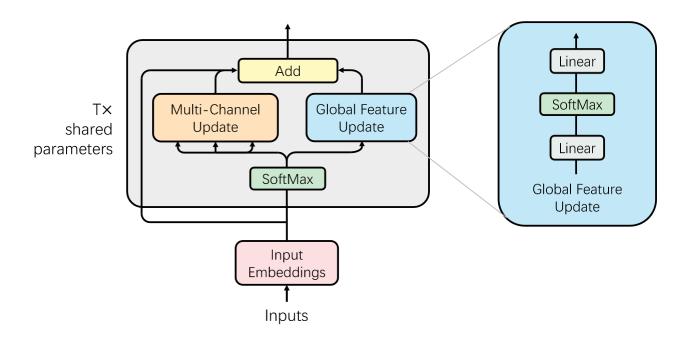
Adding m global topic variables in our CRF



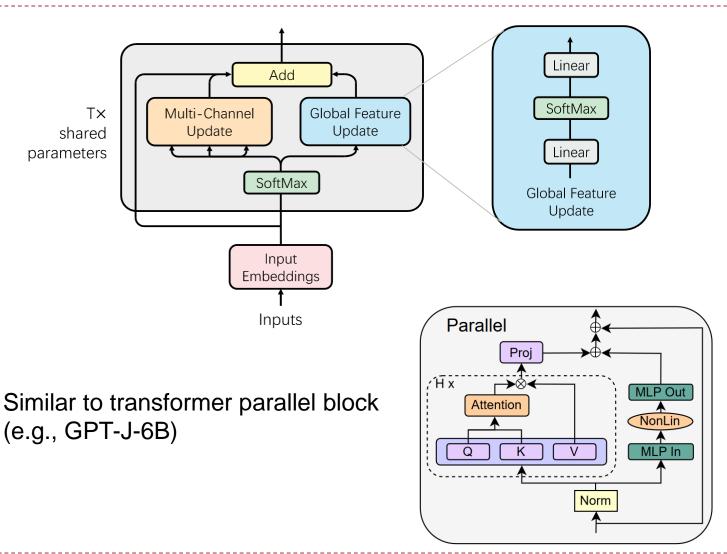
belongs to topic j ($G_i = j$)

Adding feed-forward layer

MFVI computation graph



Adding feed-forward layer



Differences

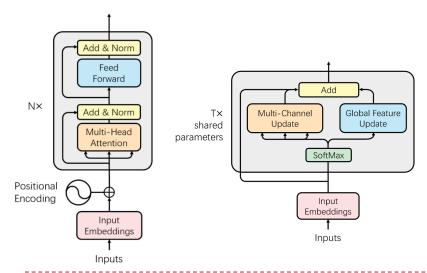
All the differences make sense!

Feed-forward

- vs. Parallel feed-forward
- Residual connection
- vs. Adding input
 - Input injection

Post layer norm

- vs. Softmax before each layer
 - Similar to pre-RMSNorm
- No parameter sharing vs.
- Layer-wise parameter sharing
 - Similar to Universal Transformer, ALBERT, ...



Outline

- Preliminary
 - CRF, MFVI, unfolding as GNN
- Probabilistic transformers
 - Model
 - Inference
- Similarities to transformers
- Summary

Summary

- Probabilistic transformers: a white-box transformer
 - A purely probabilistic syntactic model
 - Approximate inference using mean field variational inference
 - Its computation graph is very similar to a transformer!
- Implications
 - …interpretation & analyses of existing transformer variants
 - ...design of new transformer variants in a principled way

...new transformer variants

- Haoyi Wu and Kewei Tu, "<u>Layer-Condensed KV Cache</u> for Efficient Inference of Large Language Models". ACL 2024.
 - Inspired by autoregressive decoding with probabilistic transformers
 - Condense KV cache into a few layers
 - Achieving up to 26× higher throughput with competitive performance

Summary

- Paper
 - https://aclanthology.org/2023.findings-acl.482/
- Code
 - https://github.com/whyNLP/Probabilistic-Transformer

Thank you!

Q&A