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Abstract—Neural Radiance Fields (NeRF) has attracted grow-
ing attention in the fields of 3D reconstruction and rendering.
However, straightforward NeRF algorithms encounter challenges
in accurately capturing complex surface details with rich high-
frequency information. A recent development known as Convo-
lutional Neural Radiance Field (ConvNeRF) has demonstrated
state-of-the-art results for these tasks. But it comes with sub-
stantial irregular computational requirements, particularly in the
convolutional volume rendering phase. In this paper, we introduce
a hardware accelerator designed to enhance the efficiency of
convolutional volume rendering in ConvNeRF. Our approach
includes the creation of specialized computation modules and
corresponding on-chip memory system optimized for seamless
support of gated convolutions and skip connections in ConvNeRF.
To validate our design, we implement it in VerilogHDL and build
a prototype using Field Programmable Gate Array (FPGA). We
also map our design to 40nm CMOS technology. The evaluation
results underscore the superiority of our accelerator in terms
of energy efficiency when compared to an implementation on an
NVIDIA 2080Ti GPU, offering approximately 84.6× more frames
per watt.

Index Terms—Neural radiance fields (NeRF), convolutional
volume rendering, gated convolution.

I. INTRODUCTION

In recent years, 3D reconstruction and rendering have
experienced a profound transformation, largely driven by the
advent of of Neural Radiance Fields (NeRF). While NeRF has
enabled a wide range of graphics and vision applications, it
encounters limitations when dealing with scenes rich in high-
frequency information. In cases where objects such as feathers,
fur, and hair exhibit significant view-dependent variations in
brightness and color, the intricacies of opacity become a
prominent challenge, affecting both geometric and appearance
reconstruction.

To enhance NeRF’s capacity for rendering intricate objects,
a novel Convolutional Neural Radiance Field (ConvNeRF)
generation approach has been introduced [1]. As shown in
Fig. 1, ConvNeRF employs an implicit neural radiance field,
using a Multi-Layer Perceptron (MLP) to represent the scene
and utilizes volumetric integration to predict density and color
values along the casting rays. Moreover, ConvNeRF leverages
a convolutional neural network (CNN) to further refine the
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Fig. 1. The convolutional neural radiance field architecture, consisting of a
NeRF-based processing module and a convolutional volume renderer.

view-consistent fine-detailed appearance and opacity output.
The CNN used for volume rendering in ConvNeRF follows
an encoder-decoder architecture similar to U-Net [11]. It
distinguishes itself from conventional U-Net structures [2]
by integrating gated convolution to capture nuanced features
within the masked region, yielding superior results. Further-
more, through the amalgamation of features from diverse
layers and images of varying scales, the gated convolutions
enrich the feature set, thus facilitating the restoration of high-
frequency details at the peripheries of objects.

Although ConvNeRF has delivered state-of-the-art results, it
comes with substantial computational demands, especially in
the volume rendering part. For the U-Net-like convolutional
volume rendering in ConvNeRF, the inference of a single
frame with a resolution of 500x800 necessitates approximately
291MB of features (FP32) and consumes a full power load
of 250W with the NVIDIA RTX 2080Ti. While graphical
processing units (GPUs) have historically managed significant
computational and storage requirements, these demands still
outstrip the capabilities of edge devices. While there are works
focusing on efficient hardware accelerator for NeRF [12],
there has been relatively little attention directed towards the
convolutional volume rendering.

II. RELATED WORK

A. Hardware Accelerators for NeRF

Hardware accelerators for NeRF have garnered significant
attention in recent years. ICARUS [3] introduced a specialized
architecture designed for NeRF that exhibits superior energy
efficiency compared to GPUs. NeuRex [4] delved into the
intricacies of leveraging sparsity in matrix-vector pairs and
proposes a efficient architecture, albeit with increased power
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Fig. 2. The architecture of the proposed accelerator for convolutional volume rendering.

and area consumption. Gen-NeRF [5] proposed an algorithm-
hardware co-design framework dedicated to accelerating gen-
eralizable NeRFs, enabling real-time, versatile NeRF applica-
tions. The realm of hardware acceleration for NeRF continues
to undergo rapid development.

B. Hardware Accelerators for U-Net

Although there are many hardware accelerators for CNNs,
there is only a few specialized designs for U-net like architec-
tures that used in ConvNeRF. Two recent works [6] and [10]
presented hardware accelerators for 3D U-Net, but without
up-sampling modules for dimension alignment. The scale and
architecture of the convolution modules is also not align
with the requirements of convolutional volume rendering. [8]
introduced a U-Net algorithm incorporating super-resolution
techniques, coupled with a custom hardware accelerator. But
the hardware accelerator proposed in [8] does not support
gated convolutions and utilizes a pixel shuffle-based method
for up-sampling, which is also unsuitable for ConvNeRF.
On the other hand, when mapping the convolutional volume
rendering computation to other existing CNN accelerators, the
distinctive features of gated convolutions and skip connection
can lead to notable inefficiencies.

To address the above-mentioned limitations in existing
designs, we propose a specialized energy efficient hardware
convolutional volume renderer for ConvNeRF. Our design
includes native supports for gated convolution operations, a
crucial feature frequently employed in convolutional neural
rendering applications. We build a prototype system to validate
the proposed accelerator based on FPGA, which reconstructs
high frequency and global consistent appearance and opacity
of fuzzy objects. We also implement and evaluate our design
using 40nm CMOS technology. Demonstrations and evaluation
results underscore the superior energy efficiency of the pro-
posed accelerator in comparison to GPU implementations, as
well as other dedicated accelerators, for convolutional neural
rendering tasks.

III. PROPOSED HARDWARE ARCHITECTURE

Fig.2 illustrates the overall architecture of the proposed
hardware accelerator for convolutional volume rendering. The
RGB and Alpha features [1] generated by the preceding NeRF
model, which serve as the input for the accelerator, are stored
in the dynamic random access memory (DRAM). An AXI
interface establishes the connection between the DRAM and
accelerator. Within the system, the Course module operates
as the central control unit, responsible for orchestrating the
sequence in which various subsystems are utilized. It addi-
tionally disseminates configuration information of different
layers in the algorithm to all modules to accommodate the
requirements of different layer computation. The Subsystem
module consists of four distinct sub-modules, corresponding to
specific operations in the convolutional volume rendering, i.e.,
gated convolution, down-sampling, up-sampling, and output
convolution. When a specific module within the subsystem is
activated, the associated data fetcher and computation modules
within the processing system are invoked as required. A
portion of the data residing in DRAM will be pre-fetched via
the AXI bus and directed to the Data Fetcher module, where it
is consolidated to match the required width and subsequently
stored in the Buffer Bank module. The Processing System
retrieves data from the Buffer Bank for further processing. The
outcomes of the Processing System are subsequently preserved
within the output buffer housed within the same buffer bank.
Once a specific data threshold is reached, typically 4KB, the
Data Writer module is triggered. It retrieves data from the
output buffer and transfers it back to DRAM via the AXI bus.
In cases where the Processing System requires data not present
in the buffer bank, the Data Fetcher module is reactivated to
pre-fetch the necessary data back into the Buffer Bank.

A. Buffer Bank

1) Feature Buffer: To facilitate computations with varying
channel counts and improve hardware flexibility, we design a
Feature Buffer module comprises 16 blocks of SRAM, each
with a depth of 4096 and a width of 256 bits. A single
block within the Feature Buffer can accommodate a maximum
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Fig. 4. Weight Buffer configurations for different modes.

storage of 4096 sets of 16-bit features, each with 16 channels.
When a greater number of channels is required, our design
supports the concatenation of multiple Feature Buffer blocks
to augment the input channel count. The Assemble Mode is
designed to merge features from different layers in the convo-
lutional volume rendering architecture. As depicted in Fig. 3,
when the Assemble Mode is activated, chip-select signals are
used to dictate the activation of different blocks within the
Feature Buffer. The concatenated features are subsequently
retrieved from Feature Buffer forwarded to the Processing
System for further processing.

2) Weight Buffer: As gated convolution requires two con-
volution operations with identical size, we incorporates two
weight buffers, each spanning 16 blocks, within the Buffer
Bank. Each block comprises two SRAM units, each with a
depth of 128 and a width of 512 bits. When performing
gated convolution operations, these 32 blocks, each associated
with its respective MAC unit, provid the necessary weight
data. When conducting the 2×2 max-pooling operation during
down-sampling, these 32 blocks are divided into 64 units,
wherein every 16 units retrieve data from one row of features
sourced from the data fetcher. As illustrated in Fig.4, the
data from each row will be cyclically stored in 0⃝, 1⃝, 2⃝,
and 3⃝. Note the parallelism of the weight RAM, when the
maxpooling operation starts, Weight Buffer will cyclically
output 0⃝ 1⃝, 1⃝ 2⃝, 2⃝ 3⃝, and 3⃝ 0⃝, which corresponds to two
rows of feature. This mechanism enhances the efficiency of
the maxpooling operation.

B. Gated Convolution Module

As depicted in Fig.5, the Gated Convolution module consists
of 16 identical processing elements (PEs). The MAC unit
within a PE comprises two parts, corresponding to the gener-
ation of feature and mask in the gated convolution operation,
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Fig. 5. Detailed architecture of the PEs in the Gated Convolution Module.

enabling parallel MAC operations. Specifically, each MAC
unit consists of 64 16-bit by 16-bit fixed-point multipliers,
a 64-to-1 adder tree, an accumulation unit, and a bias adder.
There are slight differences in the design of the accumulation
module for the two parts of the MAC unit. When conducting
convolution operations to generate features, the continuously
generated 16 convolution results are first stored in a register
group. However, during convolution operations for mask gen-
eration, the 16 results are continually directed to either the add
gate or the Sigmoid gate for mask generation. Subsequently,
the feature undergoes a masking process, involving addition
or multiplication operations with the mask. The Sigmoid Gate
and Add Gate correspond to the gated convolution and output
convolution operations, respectively. In our design, different
modules are activated at distinct stages of the neural network to
align with the specific operational requirements. The Sigmoid
Approximation module employs a ‘look-up table (LUT) +
interpolation’ technique [7]. Batch normalization operations
are integrated into the MAC unit in our design, diminishing the
necessity for repetitive memory access. Every operation within
the unit is pipelined to enhance computational efficiency.

C. Bilinear Interpolation Module

Bilinear interpolation is a commonly used technique in
convolutional volume rendering. As depicted in Fig. 6, a
method similar to sliding-window based convolution is used
in this work to implement bilinear interpolations. Two rows
of features are sequentially read from the Feature Buffer and
temporarily stored in two FIFOs, each with a depth of 3.
Once the data is prepared, the computation unit undertakes
interpolation operations on the elements located at positions
0⃝, 1⃝, 2⃝, and 3⃝. Once the interpolation operations com-
pleted, the elements at positions 2⃝, 3⃝, 4⃝, and 5⃝ within the
FIFOs will be collectively shifted to positions 0⃝, 1⃝, 2⃝, and
3⃝. Since the required data is readily prepared in the FIFOs,
the computation can proceed without waiting, allowing for
continuous processing. As the data shifted forward, position
4⃝ will be replaced by newly read data from the Feature
Buffer. During the interpolation operations, data at position
5⃝ will be filled. This cycle of operations continues until
all rows of features have been traversed, i.e., completing the
bilinear interpolation. Note that each interpolation computation
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computes all the results involving the four data points at
positions 0⃝, 1⃝, 2⃝ and 3⃝. In this way, all features need
to be read out only twice, which significantly reduces the on-
chip SRAM read/write operations. The Bilinear Interpolation
module supports simultaneous computation of features with a
maximum of 64 channels.

D. Max Pooling and Alpha Clamp

The Max Pooling module is specifically designed for the
2x2 max pooling (the stride is 1) in down-sample operation.
As discussed, this module will receive 2 rows of feature
continuously from the Weight Buffer. It then compares and
finds the largest number of the 4 elements in a 2x2 window.
The Max Pooling module in our design supports simultaneous
computation of features for up to 32 channels. Once the RGB
and Alpha features have been fully prepared, the Alpha Clamp
module will then execute an image matting process to produce
the final RGB results.

IV. IMPLEMENTATION AND EVALUATION RESULTS

To validate the proposed design, we implement our system
in VerilogHDL. A proof-of-concept FPGA prototype system
is further developed, comprising an AMD Virtex UltraScale+
VU19P, a DRAM daughter card, as well as a host PC for
loading features, weights and other parameters. We employed
the commonly used Wolf dataset from [9] to showcase the
rendering quality. As shown in Fig.8, our design successfully
restores high-frequency details in fuzzy objects, with no loss
in peak signal-to-noise ratio (PSNR).

To evaluate the performance of our proposed design, we
map our system to 40nm CMOS technology and employed
Synopsys Design Compiler R-2020.09-SP5 for synthesis. The
results are presented in Table I. As we can see, our design
shows much better energy efficiency than the GPU imple-
mentation for ConvNeRF, delivering approximately 84.6×
more frames per watt (F/W). While [8] and our design serve
diverse neural network tasks, the proposed design demon-
strates superior performance when compared to UArch [8].

Ground Truth GPU Ours

PSNR:37.3424 PSNR:37.2580

PSNR:33.1156 PSNR:33.1600

PSNR:34.6340 PSNR:34.6334

PSNR:34.8789 PSNR:34.9005

Fig. 8. Comparison of rendering results between GPU and the proposed
hardware accelerator. PSNRs are presented below each respective results.

TABLE I
COMPARISON WITH OTHER DESIGNS AND IMPLEMENTATIONS.

NVIDIA 2080Ti Sagitta [10] UArch [8] Ours
Network ConvNeRF 3D U-Net USR ConvNeRF

Data Type 32b-float 8b 12b 16b
Tech Node (nm) 12 55 28 40

Area (mm2) 754 13.5 7 13
Frequency (MHz) 1350 20-170 156 220

SRAM (MB) 29.5 0.225 0.777 2.51
Power (W) 250 0.027-0.605 - 0.302
Frame/W 0.087 - - 7.358
TOPS/W 0.054 2.73-7.2 2.26 3.75

Frame/W: Frames per watt. Results in this table are obtained base on
the Wolf dataset with rendering resolution of 500 × 800.

It is noteworthy that [8] and [10] lack support for gated
convolution operations, which may introduce additional com-
putational complexity and memory requirements when execute
convulitional volume rendering tasks like ConvNeRF.

V. CONCLUSION

In this work, we propose an energy-efficient hardware
volume renderer for ConvNeRF, which has demonstrated state-
of-the-art results for reconstructing and rendering complex
surface details. The proposed design incorporates specialized
computation module and on-chip memory system optimized
for seamless support of gated convolutions and skip connec-
tions in the ConvNeRF architecture. To validate the proposed
design, we implement our system in VerilogHDL and build
a proof-of-concept FPGA prototype system. The rendering
results demonstrate that the proposed hardware accelerator
produces outputs without any quality loss. To evaluate the
energy efficiency, we further implement our design in 40nm
CMOS technology. The evaluation results underscore the su-
periority of our accelerator in terms of energy efficiency when
compared to GPU for ConvNeRF, offering approximately
84.6× more frames per watt.
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