
ACCELERATING THE PHYSICAL DESIGN OF LARGE FPGAS THROUGH

DIVIDE-AND-CONQUER METHODOLOGY
Wanzheng Weng1, and Pingqiang Zhou1*

1School of Information Science and Technology, ShanghaiTech University, Shanghai, China

*Corresponding Author’s Email: zhoupq@shanghaitech.edu.cn

ABSTRACT
The scale and complexity of circuit designs deployed

on FPGA has surged with the increasing capacity of FPGA

devices. At the same time, the runtime of physical design

has grown exponentially, significantly extending the cycle

of design iteration for engineers. To address this issue, we

propose an automated, split-and-parallel physical design

flow to accelerate the deployment of large-scale circuits

on FPGA. We partition the original design into multiple

sub-designs, perform placement and routing of each

sub-design parallelly, and then merge them together.

Experimental results show that our flow achieves

1.85X-2.7X speedup compared to standard Vivado flow

with trivial degradation on design performance.

INTRODUCTION

The logic capacity of FPGA devices has expanded

exponentially with the rapid advancements in

semiconductor technology. The largest FPGA nowadays

consists of more than 4 million lookup tables (LUT) and 8

million flipflops (FF). The growth in capacity has further

boosted the deployment of increasingly larger and more

complex digital systems on FPGAs. However, the

ever-growing complexity of circuits presents significant

challenges for physical design, particularly in terms of

runtime. The time-consuming process of placement and

routing significantly extends the cycle of design iteration

and hinders the deployment of larger systems on FPGAs.

There have been dozens of works trying to accelerate

the process of physical design for FPGAs, which mainly

fall into two categories. The first kind of works try to

parallelize the placement [1] or routing algorithms [2] and

achieve acceleration through concurrent execution on

multi-core CPUs or GPUs. However, most algorithms

related with physical design are inherently sequential and

the achievable parallelism are limited. Besides, most of

these works don’t take timing optimization into account,

which is one of the most time-consuming processes in

physical design.

The other kind of works attempt to partition the

original design into multiple smaller parts, perform

implementation, including placement and routing, of each

part parallelly and then merge them together [3][4].

Following this divide-and-conquer paradigm, the work [4]

can achieve 5-7X reduction in runtime of physical design

compared to Vivado. However, all these approaches are

exclusively applicable on HLS designs. The feasibility of

these methods relies on the fact that HLS is written in

untimed high-level languages, allowing the compiler to

optimize the generated RTL codes for subsequent design

partitioning. Consequently, these methods can’t be

extended to more general use cases where RTL codes are

implemented manually.

In this work, we propose an automated, split and

parallel physical implementation flow to speed up the

deployment of large RTL designs on FPGAs. Similar to

[3][4], we adopt the divide-and-conquer methodology by

partitioning original design into multiple sub-designs,

perform implementation of each sub-design concurrently,

and then merge them into the complete design. In

particular, the entire flow consists of three main stages as

Figure 2 shows. In the first stage, we perform timing-path

aware clustering on the synthesized netlist to generate an

abstracted netlist. In the second stage, the entire FPGA

region is divided into multiple islands; and nodes in the

abstract netlist are placed into islands evenly. In the last

stage, we perform physical implementation of each island

parallelly using Vivado and then stitch all islands together

to form the complete design.

We evaluate our split and parallel implementation

flow on the Xilinx Ultrascale+ device using a set of

large-scale benchmarks with varying architectural patterns.

Experimental results show that our flow can achieve

1.8-2.5X speedup compared to the standard Vivado flow

with only 1.8% degradation in design performance.

Challenges of Divide-and-Conquer Methodology

There are two critical issues arising with

divide-and-conquer methodology that can significantly

impact the quality of the merged design. The following

section details these two issues and strategies we have

applied.

The first issue is related with timing closure of

inter-partition timing paths. For split implementation, a

timing path may be partitioned into multiple segments and

each segment is optimized independently during

placement and routing. The invisibility of delay of other

segments may lead to timing violation on the final merged

path. An intuitive solution is to partition the design in such

a way that cells on each timing path fall within the same

partition. To achieve this, we propose a timing-path-aware

clustering algorithm that encapsulates all combinational

cells and their connected nets into virtual nodes so that

they can be split in subsequent partitioning. 20
25

 C
on

fe
re

nc
e

of
 S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
of

 In
te

gr
at

ed
 C

irc
ui

ts
 (C

ST
IC

) |
 9

79
-8

-3
31

5-
13

35
-1

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
ST

IC
64

48
1.

20
25

.1
10

17
77

7

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 06,2025 at 01:56:20 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The procedure of timing-path-aware netlist clustering

The second issue concerns setting proper location

constraints on cells connected with inter-partition nets. In

the monolithic placement, cells connected by a net tempt

to be dragged closer to minimize the total wirelength. In

the split and parallel implementation, however, connected

cells may span multiple partitions and are placed and

routed independently. If no constraints are imposed on

these boundary cells, they may end up being placed far

apart, leading to extremely high delay and routing issues

in the merged design. To address this issue, we adopt the

idea of anchor registers from [4]. In detail, the source

register of every inter-partition net is extracted out and

assigned to the preserved boundary region between

neighboring partitions. These registers act as anchors to

guide the placement of boundary cells and achieve timing

isolation between partitions.

Figure 2: The proposed parallel implementation flow

METHODOLOGY
The entire proposed flow consists of three main

phases as depicted in the Figure 2. The following sections

provide detailed description of these steps respectively.

Timing-Path-Aware Clustering

As mentioned above, it’s desirable that cells of one

timing path are assigned together so that partitions are

timing independent of each other. To achieve this goal, we

develop a timing-path-aware clustering algorithm to

generate abstracted netlist before design partition.

The procedure of the proposed algorithm is illustrated

in Figure 1. The complete algorithm can be divided into

three steps. In the first step, all nets driven by registers are

removed from the synthesized netlist. Next, we search all

connected components in the remaining hypergraph of the

netlist and cluster them into new nodes. Finally, we

traverse all removed edges, identify those spanning

multiple clusters, and then connect new nodes to form the

output abstract netlist.

Design Partition

Based on the abstracted netlist, the entire design is

partitioned into multiple smaller sub-designs for parallel

placement and routing. Partitioning a circuit design

typically involves two key aspects: splitting the netlist into

multiple parts and allocating disjoint and well-sized

placement region to each part. We address this problem of

floorplanning through the following three steps:

(a) Division of Placement Region: The entire placement

region of the FPGA device is uniformly divided by

grid, and each sub-region is referred to as an island.

Additionally, a thin region is reserved between the

boundaries of adjacent islands, which is referred to as

anchor region. In this work, the entire device region is

split using a 2x2 grid into four disjoint islands as

Figure 3 shows.

Figure 3: Division of the entire FPGA device

(b) Island Placement: After the division of placement

region, cells in the abstracted netlist are placed to

these islands such that the number of inter-island nets

is minimized. Additionally, the island placement

should satisfy the following two constraints: 1) the

number of cells assigned to each island should be

balanced; 2) each net can cross boundary at most one

time. To solve this problem, we develop our solution

based on min-cut placement algorithm [5]. This

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 06,2025 at 01:56:20 UTC from IEEE Xplore. Restrictions apply.

algorithm determines the location of cells through a

series of recursive min-cut bi-partitions. As shown in

Figure 4, the entire placement region and netlist is

first divided horizontally. Then each sub-netlist is

further partitioned vertically into smaller sub-regions.

Additionally, we need to set appropriate fix node

constraint for the final bi-partition to ensure that every

net only spans adjacent islands.

(c) Anchor Register Extraction: All edges in the

abstract netlist are registered, and it’s guaranteed that

any edge can only span adjacent islands during island

placement. Therefore, we can extract the source

registers of cross-boundary nets and assign them to

the corresponding anchor region to achieve timing

isolation between islands and guide the placement of

boundary cells.

Figure 4: The entire flow of design partition

Parallel Physical Implementation and Merging

After partition, we perform parallel implementation

of sub-designs and then stitch them together. Since anchor

regions are shared by adjacent islands, parallel

implementation may result in location mismatch of shared

cells and conflictions on routing resources. To address this

issue, we need to fix the placement of shared cells before

parallel implementation. To get appropriate locations of

these cells, we create a sub-netlist consisting of all anchor

cells and their neighboring cells and then perform

placement on this sub-netlist. After sub-designs are

stitched together, additional re-routing of nets incident to

anchor cells is required to resolve any routing conflictions.

RESULTS
A. Implementation Details

We implement our proposed flow in Java based on

RapidWright platform [6], which empowers users to

manipulate netlist and implementation produced by

Vivado to construct customized flow for physical design

of FPGA. Besides, we build our partition-based island

placement using open-source hypergraph partitioner,

TritonPart [7]. We evaluate our flow on Ubuntu 22.04

with AMD EPYC 7543 CPU (3.73GHz, 32 cores).

B. Benchmarks

In our experiments, we target the Xilinx Ultrascale+

vu3p FPGA, which consisting of 394K LUTs, 788K FFs,

2280 DSPs and 720 BRAMs. To evaluate our proposed

flow, we collect four open-source large-scale circuit

designs and change their parameters to generate seven

benchmark circuits.

C. Results

Table I shows the comparation of runtime and

achievable maximum frequency between the standard

Vivado flow and our split-and-parallel flow across

different benchmarks. To evaluate the impact of our flow

on design performance, we repeatedly execute both our

flow and Vivado flow with the period constraint

decreasing in interval of 0.2ns to find the maximum

achievable frequency for each benchmark. Results show

that our flow introduces an average frequency loss of 1.8%

across all benchmarks. For runtime comparation, the

timing constraint of each benchmark is set based on the

maximum frequency achieved by our flow. Under the

same timing constraint, our flow achieves an average

speedup of 2.3X compared to Vivado.

TABLE I. COMPARATION OF RUNTIME(S) AND MAX

FREQUENCY(MHZ) BETWEEN VIVADO AND OUR FLOW

Name
Vivado Our flow

RT Freq RT Freq

blue-rdma 1904 285.7 1090 277.7

nvdla-small 1192 250.0 650 250.0

nvdla-med 1676 288.6 744 188.6

nvdla-large 2080 196.0 778 196.0

ntt-small 1340 555.5 624 555.5

ntt-large 3472 555.5 1342 526.3

corundum 1978 277.7 796 263.1

Ratio 2.3 1.07 1.0 1.0

REFERENCES
[1] R. S. Rajarathnam, et al. “DREAMPlaceFPGA: An

Open-Source Analytical Placer for Large Scale

Heterogeneous FPGAs using Deep-Learning Toolkit.” in

Proceedings of ASP-DAC2022, Taiwan, 2022, pp. 300-306.

[2] M. Shen, et al. “Exploring GPU-Accelerated Routing for

FPGAs.” in IEEE Transactions on Parallel and Distributed

Systems, vol. 30, 2019, pp. 1331-1345.

[3] Y. Xiao, et al. “Fast Linking of Separately-Compiled FPGA

Blocks without a NoC.” in Proceedings of ICFPT2020,

Maui, HI, USA, 2020, pp. 196-205.

[4] L. Guo, et al. “RapidStream: Parallel Physical

Implementation of FPGA HLS Designs.” in Proceedings of

FPGA2022, New York, 2022, pp. 1-12.

[5] A. E. Caldwell, et al. “Can recursive bisection alone

produce routable placements?” in Proceedings of DAC2000,

2000, pp. 477–482.

[6] C. Lavin, et al. "RapidWright: Enabling Custom Crafted

Implementations for FPGAs." In Proceedings of

FCCM2018, Boulder, CO, USA, 2018, pp. 133-140.

[7] I. Bustany, et al."An Open-Source Constraints-Driven

General Partitioning Multi-Tool for VLSI Physical

Design." in Proceedings of ICCAD2023, San Francisco,

2023, pp. 1-9.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 06,2025 at 01:56:20 UTC from IEEE Xplore. Restrictions apply.

