Probabilistic Transformer

Deciphering transformers as a white-box probabilistic model

Kewei Tu (joint work with Haoyi Wu)
ShanghaiTech University

fefa}) B R KT

ShanghaiTech University

Transformers

» Transformers are the foundation of
LLMs and beyond! [R

Add & Norm

r ~

Feed
. Forward |

—

Transformers may work in practice, | | ~aaanom

s - ~
Multi-Head

but do they work in theory?? _ Attention |

R

_ _J
Positional g
Encoding y

Input
Embeddings
f

Inputs

In a nutshell...

We propose probabilistic transformers

» A (non-neural) probabilistic model over natural language
syntax

» Yet, its computation graph is strikingly similar to a
transformer encoder!

Implications?

» A white-box transformer, which may enable...

» ...interpretation & analyses of existing transformer variants
» ...design of new transformer variants in a principled way

Outline

» Preliminary
CRF, MFVI, unfolding as GNN

» Probabilistic transformers
Model
Inference

» Similarities to transformers

QOutline

» Preliminary
CRF, MFVI, unfolding as GNN

» Probabilistic transformers
Model
Inference

» Similarities to transformers

Probabilistic Models

MRF = undirected graph +
potential functions

» For each clique (or max clique),
define a potential function

» Ajoint probabillity is proportional
to the product of potentials

Conditional Random Fields (CRF) Y, Y3

» An extension of MRF where Y,
everything is conditioned on an
Input

Factor Graph

A factor graph explicitly shows the potential functions
(aka factors) in an MRF/CRF

Factor
(potential function)

Factor Graph

Example: HMM for POS tagging

POS tag of a word,
e.g., houn, verb, ...

N A

Unary factor: which Binary factor: what
POS tag is likely for kind of transition
the word between consecutive

POS tags is likely

Inference over MRF/CRF

Inference

» Some variables are known (evidence)

» Some variables are latent (we want to marginalize them)
» Some variables are what we care about (query)

Exact inference is hard or even intractable in general

Iterative algorithms for approximate inference
» Mean-field Variational Inference
» Loopy Belief Propagation

Inference over MRF/CRF

Iterative algorithms for approximate inference

At each iteration:

» Compute an intermediate vector (e.g., a discrete distribution)
for each random variable...

...based on the vectors from the

previous iteration v, "
...following a fixed graph structure C@%D\C)
...using fixed model parameters \ﬁ; '\ﬁ Y,

Inference can be unfolded as a Graph Neural Network!

v

v Vv v

...in a fully differentiable way

Outline

» Preliminary
CRF, MFVI, unfolding as GNN

» Probabilistic transformers
Model
Inference

» Similarities to transformers

Dependency parsing

|dentify binary relations (i.e., dependencies) between
words that form a tree

ROOT

Learning probabilistic grammars Iis hard

Head-selection: a simplification of dependency parsing

» ldentify the parent word (i.e., dependency head) of each
word

» NoO tree constraint

Our CRF: head selection over latent word
representation

h channels, allowing
multiple dependency B Unary Factors B Ternary Factors

structures

H; € {1, ..,n}: index of 7
the dependency head
of word i

Z;. a discrete variable, /
representing property

of word i in the input
sentence

\ Ternary factor:

Unary factor: compatibility between

compatibility of Z; Z;and Z; if word j Is
and word i the dependency head
of word i (H; = j)

Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

» Initialize Q(Z;)

W Unary Factors B Ternary Factors

Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

» Initialize Q(Z;)
» Repeat W Unary Factors M Ternary Factors
» Recompute Q(H;)

Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

See paper for all the math
» Initialize Q(Z;)

» Repeat W Unary Factors M Ternary Factors

» Recompute Q(H;) . @
» Recompute Q(Z;)

Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

» Initialize Q(Z;)

» Repeat W Unary Factors M Ternary Factors
» Recompute Q(H;) .
» Recompute Q(Z;)

» Q(Z;) can be seen
as a contextual
representation of
word i = O =

-
-
-

Further refinements

Entropic Frank-Wolfe algorithm
» Generalization of MFVI

Rank decomposition of ternary factor
» T(Z;,Z;) = z U(Z;,r) xV(Z;,T)
r

Dependency root
Incorporating word distance in ternary factors

Learning

Inference can be unfolded as a Graph Neural Network

Learning can be done by back-propagation
» Model parameters: unary & ternary factors
» Objective function: MLM, downstream tasks, ...

QOutline

» Preliminary
CRF, MFVI, unfolding as GNN

» Probabilistic transformers
Model
Inference

» Similarities to transformers

Similarities to transformers

We compare the computation graph of MFVI on our CRF
with transformers

» Assumption: symmetric ternary factors
Roughly speaking:
Our intermediate

distributions Q (H;) over
dependency heads

Self-attention scores in a
transformer

Q

Our intermediate
distributions Q(Z;) over
latent word
representations

Intermediate word
embeddings in a
transformer

2

Similarities to transformers

Single-Channel Update vs. Scaled Dot-Product Attention

n

Softmax at the inputs

4)

MatMul

- t
SoftMax
P f
Mask (opt.)
t
Scale
i}
MatMul

t 1
Q K V

Scaled Dot-Product

K Attentions /

n

Softmax at the inputs
Zero on diagonal

/

o

t

MatMul

i

SoftMax

i

Mask (opt.)

1

Scale

1

MatMul

t 1
Q K V

Single-Channel
Update

)

Similarities to transformers

Multi-Channel Update vs. Multi-Head Attention

Sum Sum
Linear I Linear I
n]_ p “].
Scaled Dot-Product h Single-Channel h
Attention Update
Linear J Linear J Linear J Linear J Linear J Linear J
P P F V F P
Q K V Q K V

Similarities to transformers

Full Model Comparison

4 N\
r—’[Add & Norm]
[i Feedd] Vs ~N
orwar
r Add
Sh— I
N> 1~ add & Norm] T Multi-Channel
- shared Update
[Multl—Head] parameters X T ¥
Attention
—r 7 SoftMax
=, (CSotar)
. J
Positional g D—
Encoding Input
Embeddings
Input 1
[Embeddings]
f Inputs
Inputs
(a) Transformer (b) Probabilistic Transformer

Adding feed-forward layer

G; € {1, ..., m}: index
of the topic of word i

F;: a discrete

Ternary factor: compatibility global topic
between Z; and F; if word i variable

belongs to topic j (G; = j)

Adding feed-forward layer

Linear

T Multi-Channel Global Feature
shared Update Update
parameters X 1 z J
SoftMax Global Feature
~ - \\ Update /
Input
Embeddings
I
Inputs

Adding feed-forward layer

; .

Linear

TX Multi-Channel Global Feature
shared Update Update
parameters X 1 z J
Softhax Global Feature
. J

C \\ Update /

Input
Embeddings
I

Inputs

Similar to transformer parallel block
(e.g., GPT-J-6B)

Differences All the differences make sense!

Feed-forward vs. Parallel feed-forward
Residual connection vs. Adding input
» Input injection
Post layer norm vs. Softmax before each layer
» Similar to pre-RMSNorm

No parameter sharing Vvs. Layer-wise parameter

sharing
1 » Similar to Universal
. N { [f*][1] Transformer, ALBERT, ...
roensl (V) g ‘ =]
Inputs

QOutline

» Preliminary
CRF, MFVI, unfolding as GNN

» Probabilistic transformers
Model
Inference

» Similarities to transformers
» Summary

Summary

Probabilistic transformers: a white-box transformer

» A purely probabilistic syntactic model

» Approximate inference using mean field variational inference
» Its computation graph is very similar to a transformer!

Implications
» ...interpretation & analyses of existing transformer variants
» ...design of new transformer variants in a principled way

...new transformer variants

» Haoyl Wu and Kewel Tu, "Layer-Condensed KV Cache
for Efficient Inference of Large Language Models". ACL
2024.

» Inspired by autoregressive decoding with probabilistic
transformers

» Condense KV cache into a few layers

» Achieving up to 26 X higher throughput with competitive
performance

file:///E:/My%20Documents/My%20Web%20Sites/acl24lckv.pdf

Summary

» Paper
» https://aclanthology.org/2023.findings-acl.482/

» Code
» https://github.com/whyNLP/Probabilistic-Transformer

https://aclanthology.org/2023.findings-acl.482/
https://github.com/whyNLP/Probabilistic-Transformer

Thank you!

Q&A

