
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

A Neural Rendering Coprocessor With Optimized
Ray Representation and Marching

Zhechen Yuan , Student Member, IEEE, Binzhe Yuan , Chaolin Rao , Yiren Zhu , Yunxiang He,
Pingqiang Zhou , Member, IEEE, Jingyi Yu , Fellow, IEEE, and Xin Lou , Senior Member, IEEE

Abstract—Neural rendering, a transformative approach for
3-D scene reconstruction and rendering, has advanced rapidly
in recent years. This article introduces an energy-efficient neural
rendering coprocessor that implements the popular and widely
used instant neural graphics primitive (Instant-NGP) algorithm.
In particular, we address the challenges of limited resources
for deploying Instant-NGP on edge by proposing a dedicated
architecture, which incorporates three main innovations: 1) we
optimize occupancy grid queries in the ray marching module
by partitioning the grid and decoupling the query process
from sampling point generation, which improves both efficiency
and memory usage; 2) we introduce a bilinked list-based ray
switching strategy, which ensures continuous pipeline utilization
to overcome the inefficiencies caused by sequential processing;
and 3) we optimize the hash encoding process by incorporating
quantization-aware training (QAT), enabling the hash table to
fit into on-chip memory, thereby improving performance on
resource-constrained devices. To demonstrate the effectiveness of
our architecture, we design and fabricate a proof-of-concept chip
using 40-nm CMOS technology and develop a testing system
to evaluate its performance. Measurement results validate the
advantages of the proposed design, showing that our chip achieves
superior energy efficiency compared to both server and edge
graphics processing units (GPUs), as well as other state-of-the-
art neural rendering chip designs.

Index Terms—Coprocessor, energy-efficient, instant neu-
ral graphics primitive (Instant-NGP), neural rendering, ray
marching.

I. INTRODUCTION

RENDERING realistic scenes in virtual environments has
long been a significant challenge across various applica-

tions, including video games, augmented reality (AR), virtual
reality (VR), and other graphics-related fields. For these appli-
cations, rendering has to be performed in real time to ensure
a smooth and immersive user experience. Generally, there are
two widely used rendering techniques, i.e., the rasterization
pipeline and the ray tracing pipeline [1]. The rasterization
graphics pipeline is the cornerstone of real-time rendering,

Received 1 March 2025; revised 1 May 2025; accepted 16 May 2025.
This work was supported in part by Shanghai Fundamental Research Program
under Grant 24JD1402300, in part by the Central Guided Local Science and
Technology Foundation of China under Grant YDZX20223100001001, and
in part by the National Key Research and Development Program of China
under Grant 2023YFB4404000. (Corresponding author: Xin Lou.)

Zhechen Yuan, Binzhe Yuan, Yiren Zhu, Yunxiang He, Pingqiang Zhou,
and Jingyi Yu are with the School of Information Science and Technology,
ShanghaiTech University, Shanghai 201210, China.

Chaolin Rao and Xin Lou are with the School of Information Sci-
ence and Technology, ShanghaiTech University, Shanghai 201210, China,
and also with GGU Technology Ltd., Shanghai 201210, China (e-mail:
louxin@shanghaitech.edu.cn).

Digital Object Identifier 10.1109/TVLSI.2025.3572959

which is widely used in many applications such as video
gaming and interactive simulations. This technique involves
decomposing objects into primitives, usually triangles, which
are then rasterized into fragments before applying color. As
rasterization processes each triangle independently and in
parallel, it is highly efficient and well-suited for hardware
acceleration, making it ideal for applications that require high
frame rates and responsiveness. However, such a method fails
to achieve photorealistic rendering quality. Ray tracing, on
the other hand, offers a more realistic rendering approach by
simulating the way light interacts with objects in a scene.
Unlike rasterization that starts from the object’s perspective,
ray tracing begins from the camera’s viewpoint. Rays are
cast from the camera into the scene, tracing their paths as
they encounter surfaces. This method can accurately render
complex optical effects such as reflections and refractions
by tracing secondary rays as they bounce between objects.
Although ray tracing offers high visual fidelity, it is computa-
tionally intensive. As a result, real-time applications have been
limited in their use of ray tracing, especially in edge devices.

Deep learning has recently emerged as a transformative
force in computer graphics, particularly in 3-D object mod-
eling and scene rendering [2], [3]. With the advent of neural
radiance fields (NeRFs) [4], neural volume rendering (NVR)
has rapidly evolved into a prominent method, leveraging deep
neural networks (DNNs) to reconstruct 3-D scenes and provide
photorealistic rendering in an efficient manner. By encoding
scenes and objects within the weights of a DNN, NVR
methods implicitly map input coordinates to certain values
such as color or radiance. Compared to traditional explicit
3-D representations such as polygon meshes, voxels, or point
clouds, implicit neural scene representations are capable of
capturing the details of complex surfaces and shapes in a more
compact manner. However, due to its enormous computational
demands that require a large number of sampling points
and extensive multilayer perceptron (MLP) evaluations, the
original NeRF algorithm could only achieve a rendering speed
of 0.03 frames per second (FPS) at 800× 800 resolution on a
high-end V100 GPU [4].

To accelerate NeRF and its variants, various algorithmic-
level optimizations have been developed [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14]. NSVF [5] employs a sparse voxel
octree structure to bypass empty regions of a scene, signifi-
cantly speeding up the rendering of new views and achieving
a more than tenfold increase in inference speed compared
to vanilla NeRF. DeRF [7] spatially decomposes the scene
and allocates smaller networks to each decomposed space to

1063-8210 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0004-7366-5158
https://orcid.org/0000-0002-0979-624X
https://orcid.org/0000-0003-2172-5361
https://orcid.org/0009-0001-8645-2360
https://orcid.org/0000-0001-9515-9302
https://orcid.org/0000-0001-9198-6853
https://orcid.org/0000-0001-7196-9861

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

reduce computational load. A similar idea is applied in Kilo-
NeRF [8] to accelerate rendering by replacing a large MLP
with thousands of smaller networks, achieving a 1000-fold
increase in rendering speed. FastNeRF [9] uses GPU caches
to store the relationship between sampling point locations and
the radiance field, substituting network inference computations
for retrieval. PlenOctrees [10] incorporates an octree structure
to store the radiance field to avoid neural network evaluation
and achieves up to 150 FPS at 800 × 800 resolution. While
these methods have succeeded in accelerating NeRF rendering,
they depend heavily on the substantial cache of existing GPUs
for swift neural rendering or require extensive storage space
to save parameters or data structures. Instant neural graphics
primitive (Instant-NGP) [15] employs hash encoding for effi-
cient neural rendering, requiring only 28-MB storage while
achieving higher PSNR and real-time inference. In addition
to these optimization efforts targeting NeRF’s performance,
several studies have integrated explicit 3-D representations
with neural networks to achieve superior rendering quality
and speed. However, the storage requirements of these explicit
3-D model representations remain significant. Taking the most
representative Point-NeRF [16] as an example, Point-NeRF
employs point cloud data as input and utilizes an MLP to
predict the color and density of each point while maintaining
the same rendering pipeline as NeRF. However, the parameters
for a single scene (including both the point cloud and network
weights) can reach up to 72 MB, much larger than Instant-
NGP’s. Moreover, its rendering speed and quality are both
inferior to Instant-NGP.

In addition to algorithmic optimizations, dedicated NVR
accelerators have also been proposed to solve the rendering
efficiency bottleneck. As a pioneering work, ICARUS [17]
introduced the first NeRF accelerator based on the original
NeRF algorithm. However, the massive number of sampling
point computations and the large size of the MLP network
hinder it from achieving real-time rendering. As a follow-
up work, MetaVRain [18], [19] proposed improvements by
exploiting frame-to-frame correlations and storing intermedi-
ate MLP network computations from one frame to reuse in the
next, significantly reducing the computational load. Although
MetaVRain accelerates rendering speed by utilizing informa-
tion between frames, as the rendering resolution increases, a
large amount of intermediate network data needs to be stored.
These data cannot be fully stored in on-chip SRAM and must
be frequently exchanged with double data rate (DDR) memory,
resulting in significant performance overhead. In addition,
when the viewpoint changes rapidly, it becomes difficult to
effectively utilize information between frames, leading to a
further decline in performance.

The proposed coprocessor exhibits even more pronounced
advantages in terms of energy efficiency. Compared to the
Jetson Xavier NX [20], our design consumes 264.14× less
power. In addition, it uses 15.46× less power than MetaVRain,
a significant reduction that underscores the efficiency of our
architecture for power-sensitive applications. This indicates
that our accelerator not only achieves high performance but
does so with minimal energy requirements. In this article,
we first deploy Instant-NGP, on both desktop and edge GPUs

to identify the bottlenecks affecting its rendering speed. Our
analysis revealed that the two most time-consuming stages are:
1) the ray marching module, responsible for generating sample
points and 2) the hash encoding module, which encodes
the information of these sample points. We investigate the
root causes of these bottlenecks and propose corresponding
solutions, which can be summarized as follows.

1) The serial querying of the occupancy grid for each
sampling point causes inefficiency. To address this, we
partition the grid and use multistep ray marching, decou-
pling the grid query from point generation. This reduces
memory overhead and improves query efficiency.

2) The ray marching, encoding, and network computation
modules execute sequentially, and when a ray early
terminates, it stalls the pipeline, reducing overall running
efficiency. We propose a batch processing mechanism
along with a bilinked list-based ray switching strategy
to keep the pipeline active continuously, improving
throughput.

3) Hash encoding is time-consuming, especially on devices
with limited on-chip memory such as Jetson Xavier
NX. We incorporate quantization-aware training (QAT),
enabling the hash table to fit into on-chip mem-
ory, thereby minimizing off-chip memory accesses and
improving performance.

The article is organized as follows. Section II benchmarks
NeRF against Instant-NGP, highlighting the latter’s advantages
and analyzing its hardware bottlenecks across platforms, which
motivates our solutions. Sections III–V elaborate on three
targeted optimization strategies. Section VI presents the uni-
fied accelerator architecture. Section VII validates the design
through silicon measurements and proposes a Multi-MAC
variant, achieving higher throughput and energy efficiency.
Section VIII concludes with research implications.

II. BACKGROUND AND BOTTLENECK ANALYSIS

A. NeRF and Instant-NGP

Fig. 1(a) illustrates the rendering process in the original
NeRF algorithm. For a ray corresponding to the rendering
pixel, 64 sample points are uniformly sampled first, known
as coarse sampling. The coordinate information (x, y, z) and
directional information (θ, φ) of these sampled points are
encoded to high-dimensional vectors through a positional
encoding. The encoded vectors are subsequently processed
by an MLP network to compute the density and color of
each sample point. Following the coarse sampling, the region
with high-density sample points is selected, and 128 addi-
tional points are further sampled within this region, known
as fine sampling. These finely sampled points undergo the
same process as the coarsely sampled points to compute their
corresponding density and color. Finally, the volume rendering
module integrates the density and color values of all 192
sample points (coarse and fine) to generate the final pixel color.

Fig. 1(b) illustrates the rendering pipeline of Instant-NGP.
The improvements over the original NeRF can be summarized
in the following two key aspects.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NEURAL RENDERING COPROCESSOR WITH OPTIMIZED RAY REPRESENTATION AND MARCHING 3

Fig. 1. Comparison between the NeRF and Instant-NGP rendering pipeline. (a) NeRF: coarse and fine uniform sampling, positional encoding, and a large
MLP network. (b) Instant-NGP: specialized sampling combined with an occupancy grid, multiresolution hash encoding, and a smaller MLP network.

1) Ray Marching With Early Termination: Instant-NGP
trains a binary occupancy grid for efficient point sam-
pling. For a ray that traverses the binary occupancy grid,
it generates sample points only within valid grids labeled
by 1 s. In addition, when computing the RGB value
of a pixel through volume rendering, the ray marching
process terminates early if the ray’s opacity reaches a
predefined threshold that is close to 1, indicating that
subsequent sample points contribute little to the ray’s
color. These two techniques in Instant-NGP significantly
reduce the computational overhead associated with non-
contributory sample points.

2) Hash Encoding With Smaller MLP: Instant-NGP
replaces the traditional positional encoding used in
NeRF with a multiresolution hash table-based encoding
scheme. First, the eight vertex coordinates of the sam-
pling point’s grid cell are transformed through a hash
function into eight address indices. These indices are
then used to retrieve eight corresponding values from
the hash table. Finally, these values undergo trilinear
interpolation to generate the network’s input features.
This encoding efficiently maps spatial coordinates to
feature vectors stored in a hash table. The hash table
allows the model to store and retrieve high-frequency
details without requiring the MLP to learn these details
implicitly. As a result, the MLP only needs to focus on
blending and interpreting these features, allowing it to be
much smaller and more efficient. This innovation makes
the model more efficient without sacrificing quality.

Fig. 2. Time consumption breakdown for Instant-NGP rendering on RTX
3090Ti and Jetson Xavier NX with total time values for both platforms.

B. Bottleneck Analysis

To identify the bottlenecks in Instant-NGP, we first deploy
the algorithm on a desktop GPU, the NVIDIA RTX 3090 Ti.
The time consumption breakdown is illustrated in Fig. 2. As
shown, the ray marching and hash encoding modules account
for approximately 70% of the total time consumption. We also
deploy the same algorithm on an NVIDIA edge GPU, the
Jetson Xavier NX, where the time consumption of the hash
encoding module increases to 42.09%. These bottlenecks can
be attributed to the following three main factors.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

1) Occupancy Grid Queries: In ray marching, each time a
ray enters a new occupancy grid, the grid value is queried
to determine the validity of the sampling point. The tight
coupling between sampling point generation and occupancy
grid queries creates a dependence, forcing each grid query
to finish before the next sampling point can be generated. In
addition, traversing empty regions causes further delays and
degrades throughput. The core issue lies in the need to query
the occupancy grid for every sampling point.

2) Hash Encoding: As illustrated in Fig. 2, the hash
encoding module accounts for a significant portion of total
processing time. In particular, the time spent on the hash
encoding exceeds nearly half of the total on edge devices.
For further investigation, we measure the L1 and L2 cache
hit rates. Our findings reveal that the Jetson Xavier NX,
constrained by its limited on-chip SRAM resources, heavily
depends on interactions with external DDR memory, resulting
in significant delays. Specifically, the L1 cache hit rate on
the Jetson Xavier NX is 64.05%, and the L2 cache hit rate
is 32.98%. In comparison, the RTX3090Ti achieves L1 and
L2 cache hit rates of 83.81% and 71.89%, respectively. This
observation is further corroborated by the experiments in
[21], which also emphasize the substantial performance impact
of frequent DDR accesses on devices with limited on-chip
memory resources.

3) Sequential Processing: In the original implementation,
the ray marching, encoding, and network computation mod-
ules operate sequentially. Each sampling point must be fully
processed before the ray advances to query the occupancy grid.
This approach introduces inefficiencies, as it leaves other mod-
ules idle during processing, resulting in suboptimal utilization
of system resources and diminished overall performance.

C. Proposed Solutions

To address the bottlenecks mentioned above, we propose the
following three solutions, each targeting a specific problem.

1) Multistep Advance-Based Ray Marching With Optimized
Occupancy Grid Queries: In the ray marching module,
a major bottleneck is the time required to access the
occupancy grid for each sampling point to verify its
validity. To address this, we partition the occupancy
grid based on spatial structure, enabling adjacent lookup
requests to be completed within the same cycle. In addi-
tion, by employing a multistep advanced-based ray
marching strategy for a single ray within one cycle, we
achieve both efficient and rapid ray traversal. Moreover,
we decouple the occupancy grid query process from
sampling point generation. The entire scene is quickly
traversed to query the occupancy grid, compressing the
results into a representation of nonempty interval areas.
This representation records only the start and end points
of valid areas, significantly reducing memory overhead
compared to storing the coordinates of all sampling
points. The compressed data are then integrated with a
doubly linked list-based ray state management system,
dynamically generating sampling points for active rays
within a single cycle, ensuring full utilization of the
sampling point processing pipeline.

Fig. 3. Core concept of the proposed multistep ray marching, enabling
multistep ray processing within a single cycle. Only the first sample point
that enters the grid generates a lookup request, and the results are divided
into four categories.

2) Optimized Hash Encoding With Limited On-Chip Mem-
ory: To mitigate the hash encoding bottleneck, partic-
ularly on resource-constrained edge devices, we reduce
the upper limit of the hash table to fit entirely within
the on-chip SRAM. This eliminates the need for fre-
quent external DDR memory accesses and significantly
reduces latency. We also applied QAT to lower the bit
width of the hash table. This further reduces storage
requirements, allowing the hash table to operate effi-
ciently within the available SRAM without significantly
affecting rendering quality.

3) Batch Processing With Bilinked List-Based Ray Switch-
ing Strategy: To address the inefficiencies caused by
sequential ray marching, we introduce batch processing
with a bilinked list-based ray switching strategy. Instead
of processing a single ray continuously, rays are pro-
cessed in batches, generating sampling points in turn.
Once a sampling point is passed to subsequent modules
for processing, the ray marching module switches to
another ray to step forward. This approach ensures
that the pipeline remains active, even when some rays
terminate early. In addition, we use a bilinked list-
based ray switching strategy to dynamically manage
active rays, storing the indices of the previous and next
active rays for efficient updates. This design enables
seamless pipelined execution and minimizes idle time
in the pipeline.

By implementing the above solutions, we achieve substan-
tial improvements in pipeline efficiency, memory utilization,
and overall system performance while maintaining high ren-
dering quality.

III. MULTISTEP ADVANCE-BASED RAY MARCHING WITH
MULTIBLOCK OCCUPANCY GRID

Fig. 3 illustrates the core design of the ray marching module,
enabling multistep ray processing within a single cycle. A
query request is triggered only when the first sample point
enters a new density grid, while subsequent points are skipped.
Sample points are categorized into four types based on query

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NEURAL RENDERING COPROCESSOR WITH OPTIMIZED RAY REPRESENTATION AND MARCHING 5

Fig. 4. Architecture of the proposed multistep ray marching module, along
with the implementation details for density grid access requests’ generation.

validity, with only the “first valid point” (start) and the point
before the “first invalid point” (end) being recorded and stored.

A. Multistep Ray Marching

Fig. 4 shows multistep ray marching implementation and
density grid access request generation. This unit computes
multiple adjacent sample points in parallel using multiply-
add units, with the starting point updated next cycle. Ray
lengths are computed alongside sample coordinates to check
if a point exits the axis-aligned bounding box (AABB), termi-
nating computation if so. In our implementation, we choose
to process 16 steps in parallel to match the sampling point
generation speed of the ray stepping module with the process-
ing speed of the subsequent sample point processing module.
This configuration ensures that the system operates efficiently
without overloading the hardware. Increasing the number of
parallel steps beyond 16 results in minimal performance gains
and only leads to increased hardware consumption.

After computing coordinates of adjacent sample points, bit
shifting and truncation derive their spatial occupancy grid
indices, which query grid memory to check valid samples. To
avoid redundancy, queries are triggered only when adjacent
indices differ, ensuring a single access per cell. This reduces
unnecessary memory access and boosts ray tracing efficiency.

In the proposed multistep ray marching, the number of
access requests generated per cycle may vary. To manage
this variability, we introduce a density grid assess dispatcher,

Fig. 5. Specialized multiblock density grid bitmap in 2-D space and a
corresponding diagram illustrating maximum queries handled in the worst
case scenario.

as shown in Fig. 4, to improve the utilization of subsequent
occupancy grid access units and minimize pipeline stalls. The
dispatcher collects valid query indices from adjacent sampling
points and forward as many queries as possible to the back-
end pipeline. If the number of queries exceeds the back end’s
processing capacity, surplus requests are temporarily stored
and combined with new requests in the next cycle. If the total
number of requests in a cycle, including those temporarily
stored in the buffer, exceeds 8, the pipeline will stall for one
cycle. However, this scenario occurs with a probability of only
0.003% when processing 16 steps each cycle.

To enable parallel processing of multiple adjacent queries,
we use Morton encoding to store the spatial density grid
bitmap in multiply blocks. The transformed address is divided
into three segments: the low segment identifies a specific bit
within a word in the SRAM, the middle segment selects a
block across multiple SRAMs, and the high segment indexes
different words within a single SRAM. Fig. 5 shows the
specialized multiblock density grid bitmap in 2-D space and
a corresponding diagram illustrating the maximum queries
handled in the worst case scenario. Blocks of the same color
are stored within the same SRAM, with each color block
containing 64 density grid bits. In the worst case scenario,
a ray progresses along one axis, beginning with a query at
the edge of one color block, followed by four queries in an
adjacent block. If a sixth block query is needed, it would
conflict with the first block’s query. To avoid such conflicts, we
instantiated five density grid access units in hardware, enabling
conflict-free density grid queries each cycle. This organization
ensures that the target data for adjacent queries up to a certain
number, i.e., either reside within the same word of a specific
SRAM or span different SRAMs, effectively avoiding bank
conflicts within the memory.

Since the density grid serves as a filter for sampling points,
a coarser-grained density grid would lead to an increased
number of sampled points, thereby slowing down rendering
speed, while affecting final rendering quality slightly. Table I
evaluates the impact of different density grid sizes on PSNR,
the number of sampled points, and memory consumption. The
results indicate that while larger grid densities improve PSNR

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I
PSNR, THE NUMBER OF SAMPLED POINTS, AND MEMORY CONSUMPTION

WITH DIFFERENT DENSITY GRID SIZES

Fig. 6. Detailed architecture of the NEAC, which facilitates querying the
density grid and retrieving sample point data.

and reduce computation time, they require exponentially more
memory. At size 2563 (versus 1283), the PSNR/computation
benefits diminish, while memory reaches 2 MB. Therefore,
considering the tradeoff among computational cost, memory
consumption, and PSNR, we adopt the same size as in the
original Instant-NGP: 1283.

B. Nonempty Interval Ray Presentation

Direct sample point generation and processing cause delays
as density grid queries disrupt the continuous generation of
sampling points, causing downstream stalls. Storing all points
incurs high overhead, especially for terminated noncontribut-
ing points. Our solution records only interval start/end areas,
ensuring fast regeneration while saving storage. This strategy
seamlessly integrates with batch-processing sample point pro-
cessing module, enabling efficient sequential-to-parallel ray
processing transition.

As illustrated in Fig. 6, the detailed architecture of the
nonempty area collector (NEAC) implements the proposed
nonempty interval ray representation for querying the density
grid and retrieving sampling point data. The results of empty
and nonempty queries form a binary sequence, where the
nonempty interval collector identifies edges in the sequence
and represents the nonempty intervals using the ray lengths of
their start and end points. After completing the density grid
queries, it is essential to store information about valid sample
points along each ray for subsequent encoding and neural
network computations. To optimize memory usage, the spatial
range representing the distribution of valid sample points along
each ray is stored, rather than the coordinates of individual
sample points. Specifically, the starting and ending ray lengths
of these intervals are used to indicate the spatial range of valid
sample points. Since the number of intervals per ray may vary,
a dynamic storage approach is adopted. Instead of allocating
fixed-size storage for each ray, interval data are efficiently
organized in memory, with a dedicated memory block assigned
to record the start and end addresses of the interval data for
each ray.

C. Filtered Occupied Grid

Fig. 7(a) illustrates the density grid of the LEGO dataset
[4], which is utilized for ray marching and provides a partial
representation of the scene’s 3-D features. Notably, fog-like
regions appear around the scene. Sample points within these
regions, after processing through the density network, yield
very low densities (below 0.01), thereby contributing negligi-
bly to the final RGB values of the pixels.

The presence of these fog-like areas can cause rays passing
through them to be erroneously identified as valid, increasing
the computation of ineffective sample points. For rays travers-
ing these regions before reaching actual scene elements, this
leads to the premature accumulation of a substantial number
of ineffective sample points.

To address this issue, a preprocessing step is applied to
the density grid to eliminate fog-like areas. Grid cells with
values below a fixed threshold are filtered out, as illustrated
in Fig. 7(b). This reduction has minimal impact on the final
rendering quality, resulting in only a 0.01 decrease in PSNR.
By filtering these grids, the number of valid ray evaluations is
reduced by 3.8%, and sample point computations are reduced
by 1.79%, thereby enhancing overall rendering efficiency
without compromising image quality.

With the filtering of the density grid, it is no longer
necessary for rays to traverse the entire original bounding
box, which would consume considerable time stepping through
empty, noninformative regions. To optimize this process, we
define a new AABB based on the valid regions within the
filtered density grid. As illustrated in Fig. 7(c), the AABB
allows most rays to traverse only within the relevant region,
from T ′s to T ′e, rather than across the full bounding box from
Ts to Te. Rays that do not intersect with the AABB can be
identified as invalid, thus avoiding unnecessary computation.
This approach accelerates the ray marching module by an
average of 117.4%.

IV. BATCH PROCESSING WITH A BILINKED LIST-BASED
RAY SWITCHING STRATEGY

To improve sequential ray marching efficiency, we imple-
ment batch processing using nonempty interval ray represen-
tation. It processes rays in batches, sequentially generating
all sampling points by accessing nonempty interval memory.
After sending a point for processing, the module instantly
switches to the next active ray.

To manage active rays within a batch, we implement
a bilinked list-based ray switching strategy. This structure
records the status of all rays in the batch, storing the indices of
the previous and next active rays to enable efficient updates.
This dynamic management ensures that terminated rays are
quickly removed from the active list, allowing the pipeline to
remain active even when some rays finish early.

By combining the nonempty interval representation and the
bilinked list-based management, our design achieves seamless
pipelined execution, minimizing idle time in the pipeline and
ensuring efficient utilization of computational resources. This
approach enables consistent and rapid generation of sampling
points while maintaining the flexibility needed for dynamic
ray processing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NEURAL RENDERING COPROCESSOR WITH OPTIMIZED RAY REPRESENTATION AND MARCHING 7

Fig. 7. Illustration of the proposed density grid filtering utilizing the LEGO dataset. (a) Raw density grid. (b) Filtered density grid. (c) New AABB box with
decreased ray marching range.

Fig. 8. Detailed architecture of the SPGU. The SPG employs a bilinked
list to rapidly identify the next ray that has not been terminated early.
It subsequently retrieves the corresponding ts and te information from the
nonempty memory to efficiently generate the next valid sampling point for
that ray. In the bilinked list structure, the smaller number in the middle of
each node represents the unique identifier of the current ray. The number at
the top indicates the identifier of the next connected ray, while the bottom
number indicates the identifier of the previously connected ray, establishing
bidirectional references. In addition, black signifies that the ray is still alive,
whereas gray signifies that the ray is terminated.

Fig. 8 shows the detailed architecture of the sample point
generation unit (SPGU), which includes a 20-kB nonempty
area memory (NEMEM), a bilinked list-based ray batch tra-
verser, and a sample point generator (SPG). In this setup, each
element in the traverser represents a ray and is connected to
its preceding and succeeding active rays via the bilinked list.
The SPG uses the bilinked list to determine which ray requires
a sample point and accesses the 20-kB NEMEM. By utilizing
the prestored camera coordinates, ray directions, and the real-
time step distance, the system can directly compute the sample
points within a single cycle. When the volume rendering unit
(VRU) sends an early termination signal, the bilinked list is

immediately updated to ensure that all subsequent sampling
points are generated only from active rays. The bottom right
part of Fig. 8 shows how the bilinked list is updated when
Ray 126 is early terminated.

The combination of a bilinked list-based ray switching
strategy and batch processing significantly enhances over-
all pipeline efficiency. Depending on the configuration of
downstream computational resources, which influences the
latency of processing sampling points, this approach reduces
the number of invalid sampling point computations by
32.14%–44.12% compared to serial processing of individual
rays.

V. OPTIMIZED HASH ENCODING

In Instant-NGP, the hash table occupies a large portion of
on-chip storage. When set to 219 with a 16-bit half-precision
floating-point number (FP16), a scene requires 25 MB, far
exceeding the SRAM capacity of edge devices and resulting
in frequent DDR interactions, which inevitably introduces
latency. To address this, we reduced the hash table size to
fit within the available SRAM, minimizing DDR access and
latency. Quantization has proven to be an effective method for
simplifying neural model computations [22], [23]. However,
as the encoding unit for positional and directional data, the
hash table size is crucial to rendering quality. Therefore, we
applied QAT to reduce the hash table bit width, lowering
storage requirements while preserving rendering quality. This
section analyzes the impact of quantization and hash table size
reduction to minimize on-chip SRAM usage while maintaining
rendering quality.

To balance the size of on-chip hash storage, we perform
experiments on different hash table sizes to examine their
impact on the final rendering quality. The average PSNR
versus hash size versus hash memory cost results are presented
in Fig. 9. As we can see, the rendering quality measured in
PSNR, as well as the memory cost, rises with the increase
in the hash table size. The benefit of a larger hash table
size slows down when it is larger than 217, while the table
size increases exponentially. A hash table size of 216 offers
a balanced choice, while 217 provides a better option if

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 9. Comparison of hash memory cost and rendering quality (PSNR)
across different hash table sizes using FP16. The selected hash table size is
highlighted by a red dashed bounding box.

Fig. 10. Hash memory cost and rendering quality (PSNR) with varying hash
value quantization bit widths using 216 hash table size. The selected hash
value quantization bit widths are highlighted by a red dashed bounding box.

additional silicon area is available for a larger table size. In
our chip implementation, we employ a table of 216 due to the
limited chip size, while it is straightforward to extend to a
larger table.

In addition, we apply quantization to the hash values to
further reduce the table size. Fig. 10 presents the PSNR and
memory cost for various quantization bit widths. Although
hash storage requirements increase linearly with quantization
bit width, PSNR gains slow down considerably after four
bits, with minimal improvement beyond six bits. In our chip
implementation, we select a 4-bit quantization for the hash
values. However, notably, rendering quality can be further
enhanced by increasing the hash table size and using more
bits for quantization at the cost of silicon area.

To enhance reconstruction and rendering quality, we
integrate QAT into our neural modeling process. Unlike post-
training quantization (PTQ), QAT incorporates quantization
directly within the training phase, allowing the model to adapt
to reduced precision as it learns. Specifically, we simulate
fixed-point computation by constraining the numerical range

Fig. 11. Rendering quality comparison of different quantization methods.

and precision of model parameters. The average PSNR results
corresponding to different quantization bit widths are also
presented in Fig. 10. As can be seen, the model using the
QAT method shows an improvement in PSNR compared to
the PTQ method when being quantized to low bits while
maintaining the same hash table size and bit width. In addition,
we evaluate and compare PSNR and model size across various
quantization methods, as shown in Fig. 11. The QAT method
renders more realistic details in the image, particularly in the
shadow areas and the reflective surface areas, whereas the PTQ
results exhibit noticeable rendering errors with incorrect pixel
details in certain areas.

VI. OVERALL CHIP ARCHITECTURE

Based on the three strategies outlined above, we propose
an Instant-NGP-based NVR coprocessor, which has been
fabricated using 40-nm CMOS technology to verify the feasi-
bility and real-world power consumption of the entire system.
Fig. 12 illustrates the overall architecture of the proposed
coprocessor, which includes a top controller, a ray marching
unit (RMU), an SPGU, an encoder, an MLP engine, and a
VRU. The end-to-end data flow is shown in Fig. 13.

The RMU consists of a density grid traverser (DGT), an
NEAC, and a density grid memory (DMEM). This module
is crucial for determining which parts of the scene require
processing based on ray activity. The DGT performs ray
marching through the density grid, using stepwise sampling
to assess the validity of the ray. For valid rays, the NEAC
identifies nonempty areas that are then stored in the NEMEM
within the SPGU.

The SPGU generates positional and directional data for each
sample point along valid rays. Fig. 14 illustrates the detailed
structures of the encoder and the MLP engine. The encoder
processes the coordinates and directional information of these
sample points, with the high-dimensional encoded data passed
to the MLP engine to compute density and color features. The
encoder separately encodes the coordinate and directional data,
enabling the MLP engine to utilize both to derive the required
density and color features. The neural network employs a five-
layer MLP architecture consisting of two density layers (32→
64 → 16) and three color layers (32 → 64 → 64 → 3).
Due to process limitations and on-chip area constraints, the
MLP engine deploys a small matrix computation resource: an
MAC Array 0 consisting of 32 × 32 PEs and an MAC Array
1 consisting of 64 × 3 PEs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NEURAL RENDERING COPROCESSOR WITH OPTIMIZED RAY REPRESENTATION AND MARCHING 9

Fig. 12. Overall architecture of the proposed Instant-NGP-based NVR coprocessor.

Fig. 13. System-level data flow: off-chip density grid filtering and QAT
quantization with parameters stored in on-chip SRAM, taking camera data
as input and outputting rendered RGB results.

Fig. 14. Detailed structures of the encoder and the MLP engine.

Finally, the features from multiple sample points along a
ray are sent to the VRU to compute the final red, green, blue,

Fig. 15. Chip micrograph.

and alpha (RGBA) values for that ray. Once the RGBA values
are generated, an early termination signal is sent back to the
SPGU, halting further sample point generation for that ray.

VII. CHIP MEASUREMENT RESULTS

In this section, we summarize the measurement results of
the prototype chip and the comparison with state-of-the-art
designs. We also present the rendering quality results both
quantitatively, in terms of PSNR, and visually. Our prototype
chip was fabricated using 40-nm CMOS technology, featuring
a die area of 3 × 4.1 mm2 with a total of 1.31-MB SRAM
integrated. The micrograph of the chip is shown in Fig. 15.

A. Chip Measurement Platform Setup

To evaluate our chip, we developed a testing platform
comprising a user-friendly desktop computer and an Altera
HAN Pilot FPGA board with an FPGA mezzanine connec-
tor (FMC) interface, enabling efficient communication with
the chip, as illustrated in Fig. 16. The computer connects
to the FPGA board via a PCIe interface. The parameters of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 16. Setup of the chip testing platform.

TABLE II
SPECIFICATIONS AND CHIP MEASUREMENT RESULTS

neural model (implicitly representing the 3-D scenes) and the
viewing direction & position are updated from the computer
to the FPGA. These data are further transmitted to the neural
rendering chip through the FMC interface. The DDR memory
within the FPGA board is used to temporarily store the data
from the computer and our neural rendering chip. The system
is controlled by the commands from the host computer, which
are transmitted through the same link as the viewing direction
& position. The rendering results are collected by the FPGA
board and then sent to the host computer for further display
and analysis.

B. Measurement and Comparison Results

Table II summarizes the performance of our chip. It was
fabricated using 40-nm CMOS technology and occupies a core
area of 12.3 mm2 with 1.31-MB on-chip SRAM. Given the
varying resolutions across different studies, we use pixels per
second as the metric for throughput evaluation to ensure fair
comparison. Based on throughput and power data collected
from the testing platform, we calculate the energy consump-
tion per rendered pixel. Operating at a clock frequency of
100 MHz, our chip consumes 78.3 mW of power, achieving
a throughput of 2.6 Mpixels/s and an energy efficiency of
30.5 nJ/pixel.

To comprehensively evaluate our design, we selected a GPU
implementation and dedicated neural rendering coprocessors
for fair comparison. This includes Instant-NGP implementa-
tions on the edge platform NVIDIA Jetson Xavier NX and two
state-of-the-art neural rendering chips, MetaVRain [18], [19]

and NeuGPU [25], [26]. We select dedicated neural rendering
coprocessors with available chip measurement data as refer-
ence to ensure a fair comparison. Table III summarizes the
comparison results, which indicates that the proposed neural
rendering coprocessor outperforms both the Jetson Xavier NX
and MetaVRain in rendering throughput and energy efficiency.
Specifically, our coprocessor achieves a 1.38× improvement in
rendering throughput over the Jetson Xavier NX and a notable
3.16× speedup compared to MetaVRain. This substantial
increase in rendering speed demonstrates our coprocessor’s
capacity to handle high-performance rendering tasks more
efficiently than other edge solutions, making it well-suited for
real-time applications.

The proposed coprocessor exhibits even more pronounced
advantages in terms of energy efficiency. Compared to the
Jetson Xavier NX, our design consumes 264.14× less power.
In addition, it uses 15.46× less power than MetaVRain, a
significant reduction that underscores the efficiency of our
architecture for power-sensitive applications. This indicates
that our accelerator not only achieves high performance but
does so with minimal energy requirements. To facilitate fair
comparisons with other neural rendering accelerators fabri-
cated using more advanced 28-nm CMOS technology, we
normalized our results from the 40-nm process to the 28-nm
process using the scaling factors for technology nodes pro-
posed in [28]. However, after normalization to the 28-nm
process, although the energy required to render each pixel is
close to that of the state-of-the-art NeuGPU, there is a small
difference in energy per pixel and a big gap in throughput
between our chip and the NeuGPU, which is due to the lim-
itations in chip process and area during the tape-out process.
In the tape-out version of the chip, the MLP engine only
includes a single MAC Array 0, leading to insufficient com-
putational resources and becoming a bottleneck, thus reducing
throughput. On the other hand, other state-of-the-art NVR
designs, MetaVRain, NeuGPU, and Hi-NeRF [27], are based
on 28-nm processes and have sufficient on-chip area to deploy
more computational resources. As accelerator architectures
based on Instant-NGP, NeuGPU implements 16 S 3 cores,
each containing 16 MAC trees (16 units per tree), while Hi-
NeRF deploys 32 rendering cores with each core integrating
48 discrete MAC units and 32 MAC trees (eight units per
tree). In contrast, our single-MAC system incorporates only
one 32 × 32 MAC Array 0 and one 64 × 3 MAC Array 1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NEURAL RENDERING COPROCESSOR WITH OPTIMIZED RAY REPRESENTATION AND MARCHING 11

TABLE III
COMPARISON OF PERFORMANCE ACROSS VARIOUS NEURAL RENDERING DESIGNS AND IMPLEMENTATIONS

To address the limitation, we expanded the MAC Array 0
in the system to ten units, ensuring that the MLP computation
component no longer acts as the throughput bottleneck of the
system. To align with increased compute power, we expanded
ray marching steps to 32, density grid bits for each density grid
block to 512, density grid accesses to 9, and the dispatcher’s
buffers to 7—ensuring single-cycle processing of 32 steps.
Using the simulation data based on a 40-nm CMOS process,
we simulate the throughput, power consumption, and area
for this revised multi-MAC system version. In addition, we
also normalized the chip test and simulation data to the
28-nm CMOS process by scaling factors across technology
nodes. Here, we have also included additional state-of-the-art
NVR accelerators for comparison with our design, which only
include simulation results. The comparison results are also
shown in Table III. As can be seen, although power consump-
tion increases greatly, the multi-MAC version outperforms
the single-mac version in both throughput and energy per
pixel—achieving 13.81× higher throughput while maintaining
only 0.77× energy per pixel. Compared to the state-of-the-art
Hi-NeRF, which is also based on Instant-NGP, our multi-
MAC version’s throughput is slightly lower, mainly due to our
lower frequency and on-chip area. However, in terms of energy
per pixel, our performance, based on 40-nm data, reaches
92.4% of Hi-NeRF’s efficiency. When normalized to the same
28-nm process, our energy consumption is only 61.7% of
Hi-NeRFs. While maintaining nearly identical energy-per-
pixel efficiency, our design achieves 46.2% of NeuGPU’s
throughput using only 35.85% of its hardware resources. The
single-mac version, with its ultralow power consumption, suits
power-sensitive but throughput-tolerant applications such as
medical devices, whereas the multi-MAC version, excelling
in throughput and energy efficiency, is ideal for mainstream
edge computing scenarios.

Fig. 17 demonstrates the speedup effects of various pro-
posed techniques on system performance. Both single-MAC
and multi-MAC systems gain significant performance boosts
from multistep ray marching, batch processing, and density
grid filtering.

Fig. 17. Performance speedup analysis of proposed optimization techniques
(multistep ray marching, batch processing, and density grid filtering) relative
to the baseline (no optimizations) in both single-MAC and multi-MAC
systems.

Fig. 18. Visualization and comparison of rendering quality.

In alignment with other studies on neural rendering copro-
cessor design, we evaluated our test chip using the commonly
used NeRF synthesis dataset [4]. For each scene, we conducted
tests on multiple viewpoints and computed the average PSNR
value. Fig. 18 presents a visual comparison of the rendering
results of our chip with that of the GPU results and the ground
truth (GT), while Table IV provides the individual PSNR
values and the averaged one across different scenes. Our ren-
dering quality achieves an average PSNR of 31.84 compared
to the GT. Furthermore, the visual comparison presented in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE IV

PSNR RESULTS ACROSS DIFFERENT SCENES

Fig. 18 illustrates that our chip produces exceptionally high
rendering quality, with virtually no discernible differences
from the results obtained using GPUs.

VIII. CONCLUSION

In this work, we present an energy-efficient coprocessor
designed for Instant-NGP, a state-of-the-art neural rendering
method. Our design introduces three key innovations.

1) We optimize occupancy grid queries in ray marching
by partitioning the grid and decoupling the query pro-
cess from sampling point generation, improving both
efficiency and memory utilization.

2) We propose a batch processing strategy with a bilinked
list-based ray switching mechanism, ensuring continu-
ous pipeline utilization and overcoming the inefficiencies
of sequential processing.

3) We enhance hash encoding by fitting the hash table into
on-chip SRAM and applying QAT, reducing memory
access latency and improving performance on resource-
constrained platforms. To validate our design, we
implemented and fabricated a 40-nm CMOS prototype
chip. We also expanded the computational resources and
conducted simulations to enable fair comparisons with
existing designs. Experimental results demonstrate sig-
nificant improvements in energy efficiency over GPUs,
as well as state-of-the-art neural rendering accelerators.
These results highlight our accelerator’s ability to deliver
high-throughput, low-power neural rendering, paving
the way for real-time, high-quality rendering on edge
devices.

REFERENCES

[1] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,”
in Proc. 11th Annu. Conf. Comput. Graph. Interact. Techn., 1984,
pp. 137–145.

[2] L. Alzubaidi et al., “Review of deep learning: Concepts, CNN archi-
tectures, challenges, applications, future directions,” J. Big Data, vol. 8,
no. 1, pp. 1–74, Mar. 2021.

[3] A. Tewari et al., “Advances in neural rendering,” in Proc. ACM
SIGGRAPH Courses. New York, NY, USA: Association for Computing
Machinery, Aug. 2021, pp. 1–320, doi: 10.1145/3450508.3464573.

[4] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for
view synthesis,” 2020, arXiv:2003.08934.

[5] L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt,
“Neural sparse voxel fields,” in Proc. 34th Conf. Neural Inf.
Process. Syst. (NeurIPS), Dec. 2020, pp. 15651–15663. [Online].
Available: https://proceedings.neurips.cc/paperfiles/paper/2020/file/
b4b758962f17808746e9bb832a6fa4b8-Paper.pdf

[6] D. B. Lindell, J. N. P. Martel, and G. Wetzstein, “AutoInt: Automatic
integration for fast neural volume rendering,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 14556–14565.

[7] D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasacchi,
“DeRF: Decomposed radiance fields,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 14153–14161.

[8] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “KiloNeRF: Speeding up
neural radiance fields with thousands of tiny MLPs,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14335–14345.

[9] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“FastNeRF: High-fidelity neural rendering at 200FPS,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14346–14355.

[10] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees
for real-time rendering of neural radiance fields,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 5752–5761.

[11] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec,
“Baking neural radiance fields for real-time view synthesis,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 5855–5864.
[Online]. Available: https://api.semanticscholar.org/CorpusID

[12] T. Neff et al., “DONeRF: Towards real-time rendering of compact
neural radiance fields using depth Oracle networks,” Comput. Graph.
Forum, vol. 40, no. 4, pp. 45–59, Jul. 2021. [Online]. Available: https://
api.semanticscholar.org/CorpusID

[13] C. Sun, M. Sun, and H.-T. Chen, “Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 5449–5459.

[14] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “TensoRF: Tensorial
radiance fields,” 2022, arXiv:2203.09517.

[15] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
vol. 41, no. 4, pp. 1–15, Jul. 2022, doi: 10.1145/3528223.3530127.

[16] Q. Xu et al., “Point-NeRF: Point-based neural radiance fields,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2022,
pp. 5438–5448.

[17] C. Rao et al., “ICARUS: A specialized architecture for neural radiance
fields rendering,” ACM Trans. Graph., vol. 41, no. 6, pp. 1–14, Nov.
2022, doi: 10.1145/3550454.3555505.

[18] D. Han, J. Ryu, S. Kim, S. Kim, J. Park, and H.-J. Yoo, “MetaVRain:
A mobile neural 3-D rendering processor with bundle-frame-familiarity-
based NeRF acceleration and hybrid DNN computing,” IEEE J. Solid-
State Circuits, vol. 59, no. 1, pp. 65–78, Jan. 2024.

[19] D. Han, J. Ryu, S. Kim, S. Kim, and H.-J. Yoo, “2.7 MetaVRain: A 133
mW real-time hyper-realistic 3D-NeRF processor with 1D-2D hybrid-
neural engines for metaverse on mobile devices,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2023, pp. 50–52.

[20] NVIDIA.(2025). Jetson Xavier NX. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-nx/

[21] J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim, “NeuRex:
A case for neural rendering acceleration,” in Proc. 50th Annu. Int.
Symp. Comput. Archit. New York, NY, USA: Association for Computing
Machinery, Jun. 2023, pp. 1–13, doi: 10.1145/3579371.3589056.

[22] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” 2018, arXiv:1802.05668.

[23] J. Yang et al., “Quantization networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 7300–7308.

[24] C. Li, S. Li, Y. Zhao, W. Zhu, and Y. Lin, “RT-NeRF: Real-time on-
device neural radiance fields towards immersive AR/VR rendering,”
in Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD). New
York, NY, USA: Association for Computing Machinery, Oct. 2022,
pp. 1–9.

[25] J. Ryu et al., “20.7 NeuGPU: A 18.5mJ/Iter neural-graphics processing
unit for instant-modeling and real-time rendering with segmented-
hashing architecture,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2024, pp. 372–374.

[26] J. Ryu et al., “NeuGPU: An energy-efficient neural graphics pro-
cessing unit for instant modeling and real-time rendering on mobile
devices,” IEEE J. Solid-State Circuits, vol. 60, no. 1, pp. 99–111,
Jan. 2025.

[27] L. Wu et al., “Hi-NeRF: A multicore NeRF accelerator with hierar-
chical empty space skipping for edge 3-D rendering,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 32, no. 12, pp. 2315–2326,
Dec. 2024.

[28] S. Sarangi and B. Baas, “DeepScaleTool: A tool for the accurate
estimation of technology scaling in the deep-submicron era,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1–5.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3450508.3464573
https://proceedings.neurips.cc/paperfiles/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf
https://proceedings.neurips.cc/paperfiles/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf
https://api.semanticscholar.org/CorpusID
https://api.semanticscholar.org/CorpusID
https://api.semanticscholar.org/CorpusID
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3550454.3555505
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
http://dx.doi.org/10.1145/3579371.3589056

YUAN et al.: NEURAL RENDERING COPROCESSOR WITH OPTIMIZED RAY REPRESENTATION AND MARCHING 13

Zhechen Yuan (Student Member, IEEE) received
the B.Eng. degree in electronics engineering from
ShanghaiTech University, Shanghai, China, in 2021,
where he is currently working toward the Ph.D.
degree.

His research interests include neural rendering and
energy-efficient VLSI design for computer graphics
and deep learning.

Binzhe Yuan received the B.Eng. degree in elec-
tronic information engineering from ShanghaiTech
University, Shanghai, China, in 2022, where he is
currently working toward the M.Eng. degree.

His current research interests include high-
performance computer arithmetic and VLSI design
for neural rendering or other digital signal process-
ing systems.

Chaolin Rao received the B.Eng. degree from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2016, and the Ph.D.
degree from the University of Chinese Academy of
Sciences, Beijing, China, in 2023.

Then, he joined the GGU Technology Company
Ltd., Shanghai, China. His research interests include
computer vision, energy-efficient VLSI circuits and
systems, and smart vision circuits and systems.

Yiren Zhu received the B.Eng. degree in electronics
science and technology from Shanghai University,
Shanghai, China, in 2023. He is currently working
toward the M.S. degree at the Electronics Science
and Technology, ShanghaiTech University, Shang-
hai.

His research interests include computer vision
accelerator design, especially software/hardware
coverification.

Yunxiang He is currently working toward
the B.Eng. degree at ShanghaiTech University,
Shanghai, China.

His research interests include the architecture
of custom accelerators based on vision, computer
graphics, and deep learning.

Pingqiang Zhou (Member, IEEE) received the
B.E. degree from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2005, the
M.E. degree from Tsinghua University, Beijing,
China, in 2007, and the Ph.D. degree from the
University of Minnesota, Minneapolis, MN, USA,
in 2012.

Prior to joining ShanghaiTech, Shanghai, China,
he was a Research Intern with the IBM T. J. Wat-
son Research Center in 2011 and a Postdoctoral
Researcher with the University of Minnesota from

2012 to 2013. He was with the University of California at Berkeley, Berkeley,
CA, USA, as a Visiting Scholar in 2015. He is currently an Associate Professor
with the School of Information Science and Technology, ShanghaiTech
University. His current research interests include the computer-aided design
of VLSI circuits, computer architecture, and hardware security.

Prof. Zhou received the best paper nominations in ASP-DAC 2010 and
CSTIC 2016. He has been serving on the technical program committees
of many international conferences such as DAC, ICCAD, and ASP-DAC
and is an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEM—II: EXPRESS BRIEFS.

Jingyi Yu (Fellow, IEEE) received the B.S. degree
from Caltech, Pasadena, CA, USA, in 2000, and
the Ph.D. degree from MIT, Cambridge, MA, USA,
in 2005.

Before joining ShanghaiTech University, Shang-
hai, China, he was a Full Professor with the
Department of Computer and Information Sciences,
University of Delaware, Newark, DE, USA. He
is currently the Vice Provost with ShanghaiTech
University. His current research interests include
computer vision and computer graphics, especially

computational photography and nonconventional optics and camera designs.
Dr. Yu is a recipient of the NSF CAREER Award and the AFOSR YIP

Award. He served as an Area Chair for many international conferences,
including CVPR, ICCV, ECCV, IJCAI, and NeurIPS. He was the Program
Chair of CVPR 2021 and will be the Program Chair of ICCV 2025.

Xin Lou (Senior Member, IEEE) received the
B.Eng. degree in electronic information technology
and instrumentation from Zhejiang University (ZJU),
Hangzhou, China, in 2010, the M.Sc. degree in
system-on-chip design from the Royal Institute of
Technology (KTH), Stockholm, Sweden, in 2012,
and the Ph.D. degree in electrical and electronic
engineering from Nanyang Technological University
(NTU), Singapore, in 2016.

Then, he joined VIRTUS, IC Design Center of
Excellence at NTU as a Research Scientist. He is

currently a tenured Associate Professor with the School of Information
Science and Technology, ShanghaiTech University, Shanghai, China. His
research interests primarily focus on high-performance and energy-efficient
integrated circuits and systems for vision and graphics processing.

Dr. Lou serves as an Associate Editor of IEEE TRANSACTIONS ON
VLSI SYSTEM and was an Associate Editor of IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS in 2022 and 2023,
respectively, and a Guest Editor of Associate Editor of IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS in 2024.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on July 30,2025 at 04:37:29 UTC from IEEE Xplore. Restrictions apply.

