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Transformers

» Transformers are the foundation of
LLMs and beyond! [ R
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In a nutshell...

We propose probabilistic transformers

» A (non-neural) probabilistic model over natural language
syntax

» Yet, its computation graph is strikingly similar to a
transformer encoder!

Implications?

» A white-box transformer, which may enable...

» ...interpretation & analyses of existing transformer variants
» ...design of new transformer variants in a principled way
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Probabilistic Models

MRF = undirected graph +
potential functions

» For each clique (or max clique),
define a potential function

» Ajoint probabillity is proportional
to the product of potentials

Conditional Random Fields (CRF) Y, Y3

» An extension of MRF where Y,
everything is conditioned on an
Input



Factor Graph

A factor graph explicitly shows the potential functions
(aka factors) in an MRF/CRF

Factor
(potential function)



Factor Graph

Example: HMM for POS tagging

POS tag of a word,
e.g., houn, verb, ...

N A

Unary factor: which Binary factor: what
POS tag is likely for kind of transition
the word between consecutive

POS tags is likely



Inference over MRF/CRF

Inference

» Some variables are known (evidence)

» Some variables are latent (we want to marginalize them)
» Some variables are what we care about (query)

Exact inference is hard or even intractable in general

Iterative algorithms for approximate inference
» Mean-field Variational Inference
» Loopy Belief Propagation



Inference over MRF/CRF

Iterative algorithms for approximate inference

At each iteration:

» Compute an intermediate vector (e.g., a discrete distribution)
for each random variable...

...based on the vectors from the

previous iteration v, "
...following a fixed graph structure C@%D\C)
...using fixed model parameters \ﬁ; '\ﬁ Y,

Inference can be unfolded as a Graph Neural Network!

v

v Vv v

...in a fully differentiable way



Outline

» Preliminary
CRF, MFVI, unfolding as GNN

» Probabilistic transformers
Model
Inference

» Similarities to transformers



Dependency parsing

|dentify binary relations (i.e., dependencies) between
words that form a tree

ROOT

Learning probabilistic grammars Iis hard

Head-selection: a simplification of dependency parsing

» ldentify the parent word (i.e., dependency head) of each
word

» NoO tree constraint



Our CRF: head selection over latent word
representation

h channels, allowing
multiple dependency B Unary Factors B Ternary Factors

structures

H; € {1, ..,n}: index of 7
the dependency head
of word i

Z;. a discrete variable, /
representing property

of word i in the input
sentence

\ Ternary factor:

Unary factor: compatibility between

compatibility of Z; Z;and Z; if word j Is
and word i the dependency head
of word i (H; = j)



Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

» Initialize Q(Z;)

W Unary Factors B Ternary Factors




Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

» Initialize Q(Z;)
» Repeat W Unary Factors M Ternary Factors
» Recompute Q(H;)




Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

See paper for all the math
» Initialize Q(Z;)

» Repeat W Unary Factors M Ternary Factors

» Recompute Q(H;) . @
» Recompute Q(Z;)




Mean Field Variational Inference (MFVI)

» Iteratively recompute marginal distribution Q(-) of each
variable

» Initialize Q(Z;)

» Repeat W Unary Factors M Ternary Factors
» Recompute Q(H;) .
» Recompute Q(Z;)

» Q(Z;) can be seen
as a contextual
representation of
word i = O =

-
-
-




Further refinements

Entropic Frank-Wolfe algorithm
» Generalization of MFVI

Rank decomposition of ternary factor
» T(Z;,Z;) = z U(Z;,r) xV(Z;,T)
r

Dependency root
Incorporating word distance in ternary factors



Learning

Inference can be unfolded as a Graph Neural Network

Learning can be done by back-propagation
» Model parameters: unary & ternary factors
» Objective function: MLM, downstream tasks, ...
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Similarities to transformers

We compare the computation graph of MFVI on our CRF
with transformers

» Assumption: symmetric ternary factors
Roughly speaking:
Our intermediate

distributions Q (H;) over
dependency heads

Self-attention scores in a
transformer

Q

Our intermediate
distributions Q(Z;) over
latent word
representations

Intermediate word
embeddings in a
transformer

2



Similarities to transformers

Single-Channel Update vs. Scaled Dot-Product Attention
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Similarities to transformers

Multi-Channel Update vs. Multi-Head Attention

Sum Sum
Linear I Linear I
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Similarities to transformers

Full Model Comparison

4 N\
r—’[ Add & Norm ]
[ i Feedd ] Vs ~N
orwar
r Add
Sh— I
N> 1~ add & Norm ] T Multi-Channel
- shared Update
[ Multl—Head ] parameters X T ¥
Attention
—r 7 SoftMax
=, (CSotar)
. J
Positional g D—
Encoding Input
Embeddings
Input 1
[ Embeddings ]
f Inputs
Inputs
(a) Transformer (b) Probabilistic Transformer



Adding feed-forward layer

G; € {1, ..., m}: index
of the topic of word i

F;: a discrete

Ternary factor: compatibility global topic
between Z; and F; if word i variable

belongs to topic j (G; = j)



Adding feed-forward layer

Linear

T Multi-Channel Global Feature
shared Update Update
parameters X 1 z J
SoftMax Global Feature
~ - \\ Update /
Input
Embeddings
I
Inputs



Adding feed-forward layer

; .

Linear

TX Multi-Channel Global Feature
shared Update Update
parameters X 1 z J
Softhax Global Feature
. J
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Similar to transformer parallel block
(e.g., GPT-J-6B)




Differences All the differences make sense!

Feed-forward vs. Parallel feed-forward
Residual connection vs. Adding input
» Input injection
Post layer norm vs. Softmax before each layer
» Similar to pre-RMSNorm

No parameter sharing Vvs. Layer-wise parameter

sharing
1 » Similar to Universal
. N { [ f* ][1] Transformer, ALBERT, ...
roensl (V) g ‘ =]
Inputs
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Summary

Probabilistic transformers: a white-box transformer

» A purely probabilistic syntactic model

» Approximate inference using mean field variational inference
» Its computation graph is very similar to a transformer!

Implications
» ...interpretation & analyses of existing transformer variants
» ...design of new transformer variants in a principled way



...new transformer variants

» Haoyl Wu and Kewel Tu, "Layer-Condensed KV Cache
for Efficient Inference of Large Language Models". ACL
2024.

» Inspired by autoregressive decoding with probabilistic
transformers

» Condense KV cache into a few layers

» Achieving up to 26 X higher throughput with competitive
performance



file:///E:/My%20Documents/My%20Web%20Sites/acl24lckv.pdf

Summary

» Paper
» https://aclanthology.org/2023.findings-acl.482/

» Code
» https://github.com/whyNLP/Probabilistic-Transformer



https://aclanthology.org/2023.findings-acl.482/
https://github.com/whyNLP/Probabilistic-Transformer

Thank you!
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