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ABSTRACT 
The scale and complexity of circuit designs deployed 

on FPGA has surged with the increasing capacity of FPGA 

devices. At the same time, the runtime of physical design 

has grown exponentially, significantly extending the cycle 

of design iteration for engineers. To address this issue, we 

propose an automated, split-and-parallel physical design 

flow to accelerate the deployment of large-scale circuits 

on FPGA. We partition the original design into multiple 

sub-designs, perform placement and routing of each 

sub-design parallelly, and then merge them together. 

Experimental results show that our flow achieves 

1.85X-2.7X speedup compared to standard Vivado flow 

with trivial degradation on design performance. 

 

INTRODUCTION 

The logic capacity of FPGA devices has expanded 

exponentially with the rapid advancements in 

semiconductor technology. The largest FPGA nowadays 

consists of more than 4 million lookup tables (LUT) and 8 

million flipflops (FF). The growth in capacity has further 

boosted the deployment of increasingly larger and more 

complex digital systems on FPGAs. However, the 

ever-growing complexity of circuits presents significant 

challenges for physical design, particularly in terms of 

runtime. The time-consuming process of placement and 

routing significantly extends the cycle of design iteration 

and hinders the deployment of larger systems on FPGAs. 

There have been dozens of works trying to accelerate 

the process of physical design for FPGAs, which mainly 

fall into two categories. The first kind of works try to 

parallelize the placement [1] or routing algorithms [2] and 

achieve acceleration through concurrent execution on 

multi-core CPUs or GPUs. However, most algorithms 

related with physical design are inherently sequential and 

the achievable parallelism are limited. Besides, most of 

these works don’t take timing optimization into account, 

which is one of the most time-consuming processes in 

physical design. 

The other kind of works attempt to partition the 

original design into multiple smaller parts, perform 

implementation, including placement and routing, of each 

part parallelly and then merge them together [3][4]. 

Following this divide-and-conquer paradigm, the work [4] 

can achieve 5-7X reduction in runtime of physical design 

compared to Vivado. However, all these approaches are 

exclusively applicable on HLS designs. The feasibility of 

these methods relies on the fact that HLS is written in 

untimed high-level languages, allowing the compiler to 

optimize the generated RTL codes for subsequent design 

partitioning. Consequently, these methods can’t be 

extended to more general use cases where RTL codes are 

implemented manually. 

In this work, we propose an automated, split and 

parallel physical implementation flow to speed up the 

deployment of large RTL designs on FPGAs. Similar to 

[3][4], we adopt the divide-and-conquer methodology by 

partitioning original design into multiple sub-designs, 

perform implementation of each sub-design concurrently, 

and then merge them into the complete design. In 

particular, the entire flow consists of three main stages as 

Figure 2 shows. In the first stage, we perform timing-path 

aware clustering on the synthesized netlist to generate an 

abstracted netlist. In the second stage, the entire FPGA 

region is divided into multiple islands; and nodes in the 

abstract netlist are placed into islands evenly. In the last 

stage, we perform physical implementation of each island 

parallelly using Vivado and then stitch all islands together 

to form the complete design. 

We evaluate our split and parallel implementation 

flow on the Xilinx Ultrascale+ device using a set of 

large-scale benchmarks with varying architectural patterns. 

Experimental results show that our flow can achieve 

1.8-2.5X speedup compared to the standard Vivado flow 

with only 1.8% degradation in design performance. 

 

Challenges of Divide-and-Conquer Methodology 

There are two critical issues arising with 

divide-and-conquer methodology that can significantly 

impact the quality of the merged design. The following 

section details these two issues and strategies we have 

applied. 

The first issue is related with timing closure of 

inter-partition timing paths. For split implementation, a 

timing path may be partitioned into multiple segments and 

each segment is optimized independently during 

placement and routing. The invisibility of delay of other 

segments may lead to timing violation on the final merged 

path. An intuitive solution is to partition the design in such 

a way that cells on each timing path fall within the same 

partition. To achieve this, we propose a timing-path-aware 

clustering algorithm that encapsulates all combinational 

cells and their connected nets into virtual nodes so that 

they can be split in subsequent partitioning. 20
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Figure 1: The procedure of timing-path-aware netlist clustering 

The second issue concerns setting proper location 

constraints on cells connected with inter-partition nets. In 

the monolithic placement, cells connected by a net tempt 

to be dragged closer to minimize the total wirelength. In 

the split and parallel implementation, however, connected 

cells may span multiple partitions and are placed and 

routed independently. If no constraints are imposed on 

these boundary cells, they may end up being placed far 

apart, leading to extremely high delay and routing issues 

in the merged design. To address this issue, we adopt the 

idea of anchor registers from [4]. In detail, the source 

register of every inter-partition net is extracted out and 

assigned to the preserved boundary region between 

neighboring partitions. These registers act as anchors to 

guide the placement of boundary cells and achieve timing 

isolation between partitions. 

 
Figure 2: The proposed parallel implementation flow 

 

METHODOLOGY 
The entire proposed flow consists of three main 

phases as depicted in the Figure 2. The following sections 

provide detailed description of these steps respectively. 

Timing-Path-Aware Clustering 

As mentioned above, it’s desirable that cells of one 

timing path are assigned together so that partitions are 

timing independent of each other. To achieve this goal, we 

develop a timing-path-aware clustering algorithm to 

generate abstracted netlist before design partition. 

The procedure of the proposed algorithm is illustrated 

in Figure 1. The complete algorithm can be divided into 

three steps. In the first step, all nets driven by registers are 

removed from the synthesized netlist. Next, we search all 

connected components in the remaining hypergraph of the 

netlist and cluster them into new nodes. Finally, we 

traverse all removed edges, identify those spanning 

multiple clusters, and then connect new nodes to form the 

output abstract netlist.  

Design Partition 

Based on the abstracted netlist, the entire design is 

partitioned into multiple smaller sub-designs for parallel 

placement and routing. Partitioning a circuit design 

typically involves two key aspects: splitting the netlist into 

multiple parts and allocating disjoint and well-sized 

placement region to each part. We address this problem of 

floorplanning through the following three steps: 

(a) Division of Placement Region: The entire placement 

region of the FPGA device is uniformly divided by 

grid, and each sub-region is referred to as an island. 

Additionally, a thin region is reserved between the 

boundaries of adjacent islands, which is referred to as 

anchor region. In this work, the entire device region is 

split using a 2x2 grid into four disjoint islands as 

Figure 3 shows. 

 
Figure 3: Division of the entire FPGA device 

 

(b) Island Placement: After the division of placement 

region, cells in the abstracted netlist are placed to 

these islands such that the number of inter-island nets 

is minimized. Additionally, the island placement 

should satisfy the following two constraints: 1) the 

number of cells assigned to each island should be 

balanced; 2) each net can cross boundary at most one 

time. To solve this problem, we develop our solution 

based on min-cut placement algorithm [5]. This 
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algorithm determines the location of cells through a 

series of recursive min-cut bi-partitions. As shown in 

Figure 4, the entire placement region and netlist is 

first divided horizontally. Then each sub-netlist is 

further partitioned vertically into smaller sub-regions. 

Additionally, we need to set appropriate fix node 

constraint for the final bi-partition to ensure that every 

net only spans adjacent islands. 

(c) Anchor Register Extraction: All edges in the 

abstract netlist are registered, and it’s guaranteed that 

any edge can only span adjacent islands during island 

placement. Therefore, we can extract the source 

registers of cross-boundary nets and assign them to 

the corresponding anchor region to achieve timing 

isolation between islands and guide the placement of 

boundary cells. 

 
Figure 4: The entire flow of design partition 

 

Parallel Physical Implementation and Merging 

After partition, we perform parallel implementation 

of sub-designs and then stitch them together. Since anchor 

regions are shared by adjacent islands, parallel 

implementation may result in location mismatch of shared 

cells and conflictions on routing resources. To address this 

issue, we need to fix the placement of shared cells before 

parallel implementation. To get appropriate locations of 

these cells, we create a sub-netlist consisting of all anchor 

cells and their neighboring cells and then perform 

placement on this sub-netlist. After sub-designs are 

stitched together, additional re-routing of nets incident to 

anchor cells is required to resolve any routing conflictions. 

 

RESULTS 
A. Implementation Details 

We implement our proposed flow in Java based on 

RapidWright platform [6], which empowers users to 

manipulate netlist and implementation produced by 

Vivado to construct customized flow for physical design 

of FPGA. Besides, we build our partition-based island 

placement using open-source hypergraph partitioner, 

TritonPart [7]. We evaluate our flow on Ubuntu 22.04 

with AMD EPYC 7543 CPU (3.73GHz, 32 cores). 

B. Benchmarks 

In our experiments, we target the Xilinx Ultrascale+ 

vu3p FPGA, which consisting of 394K LUTs, 788K FFs, 

2280 DSPs and 720 BRAMs. To evaluate our proposed 

flow, we collect four open-source large-scale circuit 

designs and change their parameters to generate seven 

benchmark circuits. 

C. Results 

Table I shows the comparation of runtime and 

achievable maximum frequency between the standard 

Vivado flow and our split-and-parallel flow across 

different benchmarks. To evaluate the impact of our flow 

on design performance, we repeatedly execute both our 

flow and Vivado flow with the period constraint 

decreasing in interval of 0.2ns to find the maximum 

achievable frequency for each benchmark. Results show 

that our flow introduces an average frequency loss of 1.8% 

across all benchmarks. For runtime comparation, the 

timing constraint of each benchmark is set based on the 

maximum frequency achieved by our flow. Under the 

same timing constraint, our flow achieves an average 

speedup of 2.3X compared to Vivado. 

TABLE I.  COMPARATION OF RUNTIME(S) AND MAX 

FREQUENCY(MHZ) BETWEEN VIVADO AND OUR FLOW 

Name 
Vivado Our flow 

RT Freq RT Freq 

blue-rdma 1904 285.7 1090 277.7 

nvdla-small 1192 250.0 650 250.0 

nvdla-med 1676 288.6 744 188.6 

nvdla-large 2080 196.0 778 196.0 

ntt-small 1340 555.5 624 555.5 

ntt-large 3472 555.5 1342 526.3 

corundum 1978 277.7 796 263.1 

Ratio 2.3 1.07 1.0 1.0 

REFERENCES 
[1] R. S. Rajarathnam, et al. “DREAMPlaceFPGA: An 

Open-Source Analytical Placer for Large Scale 

Heterogeneous FPGAs using Deep-Learning Toolkit.” in 

Proceedings of ASP-DAC2022, Taiwan, 2022, pp. 300-306. 

[2] M. Shen, et al. “Exploring GPU-Accelerated Routing for 

FPGAs.” in IEEE Transactions on Parallel and Distributed 

Systems, vol. 30, 2019, pp. 1331-1345. 

[3] Y. Xiao, et al. “Fast Linking of Separately-Compiled FPGA 

Blocks without a NoC.” in Proceedings of ICFPT2020, 

Maui, HI, USA, 2020, pp. 196-205. 

[4] L. Guo, et al. “RapidStream: Parallel Physical 

Implementation of FPGA HLS Designs.” in Proceedings of 

FPGA2022, New York, 2022, pp. 1-12. 

[5] A. E. Caldwell, et al. “Can recursive bisection alone 

produce routable placements?” in Proceedings of DAC2000, 

2000, pp. 477–482. 

[6] C. Lavin, et al. "RapidWright: Enabling Custom Crafted 

Implementations for FPGAs." In Proceedings of 

FCCM2018, Boulder, CO, USA, 2018, pp. 133-140. 

[7] I. Bustany, et al."An Open-Source Constraints-Driven 

General Partitioning Multi-Tool for VLSI Physical 

Design." in Proceedings of ICCAD2023, San Francisco, 

2023, pp. 1-9. 

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 06,2025 at 01:56:20 UTC from IEEE Xplore.  Restrictions apply. 


